Category Archives: LEDs

A coalition of leaders from the tech industry and academia, led by the Semiconductor Industry Association (SIA) and Semiconductor Research Corporation (SRC), today released a report highlighting the urgent need for robust investments in research to advance the burgeoning Internet of Things (IoT) and develop other cutting-edge innovations that will sustain and strengthen America’s global technology leadership into the future. The report, titled “Rebooting the IT Revolution: A Call to Action,” calls for a large-scale, public-private research initiative called the National Computing and Insight Technologies Ecosystem (N-CITE).

“The United States stands at a crossroads in the global race to uncover the next transformative innovations that will determine technology leadership,” said John Neuffer, president and CEO of the Semiconductor Industry Association, which represents U.S. leadership in semiconductor manufacturing, design, and research. “We either aggressively invest in research to foster new, semiconductor-driven technologies such as the Internet of Things that will shape the future of the digital economy, or we risk ceding ground to competitors abroad. The findings and recommendations in the Rebooting the IT Revolution report will help the United States rise to this bold challenge, choose the right path forward, and harness the new technologies that will keep America at the tip of the spear of innovation.”

Basic scientific research funded through agencies such as the National Science Foundation (NSF), the National Institute of Standards and Technology (NIST), the Defense Advanced Research Projects Agency (DARPA), and the Department of Energy (DOE) Office of Science has yielded tremendous dividends, helping launch technologies that underpin America’s economic strength and global competiveness. The U.S. semiconductor industry has been a reliable partner in funding research, investing about one-fifth of revenues each year in R&D – the highest share of any industry.

“The IoT — from ubiquitous sensor nodes to the cloud — will be orders of magnitude larger and more complex than anything we know today. Moreover, as the demand for more energy-efficient yet more powerful computing grows, new approaches such as brain-inspired computing have the potential to transform the way systems are designed and manufactured,” said Ken Hansen, president of Semiconductor Research Corporation (SRC), the world’s leading university research consortium for semiconductor technologies. “Addressing the fundamental research challenges outlined in this report is essential to creating the infrastructure that will enable the conversion of data to insight and actionable information with appropriate security and privacy. While some areas are moving forward quickly, others require collaborative research among industry, academia and government to capture the untold benefits of this distributed, intelligent ecosystem.”

The report contains opinions from industry, academic and government leaders who participated in the Rebooting the IT Revolution Workshop on March 30–31, 2015. The workshop was sponsored by SIA and SRC and supported by NSF.

Participants stressed the need for fundamental research in the following areas in order to fully realize IoT breakthroughs and sustain America’s technology leadership: energy-efficient sensing and computing, data storage, real-time communication ecosystem, multi-level and scalable security, a new fabrication paradigm, and insight computing. Many of these areas align with Federal research initiatives, including the National Strategic Computing Initiative, the BRAIN Initiative, and the National Nanotechnology Initiative Grand Challenges.

“IoT technology will connect directly to both the physical and social worlds by advancing disruptive hardware, cross-field networking, insight-generating IT, and principles of convergence, which are at the core of future U.S. technology and economic development,” said Mihail C. Roco, Senior Advisor for Science and Engineering at NSF and a key architect of the National Nanotechnology Initiative. “The report’s contents reflect a new way of thinking to create an interdependent, scientific-technological-social ecosystem driven by the emergent confluence of IT with nanotechnology, advanced manufacturing, cognitive sciences, sustainability, and safety. All are in response to an increasingly interconnected, knowledge-driven and demanding society. In the longer term, implementation of the report would support global human progress.”

BY PETE SINGER, Editor-in-Chief

Solid State Technology recently conducted a survey of our readers on how the Internet of Things (IoT) is driving the demand for semiconductor technology. A total of 303 people responded to the survey. A majority of the respondents were in management roles.

Survey questions focused on their expectations for growth in the Internet of Things (IoT), drivers, potential roadblocks, opportunities and impact on semiconductor technology, including manufacturing and packaging.

