Tag Archives: letter-wafer-top

By Ted Shafer, Business Manager, Mature Product Sales, ASML

Ted Shafer of ASML reports on the highlights from the ≤200mm manufacturing session during SEMICON West, organized by the SEMI Secondary Equipment and Applications Special Interest Group. Your next opportunity to catch up on latest trends on ≤200mm manufacturing trends and its impact on the secondary equipment and applications market is SEMICON Europa 2016 and the Secondary Equipment Tech Arena session

Wednesday July 13th at SEMICON West a seminar and panel discussion were held to discuss the longevity and growth of the 200mm equipment market, and responses from IDMs, OEMs and 3rd parties to the challenges this growth presents.

Tim Tobin of Entrepix was the first speaker.  Entrepix is a premier 3rd party refurbisher of CMP and other process equipment.  Tim was the first to remark on a phenomenon that the other speakers and panelists also noted: a huge portion of the die in the devices we use daily do not require state of the art 300mm manufacturing.  For example, 60% – 80% of the chips in your smartphone or tablet are manufactured on 200mm – or smaller – wafers.  These wafers are created using mature equipment, which is frequently purchased from the secondary market, often from refurbishers such as Entrepix.

SEMI’s Christian Dieseldorff next provided a great overview of 200mm market trends, titled “200mm Fab: Trends, Status, and Forecast”.  Driven by the growth of IoT (Internet of Things), new 200mm fabs are being built and additional capacity is being added at existing fabs.  Key take-away is that after peaking in 2006, then declining for several years, 200mm wafer starts per month are now forecasted to exceed 2006’s level of 5.4M by 2019.  The question on everyone’s mind is, once that level is exceeded, where will the tools come from to manufacture those wafers?

200mm-image1

Pierric Gueguen of Yole spoke of the increased adoption of exotic substrates like GaN, Sapphire and Silicon Carbide.  These substrates provide many performance advantages, such as lower power consumption, faster switching speed, and high temperature resistance.  Yet the substrates cannot scale to 12”, and sometimes not to 8”.  So the increased adoption of these substrates is driving additional demand for 150mm/200mm tools.

As a counter-point to the 200mm discussions, Karen Erz of Texas Instruments gave a very well-received presentation on TI’s pivot to 300mm for analog, which has traditionally been manufactured on 200mm wafers.  A key to TI’s success is to embrace without fear buying opportunities for used equipment when they present themselves.  TI does not compete at the leading edge – their minimum feature size is 130nm – and thus mature, pre-owned, cost-effective equipment is always their first choice.  In fact, surplus 300mm is often more available, and less expensive, than comparable 200mm tools.  TI capitalized on the bankruptcies of the 300mm fabs of Qimonda Dresden, Qimonda Richmond, and PROMOS, also surplus tools at Powerchip, to scoop up large batches of inexpensive 300mm tools.  They continue to buy surplus 300mm tools when they come on the market, even in advance of actually requiring the tools.  As a result, 92% of RFAB’s analog production is done with pre-owned 300mm equipment.

Emerald Greig of Surplus Global, in addition to organizing the seminar, also provided a well-researched presentation on surplus equipment trends, titled “The Indispensable Secondary Market”.  Surplus Global is one of the largest surplus equipment traders, and they track the used equipment market very closely.  Emerald discussed how the supply of tools per year is trending dramatically downwards.  In 2009 they saw 6,000 tools come on the market, and that run-rate has steadily decreased to the point where by last year it was under 1,000/year.  This year we are at just 600.

200mm-image2

AMAT’s John Cummings provided the first OEM perspective on the 200mm market.  John showed how over 70% of the chips in the segments of automotive, wearables and mobile are produced on <=200mm wafers.  These segments are growing – for example a BMW i3 contains an astonishing 545 total die, and 484 of them are manufactured on <=200mm wafers.   AMAT reports that there are not enough used 200mm tools on the market to support the demand, and thus AMAT supplies their customers with new 200mm tools to augment the upgrades and refurbs they perform on pre-owned tools.  AMAT also provides new functionality for their mature 200mm products, increasing their usefulness and extending their lifetime.

Finally there was the OEM panel discussion, consisting of Kevin Chasey of TEL, David Sachse of LAM, Hans Peters from Ebara, and Ted Shafer of ASML.  Emerald Greig of Surplus Global provided some initial questions and solicited additional ones from the audience.   The OEMs echoed one common theme of the presentations, that 200mm demand is robust, and core tools are increasingly hard to find.  TEL additionally noted that China is a growing player in this market, and that OEMs must now support their 200mm product lines much longer than initially planned.  LAM said that 200mm core supply is so tight that the prices are rising above even comparable 300mm cores.  In response, LAM augments the supply of used tools by creating new 200mm tools.  Ebara added that the core tools coming on the market are often undesirable first-generation tools or tools in very bad condition.  On the other hand, this creates a role for the OEM, who has the expertise to make these tools production-worthy.  ASML noted that many of their larger 200mm customers are considering a migration from the PAS 5500 platform to ASML’s TWINSCAN platform for 200mm production.  Although developed for 300mm, and in general larger and more expensive than the 200mm 5500 series, ASML has spent the last 15 years making TWINSCANs increasingly productive and reliable, to the point where they often offer superior cost of ownership at 200mm than ASML’s 5500 platform.  Furthermore, customers buying TWINSCAN for 200mm production have an easy upgrade to 300mm when/if their plans call for it.