There is little agreement on how strongly the IoT device market will grow. About a quarter of the respondents said, by 2020, 30-50 billion devices would be connected to internet with unique urls. Almost as many were much more optimistic, saying more than 90 billion.

A sizable majority of the respondents (59.41%) believe new companies will emerge to benefit from the growth in IoT. Existing companies will also benefit, with MEMS companies benefitting the most.

A majority of the respondents said the existing supply chain and industry infrastructure was not equipped to handle the needs of the IoT or said they weren’t sure. Similarly, most said new manufacturing equipment and new materials will be needed for IoT device manufacturing.
My take on this is that while the market potential for companies involved in IoT devices is large, there is little agreement on exactly how large it might become.

I believe it’s also likely that new companies will emerge focused specifically on manufacturing IoT devices. Existing companies across the supply chain will also benefit.

Clearly, IoT devices will create new challenges, especially in the area of packaging. Form-factor, security and reliability are the most important characteristics of IoT devices.

Another recently completed survey on the IoT by McKinsey & Company and the Global Semiconductor Alliance (GSA) revealed some ambiguity about whether the IoT would be the top growth driver for the semiconductor industry or just one of several important forces.

The survey of executives from GSA member companies showed that they had mixed opinions about the IoT’s potential, with 48 percent stating that it would be one of the top three growth drivers for the semiconductor industry and 17 percent ranking it first.

RayVio Corporation, a developer of deep ultraviolet (UV) LEDs and integrated solutions, announced today that they are expanding their international sales force, and manufacturing capacity. The facility expansion at the original site is scheduled to be complete by year-end.

RayVio’s current Silicon Valley headquarters houses their wafer growth, chip fabrication, packaging and test R&D and proto-typing capability. The expansion of this facility will enable RayVio to reduce cycle time and produce in excess of two million LED units annually through the installation of additional manufacturing and test equipment. Combined with its contract manufacturing strategy, RayVio is poised to keep pace with the increasing demand of the fast growing deep UV LED market.

The demand is being driven by a host of industrial and consumer applications ranging from water disinfection to consumer medical devices serving multiple global markets.

“Our proven, novel technology platform is producing best in class performance, and at the same time we are executing against our cost reduction roadmap, allowing our downstream partners to make their products a reality,” says Dr. Doug Collins, Vice President of Engineering and Operations.

Until recent achievements in both performance and cost, UV LED solutions were limited to niche applications. With the availability of high optical power UV LEDs, and competitive system level pricing to alternative UV sources, the UV LED industry is seeing a major uptake in solutions being provided.

“RayVio’s superior performance and cost effective solutions have accelerated the mass adoption of UV LED enabled industrial and consumer devices,” says Dr. Robert C. Walker, RayVio co-founder and CEO.  “With the funding we received earlier this year, we have the capital required to grow the company aggressively. By expanding our international sales force and increasing our manufacturing and research capabilities, we will be well positioned to maintain a leadership role.”

RayVio came out of stealth mode at the beginning of 2015 after closing their $9.3M series B round of financing.  They are currently sampling selected customers, and are working closely with industry leading partners in the UV LED curing, medical device and water, surface and air disinfection markets.

The digital world once existed largely in non-material form. But with the rise of connected homes, smart grids and autonomous vehicles, the cyber and the physical are merging in new and exciting ways. These hybrid forms are often called cyber-physical systems (CPS), and are giving rise to a new Internet of Things.

Such systems have unique characteristics and vulnerabilities that must be studied and addressed to make sure they are reliable and secure, and that they maintain individuals’ privacy.

The National Science Foundation (NSF), in partnership with Intel Corporation, one of the world’s leading technology companies, today announced two new grants totaling $6 million to research teams that will study solutions to address the security and privacy of cyber-physical systems. A key emphasis of these grants is to refine an understanding of the broader socioeconomic factors that influence CPS security and privacy.