200mm-image3

In summary, the seminar showcased a robust exchange of ideas, where the presenters and panelists examined the resurgent 200mm market, and described many solutions to the common challenge of limited and expensive 200mm cores.

Attend SEMICON Europa and the Secondary Equipment & Applications session on October 26 to find out the latest trends and discuss in what areas OEMs, IDMs and secondary  market operators can cooperate more closely to improve sustainable access to legacy manufacturing equipment.

Find out more about SEMI’s Secondary Equipment and Applications Special Interest Group and the Secondary Equipment Legacy Management Program that is currently under development. For more information and to get involved, contact [email protected] (Ms. Rania Georgoutsakou, Director Public Policy for Europe, SEMI).

By Zvi Or-Bach, President & CEO, MonolithIC 3D Inc.

As we have predicted two and a half years back, the industry is bifurcating, and just a few products pursue scaling to 7nm while the majority of designs stay on 28nm or older nodes.

Our March 2014 blog Moore’s Law has stopped at 28nm has recently been re-confirmed. At the time we wrote: “From this point on we will still be able to double the amount of transistors in a single device but not at lower cost. And, for most applications, the cost will actually go up.” This reconfirmation can be found in the following IBS cost analysis table slide, presented at the early Sept FD-SOI event in Shanghai.

Gate costs continue to rise each generation for FinFETs, IBS predicts.

Gate costs continue to rise each generation for FinFETs, IBS predicts.

As reported by EE Times – Chip Process War Heats Up, and quoting Handel Jones of IBS “28nm node is likely to be the biggest process of all through 2025”.

IBS prediction was seconded by “Samsung executive showed a foil saying it believes 28nm will have the lowest cost per transistor of any node.” The following chart was presented by Samsung at the recent SEMICON West (2016).

Zvi 2

And even Intel has given up on its “every two years” but still claims it can keep reducing transistor cost. Yet Intel’s underwhelming successes as a foundry suggests otherwise. We have discussed it in a blog titled Intel — The Litmus Test, and it was essentially repeated by SemiWiki’s Apple will NEVER use Intel Custom Foundry!

This discussion seems academic now, as the actual engineering costs of devices in advanced nodes have shown themselves to be too expensive for much of the industry. Consequently, and as predicted, the industry is bifurcating, with a few products pursuing scaling to 7nm while the majority of designs use 28nm or older nodes.

The following chart derived from TSMC quarterly earnings reports was published last week by Ed Sperling in the blog Stepping Back From Scaling:

Zvi 3

Yes, the 50-year march of Moore’s Law has ended, and the industry is now facing a new reality.

This is good news for innovation, as a diversity of choices helps support new ideas and new technologies such as 3D NAND, FDSOI, MEMS and others. These technologies will enable new markets and products such as the emerging market of IoT.

A good opportunity to learn more about these new scaling technologies is the IEEE S3S ’16, to be held in the Hyatt Regency San Francisco Airport, October 10th thru 13th, 2016. It starts with 3D and FDSOI tutorials, the emerging technologies for the IC future. CEA Leti is scheduled to give an update on their CoolCube program, Qualcomm will present some of their work on monolithic 3D, and three leading researchers from an imec, MIT, and Korea university collaboration will present their work on advanced monolithic 3D integration technologies. Many other authors will discuss their work on monolithic 3DIC and its ecosystem, in addition to tracks focused on SOI, sub-VT and dedicated sessions on IoT.

Asia-Pacific’s grip as the dominant market for IC sales is forecast to strengthen in 2016 with the region expected to account for 61.0% of the $282.0 billion IC market this year, based on analysis published in IC Insights’ mid-year Update to the 2016 IC Market Drivers report.  The forecast calls for another small gain in total IC marketshare in 2016 after Asia-Pacific held 57.7% share in 2013, 58.4% in 2014, and 60.5% in 2015. The Asia-Pacific region is particularly dominant with regard to IC marketshare in the communications and computer categories, and to a lesser extent in the consumer and industrial categories (Figure 1).  In 2016, IC Insights expects the Asia-Pacific region to surpass Europe and become the largest region for automotive ICs for the first time, as China continues to account for a large and growing portion of new car shipments.  That will leave only the Government/Military end use segment where Asia-Pacific does not have top IC marketshare—a condition that is forecast to hold through 2019.

Figure 1

Figure 1

IC Insights’ Update to the IC Market Drivers 2016 report forecasts total IC usage by system type through the year 2019. Highlights from the forecast include the following items.

– The Asia-Pacific region is forecast to increase its share of the IC market to 62.3% in 2019, from 61.0% forecast for 2016. Over the same time, North American is also forecast to increase marketshare to 23.8%. Conversely, Europe and Japan are expected to lose IC marketshare through 2019. Japan’s IC marketshare is forecast to slip to 5.5% and Europe is forecast to slide to 8.3% in 2019.

– The two fastest growing end-use markets for ICs through 2019 are forecast to be the automotive and industrial/medical segments, having 2015-2019 CAGRs of 8.0% and 7.1%, respectively.  Though having the greatest CAGR through 2019, the automotive IC market is not expected to account for more than 8.0% of total IC sales any time through the forecast period.