“Advances in the integration of information and communications technologies are transforming the way people interact with engineered systems,” said Jim Kurose, head of Computer and Information Science and Engineering at NSF. “Rigorous interdisciplinary research, such as the projects announced today in partnership with Intel, can help to better understand and mitigate threats to our critical cyber-physical systems and secure the nation’s economy, public safety, and overall well-being.”

The partnership between NSF and Intel establishes a new model of cooperation between government, industry and academia to increase the relevance and impact of long-range research. Key features of this model for projects funded by NSF and Intel include joint design of a solicitation, joint selection of projects, an open collaborative intellectual property agreement, and a management plan to facilitate effective information exchange between faculty, students and industrial researchers.

This model will help top researchers in the nation’s academic and industrial laboratories transition important discoveries into innovative products and services more easily.

“The new CPS projects, announced today, enable researchers to collaborate actively with Intel, resulting in strong partnerships for implementing and adopting technology solutions to ensure the security and privacy of cyber-physical systems,” said J. Christopher Ramming, director of the Intel Labs University Collaborations Office. “We are enthusiastic about this new model of partnership.”

The NSF-Intel partnership further combines NSF’s experience in developing and managing successful large, diverse research portfolios with Intel’s long history of building research communities in emerging technology areas through programs such as its Science and Technology Centers Program.

The projects announced today as part of the NSF/Intel Partnership on Cyber-Physical Systems Security and Privacy are:

Rapidly increasing incorporation of networked computation into everything from our homes to hospitals to transportation systems can dramatically increase the adverse consequences of poor cybersecurity, according to Philip Levis, who leads a team at Stanford University that received one of the new awards. Levis’ team investigates encryption frameworks for testing and protecting networked infrastructure.

“Our research aims to lay the groundwork and basic principles to secure computing applications that interact with the physical world as they are being built and before they are used,” Levis said. “The Internet of Things is still very new. By researching these principles now, we hope to help avoid many security disasters in the future.”

The team, consisting of researchers from Stanford University, the University of California, Berkeley, and the University of Michigan, considers how new communication architectures and programming frameworks can help developers avoid decisions that lead to vulnerabilities.

Another project explores the unique characteristics of cyber-physical systems, such as the physical dynamics, to provide approaches that mix prevention, detection and recovery, while assuring certain levels of guarantees for safety-critical automotive and medical systems.

“With this award, we will develop robust, new technologies and approaches that work together to lead to safer, more secure and privacy-preserving cyber-physical systems by developing methods to tolerate attacks on physical environment and cyberspace in addition to preventing them,” said Insup Lee, who leads a team at the University of Pennsylvania, along with colleagues at Duke University and the University of Michigan.

“New smart cyber-physical systems technologies are driving innovation in sectors such as food and agriculture, energy, transportation, building design and automation, healthcare, and advanced manufacturing,” Kurose said. “With proper protections in place, CPS can bring tremendous benefits to our society.”

The new program extends NSF’s investments in fundamental research on cyber-physical systems, which has totaled more than $200 million in the past five years.

NSF is also separately investing in three additional CPS security and privacy projects that address the safety of autonomous vehicles, the privacy of data delivered by home sensors and the trustworthiness of smart systems:

North America-based manufacturers of semiconductor equipment posted $1.59 billion in orders worldwide in July 2015 (three-month average basis) and a book-to-bill ratio of 1.02, according to the July EMDS Book-to-Bill Report published today by SEMI.  A book-to-bill of 1.02 means that $102 worth of orders were received for every $100 of product billed for the month.

SEMI reports that the three-month average of worldwide bookings in July 2015 was $1.59 billion. The bookings figure is 5.1 percent higher than the final June 2015 level of $1.52 billion, and is 12.5 percent higher than the July 2014 order level of $1.42 billion.

The three-month average of worldwide billings in July 2015 was $1.56 billion. The billings figure is 0.3 percent higher than the final June 2015 level of $1.55 billion, and is 18.2 percent higher than the July 2014 billings level of $1.32 billion.

“Year-to-date, the bookings and billings reported in the SEMI North American equipment book-to-bill report indicate a solid year for the industry,” said SEMI president and CEO Denny McGuirk. “The outlook for the remainder of the year is somewhat clouded, but we see investments in 3D NAND and advanced packaging as drivers.”

The SEMI book-to-bill is a ratio of three-month moving averages of worldwide bookings and billings for North American-based semiconductor equipment manufacturers. Billings and bookings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)

Bookings
(3-mo. avg)

Book-to-Bill

February 2015 

$1,280.1

$1,313.7

1.03

March 2015 

$1,265.6

$1,392.7

1.10

April 2015 

$1,515.3

$1,573.7

1.04

May 2015 

$1,557.3

$1,546.2

0.99

June 2015 (final)

$1,554.9

$1,517.4

0.98

July 2015 (prelim)

$1,559.3

$1,594.3

1.02

Source: SEMI (www.semi.org)August 2015

Advances at Oregon State University in manufacturing technology for “quantum dots” may soon lead to a new generation of LED lighting that produces a more user-friendly white light, while using less toxic materials and low-cost manufacturing processes that take advantage of simple microwave heating.

The cost, environmental, and performance improvements could finally produce solid state lighting systems that consumers really like and help the nation cut its lighting bill almost in half, researchers say, compared to the cost of incandescent and fluorescent lighting.

The same technology may also be widely incorporated into improved lighting displays, computer screens, smart phones, televisions and other systems.

A key to the advances, which have been published in the Journal of Nanoparticle Research, is use of both a “continuous flow” chemical reactor, and microwave heating technology that’s conceptually similar to the ovens that are part of almost every modern kitchen.

The continuous flow system is fast, cheap, energy efficient and will cut manufacturing costs. And the microwave heating technology will address a problem that so far has held back wider use of these systems, which is precise control of heat needed during the process. The microwave approach will translate into development of nanoparticles that are exactly the right size, shape and composition.

“There are a variety of products and technologies that quantum dots can be applied to, but for mass consumer use, possibly the most important is improved LED lighting,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering.

“We may finally be able to produce low cost, energy efficient LED lighting with the soft quality of white light that people really want,” Herman said. “At the same time, this technology will use nontoxic materials and dramatically reduce the waste of the materials that are used, which translates to lower cost and environmental protection.”

Some of the best existing LED lighting now being produced at industrial levels, Herman said, uses cadmium, which is highly toxic. The system currently being tested and developed at OSU is based on copper indium diselenide, a much more benign material with high energy conversion efficiency.

Quantum dots are nanoparticles that can be used to emit light, and by precisely controlling the size of the particle, the color of the light can be controlled. They’ve been used for some time but can be expensive and lack optimal color control. The manufacturing techniques being developed at OSU, which should be able to scale up to large volumes for low-cost commercial applications, will provide new ways to offer the precision needed for better color control.

By comparison, some past systems to create these nanoparticles for uses in optics, electronics or even biomedicine have been slow, expensive, sometimes toxic and often wasteful.

Oher applications of these systems are also possible. Cell phones and portable electronic devices might use less power and last much longer on a charge. “Taggants,” or compounds with specific infrared or visible light emissions, could be used for precise and instant identification, including control of counterfeit bills or products.

OSU is already working with the private sector to help develop some uses of this technology, and more may evolve. The research has been supported by Oregon BEST and the National Science Foundation Center for Sustainable Materials Chemistry.

SUSS MicroTec, a global supplier of equipment and process solutions for the semiconductor industry and related markets, and the Singh Center for Nanotechnology at the University of Pennsylvania (Penn) are announcing a cooperation agreement in the field of nanoimprint technologies. As part of this cooperation, Penn has recently received the equipment set and the technology know-how for Substrate Conformal Imprint Lithography (SCIL), that will expand the capabilities of the recently installed MA/BA6 Gen3 Mask Aligner from SUSS MicroTec at Penn.