– After slumping to only $10.6 billion in 2009, the automotive IC market is forecast to reach nearly 3x that amount ($28.0 billion) in 2019.

– The two largest end-use markets (computer and communications) are forecast to account for 73.7% of the total IC market in 2019, almost the same as the 73.9% share they are forecast to hold in 2016.

– In 2016, analog ICs are forecast to account for the greatest share of IC sales within the automotive (45%) and industrial (50%) segments; logic devices are expected to account for the greatest share of IC sales in communications (41%), consumer (41%), and government/military (32%) applications, and microprocessors are forecast to account for the greatest share (42%) of IC sales in the computer segment.

By Christian G. Dieseldorff, Industry Research & Statistics Group at SEMI (September 6, 2016)

SEMI’s Industry Research and Statistics group has published its August update of the World Fab Forecast report. The report has served the industry for 24 years, observing and analyzing spending, capacity, and technology changes for all front-end facilities worldwide, from high-volume to R&D fabs.  SEMI’s latest data show increasing equipment spending, reaching 4.1 percent YOY in 2016 and 10.6 percent in 2017. Figure 1 (below) shows a forecast of  -2 percent decline from 2H2015 to 1H2016 and an 18 percent increase from 1H2016 to. 2H2016.

Figure 1: Fab Equipment Spending by Quarter

Figure 1: Fab Equipment Spending by Quarter

The largest growth drivers for the industry are mobile devices (including devices using SSDs), automotive, and soon anticipated to be IoT, with these applications, in many cases, requiring 3D NAND and Logic 10nm/7nm.

The SEMI report indicates that the two industry segments leading to the biggest increase in 2H16 are Foundry (29 percent) and Memory (21 percent).  Growth in Memory is driven by a significant increase in 3D NAND spending in 2016. Comparing 2016 to 2017, Foundry growth remains quite steady, with a 14 percent increase in 2016 and 13 percent in 2017.

Companies like Samsung, Micron, Flash Alliance, Intel, and SK Hynix drive Memory growth with 3D NAND to an astounding 152 percent increase in 2016 and 29 percent in 2017. However, utilization of all this equipment is still low in 2016 but is expected to increase in 2017.

Looking at other product segments, DRAM equipment spending is expected to decline by 31 percent in 2016 and then recover slightly with 2 percent growth in 2017. Power devices also show strong growth with 25 percent in 2016 and 16 percent in 2017. The Analog segment will slump by -15 percent in 2016 but increase by 20 percent in 2017. Similarly, MPU will drop -20 percent in 2016 and then is expected to increase by 48 percent in 2017.

Comparing spending by region in 2016, SE Asia shows the largest growth, with 157 percent in 2016, driven mainly by 3D NAND (see Figure 2).

China, in third place for overall spending, shows 64 percent growth for 2016 primarily due to 3D NAND by non-Chinese companies, closely followed by Foundry companies. Although the largest spenders in China currently are overseas device companies, China-based chipmakers are starting to pick up investment activity.

Figure 2: Fab Equipment Spending by Region

Figure 2: Fab Equipment Spending by Region

By contrast, the largest growth rate in 2017 is in Europe/Mideast with about 60 percent which is mainly due to ramping of 10nm facilities. Korea is in second place for total spending, mainly driven by Samsung’s investment in DRAM and Flash. Japan in third place driven by Flash Alliance (3D NAND).

The World Fab Forecast report provides more detailed information by company and fab for construction spending, equipment spending and capacities by region and product type.  Since the last publication in May 2016, the SEMI research team has made over 330 changes to 300 facilities/lines. This includes 27 new records and 18 records closed.

For information about semiconductor manufacturing for the remainder of 2016 and in 2017, and for details about capex for construction projects, fab equipping, technology levels, and products, order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,100 facilities including over 82 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.  Using a bottoms-up approach methodology, the SEMI Fab Forecast provides high-level summaries and graphs, and in-depth analyses of capital expenditures, capacities, technology and products by fab.

The SEMI Worldwide Semiconductor Equipment Market Subscription (WWSEMS) data tracks only new equipment for fabs and test and assembly and packaging houses.  The SEMI World Fab Forecast and its related Fab Database reports track any equipment needed to ramp fabs, upgrade technology nodes, and expand or change wafer size, including new equipment, used equipment, or in-house equipment. Also check out the Opto/LED Fab Forecast. Learn more about the SEMI fab databases at: www.semi.org/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats

By Paul Trio, SEMI

Growing Demands, Constraints Continue

For many years, the ATE industry has been challenged with controlling the cost of both production and development test by implementing innovative approaches and employing clever strategies (e.g., multi-site test implementation, DFT, etc.) to make “ends” meet, so to speak.  This predicament has been a perpetual struggle, but the industry manages to soldier on. However, the demands for next-generation technology continues to introduce new challenges to the ATE realm. For example, shorter production ramp-up and higher yields result in the increasing demand for test data and information in real-time. Not only is there a need for more data quickly, but also for better test data quality. Adding to the complexity is that existing formats are typically slow/limited or even proprietary. As a result, the equipment manufacturers are burdened with supporting multiple proprietary data transport and communications systems.  This requires the use of valuable engineering resources to develop and maintain these multiple proprietary systems, whereas a single standard system would open up resources to develop new ATE features and products.