Substrate Conformal Imprint Lithography (SCIL) is a nanoimprint technique combining the advantages of both soft and rigid stamps, allowing large-area patterning and sub-50nm resolution to be achieved at the same time. SCIL is applied in diverse fields, ranging from HB LEDs, Photovoltaics, MEMS, NEMS and mass production of optical gratings for gas sensing and telecommunications.

The Singh Center for Nanotechnology will implement SCIL for use in plasmonic devices, semiconductor nanowires, flexible nanocrystal electronics, biodegradable sensors and MEMS batteries.  In addition, Lithography Manager Dr. Gerald Lopez will lead the Center’s efforts in qualifying new nanoimprint materials and related process technology development in close cooperation with SUSS MicroTec.

As a further important part of the cooperation, SUSS MicroTec`s customers will gain direct access to the cleanroom facilities and the equipment set installed at Penn, serving as a demonstration center for North American customers. The experience and high technology level of Penn allows the customer to see the entire process flow, the imprinting process itself and the subsequent steps up to a finished device.

“We are pleased to collaborate with SUSS MicroTec for developing applications with SCIL. By combining our strengths in micro- and nanofabrication, we are able to provide superior nanoimprint capabilities to our researchers,” stated Professor Mark Allen, Scientific Director of the Singh Center for Nanotechnology and Alfred Fitler Moore, Professor of Electrical and Systems Engineering. “This industrial partnership enhances our ability to demonstrate how nanoimprint technology serves as a catalyst in research and its translation into the commercial sector.”

“We are very happy about the cooperation with the Singh Center for Nanotechnology. Their work will contribute strongly to further commercialize this large area nano-patterning technique in order to accelerate the adoption for volume production. In addition, our customers do not just benefit from the possibility to use Penn’s facilities and get insights to the entire imprinting process, but also from Penn´s knowledge, by having an experienced partner at hand”, says Ralph Zoberbier, General Manager Exposure and Laser Processing of SUSS MicroTec.“

Nano-electronics research center imec announced today that it is extending its Gallium Nitride-on-Silicon (GaN-on-Si) R&D program, and is now offering joint research on GaN-on-Si 200mm epitaxy and enhancement mode device technology. The extended R&D initiative includes exploration of novel substrates to improve the quality of the epitaxial layers, new isolation modules to increase the level of integration, and the development of advanced vertical devices. Imec welcomes new partners interested in next generation GaN technologies and companies looking for low-volume manufacturing of GaN-on-Si devices to enable the next generation of more efficient and compact power converters.

next gen GaN imec

GaN technology offers faster switching power devices with higher breakdown voltage and lower on-resistance than silicon, making it an outstanding material for advanced power electronic components. Imec’s R&D program on GaN-on-Si was launched to develop a GaN-on-Si process and bring GaN technology towards industrialization. Building on imec’s excellent track record in GaN epi-layer growth, new device concepts and CMOS device integration, imec has now developed a complete 200mm CMOS-compatible GaN process line. Imec’s GaN-on-Si technology is reaching maturity, and companies can gain access to the platform by joining imec’s GaN-on-Si industrial affiliation program (IIAP). The process line is also open to fabless companies interested in low-volume production of GaN-on-Si devices tailored to their specific needs, through dedicated development projects.

Imec’s portfolio includes three types of buffers optimized for breakdown voltage and low traps-related phenomena (i.e. current dispersion): a step graded AlGaN buffer, a super lattice buffer, and a buffer with low-temperature AlN interlayers. Imec explored side-by-side enhancement mode power devices of the MISHEMT and p-GaN HEMT type, as well as a gate-edge terminated Schottky power diode featuring low reverse leakage and low turn-on voltage.