ATE Industry Alliance

These ATE industry problems are being addressed by CAST – Collaborative Alliance for Semiconductor Test – a SEMI Special Interest Group (SIG). SEMI SIGs provide a forum that fosters discussion and aligns stakeholders on industry-critical issues. CAST was formed in 2008 by semiconductor device makers and test industry suppliers to engage in and resolve common industry issues related to higher test equipment utilization, lower costs, and greater return on investment. In 2009, CAST became a SEMI Special Interest Group. Its charter includes fostering pre-competitive collaboration as well as developing and promoting standards that enable industry productivity improvements.

Figure 1 CAST Industry Stakeholders

Figure 1 CAST Industry Stakeholders

CAST members include a range of semiconductor industry leaders, ranging from automated test equipment (ATE) companies to integrated device manufacturers (IDMs) to fabless manufacturers to outsourced semiconductor assembly and test (OSAT) companies. Companies participating in CAST include: Advantest, ASE, Galaxy Semiconductor, GLOBALFOUNDRIES, Infineon, Maxim, Nvidia, Optimal+, PDF Solutions, Qualcomm, Roos Instruments, STMicroelectronics, Teradyne, Tesec, Texas Instruments, Xcerra.

CAST Structure

The CAST organization is primarily comprised of a steering committee and two working groups. The CAST Steering Committee meets quarterly to review progress on programs and identify new solutions needed by the industry. The Steering Committee is comprised of decision-makers and strategic thinkers of the participating companies mentioned above.

The current CAST working groups that are addressing data transport and control are the Rich Interactive Test Database (RITdb) WG and the Tester Event Messaging for Semiconductor (TEMS) WG.

Figure 2 SEMI CAST Working Group Focus Areas

Figure 2 SEMI CAST Working Group Focus Areas

Enabling Adaptive Test through Next Generation Standard Test Data Format

While Standard Test Data Format (STDF) is widely used in the semiconductor industry today, its current specification does not directly support the new use models in today’s test environment, such as real time or pseudo real time queries, adaptive test and streaming access. The STDF V4 record format is not extendible and the specification itself can be imprecise, such that it tends to result in many interpretations. These limitations become apparent when there is a need for more efficient and flexible format to manage “big test data.”

The RITdb group has been working on the next generation format following STDF with more flexibility in data types as well as allowing support for adaptive test. The WG aims to provide a standards-driven data environment for semiconductor test including simple standards-based data capture, transport and relationship model for eTest, probe, and final test data. Their work also aims to support equipment configuration management and operational performance data. RITdb is a SQLite database with one table, independent from an operating system. Key value store optimized for test data.

Figure 3 STDF to RITdb: PTR

Figure 3 STDF to RITdb: PTR

To date, the group has defined the mapping from STDF v4 to RITdb. A translator developed by the RITdb is also available. The overall schema has already been defined and many file translations have already been tested. Work by the RITdb group will ultimately be developed into SEMI Standards. Therefore, the group has been working on the (SEMI Standard) spec which will be in MS Word, while the database itself will be in a different format. There will be a spec editor that will help ensure the spec is used correctly. The group also plans to expand the spec beyond probe and final test. Meanwhile, the group is working on experiments related to streaming RITdb as well as work on using different extensions (e.g., tester log, streaming). Additional work will be needed on probe maps as well as on doing test cases (i.e., be able to run verifiers to validate the spec).

Improving Test Yield through Common ATE Data Communication Interface

Semiconductor test operations involved in ATE today continues to see a surging demand for data for real-time data analysis and real-time ATE input and control of the test flow to improve test yield, throughput, efficiency, and product quality.  At the same time, test equipment and test operations around the world utilize a diverse range of data formats, specifications, and interface requirements that create significant customer service and application engineering costs for ATE vendors, OSAT companies, IDM test operations, software providers, and handler equipment. A common ATE hardware and software communications interface would help reduce the cost, time and complexity of integrating ATE equipment into data-intensive test operations.

The TEMS WG was chartered to develop a standardized ATE data messaging system based on industry standard internet communication protocols between a Test Cell host and a server.  The standard will be limited to ATE data messaging, using RITdb entity types, where applicable, as well as the standard data format, and control requirements. It will have no impact on other test communication interfaces such as those involving handlers, probers, test instrumentation, and other systems covered by existing standards (e.g., SEMI E30E4E5STDF, etc.).

The group will essentially develop a set of standards to define a vendor neutral way to collect test cell data. The primary spec defines the Model while a subordinate spec defines the Transport layer to maintain consistency with prior standards.

Figure 4 TEMS Focus Area

Figure 4 TEMS Focus Area

Similar to the RITdb activity, the TEMS group plans to transition its two working documents to the SEMI Standards space. As the group continues to fine-tune these documents while maintaining alignment with the RITdb WG, the preliminary SEMI Standards work (e.g., authorize formation of corresponding task force) is expected to occur by the end of the year.

Other ATE Challenges Looming

System Level Test (SLT) is an approach used to guarantee the performance of a product for a particular customer application. However, the term “System Level Test” (SLT) is frequently applied to both the testing of full systems as well as to the testing of chips to ensure their ultimate performance in target systems. This often leads to confusion.