The latest generation of imec enhancement mode power devices shows a threshold voltage beyond +2V, an on-resistance below 10 ohm mm and output current beyond 450 mA/mm. These devices represents the state of the art of enhancement mode power devices.

In this next phase of the GaN program, imec is focusing on further improving the performance and reliability of its current power devices, while in parallel pushing the boundaries of the technology through innovation in substrate technology, higher levels of integration and exploration of novel device architectures.

“Since the program’s launch in July 2009, we have benefited from strong industry engagement, including participation from IDMs, epi-vendors and equipment and material suppliers. This underscores the industrial relevance of our offering,” stated Rudi Cartuyvels, executive vice president of smart systems at imec. “Interested companies are invited to become a partner and actively participate in our program. Imec’s open innovation model allows companies to have early access to next-generation devices and power electronics processes, equipment and technologies and speed up innovation at shared cost.”

Worldwide silicon wafer area shipments increased during the second quarter 2015 when compared to first quarter area shipments according to the SEMI Silicon Manufacturers Group (SMG) in its quarterly analysis of the silicon wafer industry.

Total silicon wafer area shipments were 2,702 million square inches during the most recent quarter, a 2.5 percent increase from the 2,637 million square inches shipped during the previous quarter resulting in a new quarterly volume shipment record. New quarterly total area shipments are 4.4 percent higher than second quarter 2014 shipments. First half 2015 shipments are 7.8 percent higher than the first half of 2014.

“For two consecutive quarters, strong silicon shipment growth has been recorded by the Silicon Manufacturers Group,” said Ginji Yada, chairman of SEMI SMG and general manager, International Sales & Marketing Department of SUMCO Corporation. “Continued growth off of the record level shipped in the first quarter, produced another record level of shipments in the most recent quarter.”

Quarterly Silicon* Area Shipment Trends

 Million Square Inches

 

 Q2-2014

 

 Q1-2015  Q2-2015  1H-2014  1H-2015
Total

 

2,587 2,637 2,702 4,951 5,339

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers, as well as non-polished silicon wafers shipped by the wafer manufacturers to the end-users.

The Silicon Manufacturers Group acts as an independent special interest group within the SEMI structure and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.  For more information on SEMI, visit www.semi.org.

MagnaChip Semiconductor Corporation, a Korea-based designer and manufacturer of analog and mixed-signal semiconductor products, announced today it is hosting its first Foundry Technology Symposium at the Grand Hyatt in Shanghai, China, on September 22, 2015.

MagnaChip plans to discuss its current and future semiconductor foundry business roadmap, specialty technology processes, target applications and end-markets. This symposium is a direct response to the increased interest and demand coming from our Chinese fabless customers for advanced analog and mixed-signal specialized foundry technologies.

During the symposium in Shanghai, MagnaChip, which is the largest Korea-based analog and mixed-signal foundry service provider, will highlight its technology portfolio with discussions focused on mixed-signal, low power technologies in the Internet of Things (IoT) sector, Bipolar-CMOS-DMOS (BCD) for high-performance analog and power management applications, Ultra-High Voltage (UHV) and Non-Volatile Memory (NVM). In addition, MagnaChip will present technologies used in applications including smartphones, tablet PCs, automotive, LED lighting, consumer wearables and IoT. MagnaChip will also review its customer-friendly design environment and on-line customer service tool known as “iFoundry”.

“We are very pleased to host our first Foundry Technology Symposium in Shanghai and intend to provide a beneficial and an educational event for all of our participants,” said YJ Kim, Chief Executive Officer of MagnaChip. “Through our technology symposiums in Taiwanthe United States and now in Shanghai, we are better able to serve our global customers with our long history of successful foundry service and expertise.

A multitude of fabless companies, IDMs (Integrated Device Manufacturers) and other semiconductor companies are expected to attend MagnaChip’s Shanghai technology symposium. To sign up for the event, and to receive more detailed information regarding the symposium, please visit www.magnachip.com or ifoundry.magnachip.com.