For its 2016 workshop to be held in early November, CAST will address the topic of “Component SLT”, which is the set of application-specific functional tests that are performed prior to I.C. shipment to guarantee a chip’s quality and performance when it will be ultimately used in the final system.  It may also encompass incoming inspection of I.C. components by customers prior to assembly into systems.  Currently, component SLT tends to be implemented primarily on complex SoC devices using custom hardware and software.

Component SLT considerations:

  • Normally component SLT would be applied using a card or board based on the target system’s functional card or board — but with a socket where the IC component is temporarily placed while SLT tests are applied.
  • Component SLT is used by some chip vendors as an IC component test after conventional Final Test on ATE.
  • Potentially, component SLT could also be applied using a custom card within the ATE system that mimics system application tests.
  • Any level of standardization will ease the capital burden and operational flexibility at OSATs.
  • It will be a key requirement to be able to generate data from component SLT that can be shared backwards and forwards along the semiconductor supply chain for yield optimization and quality/reliability management.

Those looking to share their perspectives on component SLT and their vision for its future direction are invited to present at the CAST workshop. The community is particularly interested in opportunities to improve the Component SLT ​infrastructure or methods — that is, identify potential opportunities for CAST to drive improvements through pre-competitive collaboration.

Participating in SEMI CAST Special Interest Group

The SEMI CAST Special Interest Group is open to all SEMI Members. For more information or to join CAST, please contact Paul Trio at SEMI ([email protected]).

The IC industry’s original system-on-chip (SoC) product category—microcontrollers—is expected to steadily reach record-high annual revenues through the second half of this decade despite an overall slowdown in unit growth during the next five years. Microcontroller sales barely increased in 2015, rising less than a half percent, to set a new record high of slightly more than $15.9 billion, thanks to a 15% increase in MCU shipments that lifted worldwide unit volumes to an all-time peak of 22.1 billion last year (Figure 1). Strong unit growth—driven by smartcard MCUs and 32-bit designs—enabled the MCU market to overcome a 13% drop in the average selling price (ASP) of microcontrollers to a record-low $0.72 in 2015. Price erosion—especially in 32-bit MCUs—has weighed down MCU sales growth in three of the last four years, but ASPs are now expected to stabilize and increase slightly in the 2015-2020 forecast period, rising by a CAGR of 1.6% compared to a -7.7% annual rate of decline between 2010 and 2015.

Fig 1

Fig 1

While ASP erosion is expected to end, MCU unit shipments are forecast to rise at a much lower rate than in the first half of this decade, primarily because of a slowdown in the growth of smartcard microcontrollers and tighter reins on IC inventories for the “next big thing”—the Internet of Things (IoT). IC Insights’ forecasts MCU sales will rise in 2016 to nearly $16.6 billion, which is a 4% increase from $15.9 billion in 2015. MCU unit volumes are expected to grow by 2% in 2016 to 22.4 billion, and the ASP for total microcontrollers is forecast to rise 2% this year to $0.74. Between 2015 and 2020, microcontroller sales are projected to grow by a CAGR of 5.5% to nearly $20.9 billion in the final year of the forecast. Since the middle 1990s, worldwide MCU sales have grown by a CAGR of 2.9%.

As shown in Figure 1, no downturns are anticipated in MCU sales through 2020. Total MCU revenue growth is expected to gradually strengthen between 2016 and 2019 (when sales are forecast to grow 9%) before easing back to a 4% increase in 2020. MCU unit shipments are now projected to grow by a CAGR of 3.9%.

A major factor in slower MCU unit growth through 2020 is the maturing of the smartcard market, which in recent years has accounted for nearly half of microcontroller shipments and about 15-16% of total revenue. By 2020, smartcard MCUs are expected to represent 38% of total microcontroller unit shipments and about 12% of sales.

IC Insights released its August Update to the 2016 McClean Report earlier this month.  This Update included an update of the semiconductor industry capital spending forecast, a look at the top-25 semiconductor suppliers for 1H16, including a forecast for the full year ranking, and Part 1 of an extensive analysis of the IC foundry industry (the ranking of the top-10 pure-play foundries is covered in this research bulletin).

In 2014, the pure-play IC foundry market registered a strong 17% increase, the largest increase since 2010 and eight points greater than the 9% increase in the worldwide IC market.  In 2015, the pure-play foundry market showed a 6% increase, about one-third the rate of growth in the previous year, but seven points higher than the total IC market growth rate of -1%.  For 2016, the pure-play foundry market is expected to increase by 9% and greatly outperform the growth rate of total IC market, which is forecast to drop by 2% this year.

Figure 1 shows that the top 10 pure-play foundries are expected to hold 95% of the total pure-play foundry market this year.  This year, the “Big 4” pure-play foundries (i.e., TSMC, GlobalFoundries, UMC, and SMIC) are forecast to hold an imposing 84% share of the total worldwide pure-play IC foundry market.  As shown, TSMC is expected to hold a 58% marketshare in 2016, down one point from 2015, as its sales are forecast to increase by $2.1 billion this year, up from a $1.5 billion increase in 2015.  GlobalFoundries, UMC, and SMIC’s combined share is expected to be 26% this year, the same as in 2015.

The two top-10 pure-play foundry companies that are forecast to display the highest growth rates this year are Israel-based TowerJazz, which is expected to edge-out Powerchip for the 5th spot in the pure-play foundry ranking in 2016, and China-based SMIC, with 30% and 27% sales increases, respectively. TowerJazz and SMIC have been on a very strong growth curve over the past few years.  TowerJazz is expected to grow from $505 million in sales in 2013 to $1,245 million in 2016 (a 35% CAGR) while SMIC is forecast to more than double its revenue from 2011 ($1,220 million) to 2016 ($2,850 million) and register a 19% CAGR over this five-year timeperiod.

Figure 1

Figure 1

Eight of the top-10 pure-play foundries listed in Figure 1 are based in the Asia-Pacific region.  Israel-based TowerJazz, and U.S.-headquartered GlobalFoundries are the only non-Asia-Pacific companies in the top-10 group.  While LFoundry is currently headquartered in Avezzano, Italy, China-based SMIC agreed in 2Q16 to purchase 70% of the company for approximately $55 million.  Since LFoundry has an installed capacity of 40K 200mm wafers/month, the acquisition of a controlling interest in the company essentially serves to immediately expand SMIC’s capacity by 13% this year.

Although SMIC is forecast to register strong sales growth of 27% this year, Chinese foundries, in total, are expected to hold only 8.2% of the pure-play foundry market in 2016, down 5.1 points from the peak share of 13.3% reached in 2006 and 2007.  IC Insights believes that the total Chinese company share of the pure-play foundry market will increase through 2020, as the China-based foundries take advantage of the huge amount of government and private investment that will be flowing into the Chinese semiconductor market infrastructure over the next five years.

GlobalWafers Co., Ltd. and SunEdison Semiconductor Limited (NASDAQ:SEMI) announced today that they have entered into a definitive agreement for the acquisition by GlobalWafers of all of the outstanding ordinary shares of SunEdison Semiconductor in a transaction valued at US$683 million, including SunEdison Semiconductor outstanding net indebtedness.

Under the terms of the agreement, SunEdison Semiconductor shareholders will receive US$12.00 per share in cash for each ordinary share held, representing a 78.6% premium to the average closing price of SunEdison Semiconductor’s common stock for the 30 trading days prior to this announcement and a 44.9% premium to the closing price of SunEdison Semiconductor’s ordinary shares as of August 17, 2016, the last trading day prior to this announcement.  The transaction has been unanimously approved by both GlobalWafers’ and SunEdison Semiconductor’s boards of directors.

The transaction will be structured as a scheme of arrangement under Singapore law, and is subject to the approval of the shareholders of SunEdison Semiconductor, as well as other customary conditions including approvals from relevant regulatory authorities and the High Court of the Republic of Singapore.  SunEdison Semiconductor has requested and obtained a waiver from the Securities Industry Council of Singapore of the application of the Singapore Code on Take-overs and Mergers to the scheme of arrangement.

“We are very excited by this transaction,” said Doris Hsu, Chairperson and CEO of GlobalWafers.  “We believe this combination is unique in that it merges two of the market’s key suppliers with minimal overlap in customers, products and production capacities.  The combined company will bring together GlobalWafers’ unparalleled operating model and market strengths with SunEdison Semiconductor’s expansive global footprint and product development capabilities.  We will remain focused on our customers and will strengthen and build on our product offerings to deliver even greater value to our customers and shareholders,” Hsu concluded.

“We are pleased to have reached an agreement that delivers a significant premium to our shareholders,” said Shaker Sadasivam, President and Chief Executive Officer of SunEdison Semiconductor.  “We believe this transaction is in the best interest of our company.  We look forward to a smooth process to facilitate an efficient closing, which we hope can occur before the end of the year.”

GlobalWafers will finance the transaction, including payment of the purchase price and payment of SunEdison Semiconductor’s debt facilities at closing, through existing cash on hand and committed acquisition financing from the Bank of Taiwan, Hua Nan Commercial Bank, Mega International Bank, Taipei Fubon Bank, and Taishin International Bank.

GlobalWafers expects a number of strategic and operational benefits from this transaction, including:

  • Meaningful expansion of GlobalWafers’ production capabilities
  • Greater breadth in GlobalWafers’ product and global customer base, including greater access to the E.U. and Korea, as well as SOI product technologies
  • Significant increase in GlobalWafers’ financial scale

Related news: 

SunEdison Semiconductor announces manufacturing consolidation

SunEdison Semiconductor solidifies polysilicon supply

Is silicon’s heyday over? New materials challenge the industry workhorse

BY ALLYN JACKSON, CyberOptics Corp., Minneapolis, MN

Key IC fabrication steps are sensitive to moisture in semiconductor wafer environments. As the technology node advances, the need for characterizing and minimizing the exposure to relative humidity (RH) has become critical in all 29nm geometry fabs and below. These RH control requirements create a need for a wireless wafer-like humidity sensor which simultaneously measures RH at several points across the wafer as well as throughout the entire IC manufacturing environment.

Challenges with current methods for characterizing N2 FOUPS

Current methods for characterizing N2 Purge FOUPs have problems. These methods are typically not real time, are time consuming, are hard to use and are not able to take RH measurements under production conditions therefore are not reflective of these conditions. In addition, wired (FIGURE 1) hand-held RH meters (FIGURE 2) and single trace hand-held meters are limited to one area and cannot move throughout the process environment. Other options are hand-made alternatives (FIGURE 3) such as a wafer with RH sensors simply taped on. Lastly, they are often limited without data files generated so conse- quently statistics and quality standards cannot be established.

FIGURE 1. FOUP with Wired RH Sensors Attached

FIGURE 1. FOUP with Wired RH Sensors Attached

FIGURE 2. Hand-held RH Meter with Single Trace RH Reading

FIGURE 2. Hand-held RH Meter with Single Trace RH Reading

FIGURE 3. Silicon Wafer With 4 RH Recording Sensors Taped on.

FIGURE 3. Silicon Wafer With 4 RH Recording Sensors Taped on.

RH environment test target and goals

The test at the customer involved putting an RH meter inside the FOUP pointing around slot 13. The goal was to repeat the RH meter profile for testing a FOUP on one loadport without the need to open the FOUP. Starting at 40% RH (cleanroom environment), the first step was to run high purity, high volumnet N2 pre-purge for 4-5 minute and then take the reading. The second step is to conduct a maintenance purge to 5% and measure the results in 5 locations across the wafer. The next step was to run a process purge to 20% and take sample readings across various locations. The goal of the testing it to test the efficiency of the N2 purge FOUP diffusers to ensure that uniform purge levels are maintained.

In response to the need for a reliable easy to use method of qualifying N2 and XCDA environments, the WaferSense® Auto Multi-Sensor (AMS) by CyberOptics (FIGURE 4) was developed. Wafer- Sense AMS is a wireless wafer-like device with five RH sensors to measure the RH profile across the entire wafer surface.

FIGURE 4. WaferSense® Auto Multi Sensor Measurement Device.

FIGURE 4. WaferSense® Auto Multi Sensor Measurement Device.

FIGURE 5. N2 Purge FOUP with 3 Inlet and one Outlet Ports.

FIGURE 5. N2 Purge FOUP with 3 Inlet and one Outlet Ports.

AMS is a complete and easy-to-use system which communicates wirelessly via Bluetooth to the MultiViewTM application (FIGURE 6) and moves like a normal wafer to all locations in the wafer process environment providing a true characterization of the N2 purge uniformity. Such previously hard to accomplish tasks such as characterizing purge FOUP diffuser uniformity and measuring actual RH percentages are now easily accomplished with AMS. (FIGURE 5) AMS is a true multi-functional device which also measures vibration and can be used for leveling to ensure proper wafer handling.

FIGURE 6. Profile of N2 Purge Using MultiViewTM Software to Displays RH Measurements in 4 Sensor Locations across the Wafer Surface.

FIGURE 6. Profile of N2 Purge Using MultiViewTM Software to Displays RH Measurements in 4 Sensor Locations across the Wafer Surface.

29nm geometry fabs and smaller require well controlled N2 and XCDA purge environments to prevent defects and yield loss. AMS300 simultaneously measures RH in real-time at five locations on the wafer while it transfers like a wafer to qualify N2 and XCDA environments. The AMS device significantly shortens the task of qualifying these environments. In addition, the AMS300 provides and vibration and leveling measurement capabilities to ensure proper wafer handling and reduced particles. The overall result for the fab is improved N2 purge environment uniformity which results in reduced defects and reduced labor costs.

Reducing reticle haze effects

193nm Immersion scanners are adversely affected by a phenomenon called “Reticle Haze” when proper measures are not taken to measure and control it. There are three areas that need to be controlled to reduce this haze effect on reticles, one of which is controlling RH. Reticle haze is accelerated when H2O is present. (FIGURE 7).

FIGURE 7. Reticle Haze Formation Accelerated with H2O

FIGURE 7. Reticle Haze Formation Accelerated with H2O

There is a key need for a measurement device that will eliminate the inefficiencies of the current methods.

Challenges with current methods for monitoring RH in reticle environments

There are several limitations with the current reticle environment RH measurement methods, for example, hand-held RH sensors (FIGURE 9) are inconvenient and they can compromise the reticle environment. Plus, many areas are inaccessible by hand-held RH sensors, in-situ RH sensors or benchtop type RH sensors. (FIGURE 8)

FIGURE 8. Benchtop RH Sensor

FIGURE 8. Benchtop RH Sensor

Figure 9: Wired In-Situ RH Sensor

Figure 9: Wired In-Situ RH Sensor

Additionally, the importance of particle, leveling, vibration and RH control has rarely been overlooked in reticle environment. However, the need to maximize both yields and tool uptimes in reticle mask environments requires best-in-class practices.

Whether for diagnostics, qualification or preventative maintenance, equipment engineers need to efficiently and effectively make measurements and adjustments to the tools. Legacy particle, vibration, leveling and RH measurement methods are typically cumbersome, non-representative, not real time, compromise the production environment and are costly with downtime required to take the tool offline for these tasks.

By contrast, best practice methods involve collecting and displaying data in real-time, speeding equipment alignment or set-up. Real-time data also speeds equipment diagnostic processes, saving valuable time and resources. Equipment engineers can also make the right adjustments consistently by using objective and reproducible data that enhances process uniformity.

The ReticleSense® AMSR (FIGURE 10) is an actual glass reticle that measures H2O in the reticle environment and is compatible with ASML, Canon and Nikon scanners. AMSR is used to travel throughout the entire reticle environment and measures RH. (FIGURE 11) It helps locate the sources of the H2O which results in increased reticle lifetime. Two additional measurement capabilities of the device include measuring X, Y and X vibration (FIGURE 12) and inclination. (FIGURE 13).

FIGURE 10. ReticleSense® Auto Multi Sensor Measurement Device.

FIGURE 10. ReticleSense® Auto Multi Sensor Measurement Device.

FIGURE 11. RH Measurement

FIGURE 11. RH Measurement

FIGURE 12. Vibration Measurement

FIGURE 12. Vibration Measurement

FIGURE 13. Leveling Measurement

FIGURE 13. Leveling Measurement

Conclusion

The AMSR travels the entire path of the reticle and can measure humidity in all locations. In immersion scanner environments, monitoring humidity is critical in reticle reducing haze. Equipment qualifications can be done faster as the same device also measures vibration and leveling. Controlling inclination, RH and vibration are all important factors in increasing yield and reducing downtime.

For RH measurements in N2 and XCDA reticle mask environments, the use of a real-time measurement device, the Auto Multi Sensor, delivers on three compelling bottom lines for the fab – saving time, saving expense and improving yields.

IC Insights will release its August Update to the 2016 McClean Report later this month. This Update includes an update of the semiconductor industry capital spending forecast, an analysis of the IC foundry industry, and a look at the top-25 semiconductor suppliers for 1H16, including a forecast for the full year ranking (the top 20 1H16 semiconductor suppliers are covered in this research bulletin).

The top-20 worldwide semiconductor (IC and O-S-D—optoelectronic, sensor, and discrete) sales ranking for 1H16 is shown in Figure 1. It includes eight suppliers headquartered in the U.S., three in Japan, three in Taiwan, three in Europe, two in South Korea, and one in Singapore, a relatively broad representation of geographic regions.

The top-20 ranking includes three pure-play foundries (TSMC, GlobalFoundries, and UMC) and six fabless companies. If the three pure-play foundries were excluded from the top-20 ranking, China-based fabless supplier HiSilicon ($1,710 million), U.S.-based IDM ON Semiconductor ($1,695 million), and U.S.-based IDM Analog Devices ($1,583 million) would have been ranked in the 18th, 19th, and 20th positions, respectively.

IC Insights includes foundries in the top-20 semiconductor supplier ranking since it has always viewed the ranking as a top supplier list, not a marketshare ranking, and realizes that in some cases the semiconductor sales are double counted. With many of our clients being vendors to the semiconductor industry (supplying equipment, chemicals, gases, etc.), excluding large IC manufacturers like the foundries would leave significant “holes” in the list of top semiconductor suppliers. As shown in the listing, the foundries and fabless companies are identified. In the April Update to The McClean Report, marketshare rankings of IC suppliers by product type were presented and foundries were excluded from these listings.

Overall, the top-20 list shown in Figure 1 is provided as a guideline to identify which companies are the leading semiconductor suppliers, whether they are IDMs, fabless companies, or foundries.

Figure 1

Figure 1

Thirteen of the top-20 companies had sales of at least $3.0 billion in 1H16.  As shown, it took $1.86 billion in sales just to make it into the 1H16 top-20 semiconductor supplier list.  There was one new entrant into the top-20 ranking in 1H16 as compared to the 2015 ranking—AMD, which replaced Japan-based Sharp.  In 2Q16, AMD registered a strong 23% increase in sales while Sharp was moving in the opposite direction logging a 13% decline in its 2Q16/1Q16 revenue.

Intel remained firmly in control of the number one spot in the top-20 ranking in 1H16.  In fact, it increased its lead over Samsung’s semiconductor sales from only 20% in 2015 to 33% in 1H16.  The biggest upward move in the ranking was made by Apple, which jumped up three positions in the 1H16 ranking as compared to 2015. Other companies that made noticeable moves up the ranking include MediaTek and the new Broadcom Ltd. (the merger of Avago and Broadcom), with each company moving up two positions.

Apple is an anomaly in the top-20 ranking with regards to major semiconductor suppliers. The company designs and uses its processors only in its own products—there are no sales of the company’s MPUs to other system makers.  IC Insights estimates that Apple’s custom ARM-based SoC processors had a “sales value” of $2.9 billion in 1H16, which placed them in the 14th position in the top-20 ranking.

In total, the top-20 semiconductor companies’ sales increased by 7% in 2Q16/1Q16.  Although, in total, the top-20 2Q16 semiconductor companies registered a 7% increase, there were seven companies that displayed a double-digit 2Q16/1Q16 jump in sales and only two that registered a decline (Intel and Renesas).

The fastest growing top-20 company in 2Q16 was Taiwan-based MediaTek, which posted a huge 32% increase in sales over 1Q16.  Although worldwide smartphone unit volume sales are forecast to increase by only 5% this year, MediaTek’s application processor shipments to the fast-growing China-based smartphone suppliers (e.g., Oppo and Vivo), helped drive its stellar 2Q16/1Q16 increase.  Overall, IC Insights expects MediaTek to register about $8.8 billion in sales in 2016, which would represent a 31% surge over the $6.7 billion in sales the company had last year.

As expected, given the possible acquisitions and mergers that could/will occur over the next few years, the top-20 ranking is likely to undergo a significant amount of upheaval as the semiconductor industry continues along its path to maturity.