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INTRODUCTION
Scan logic diagnosis turns failing test cycles into valuable data and is an established method for digital 

semiconductor defect localization. The advent of layout-aware scan diagnosis represented a dramatic advance 

in diagnosis technology because it reduces suspect area by up to 85% and identifies physical net segments 

rather than entire logic nets [1-3]. The defect classifications provided by layout-aware diagnosis make 

diagnosis an effective tool not just for localization of defects but also for yield analysis. Diagnosis-driven yield 

analysis (DDYA) makes volume diagnosis results actionable by identifying the most likely causes of yield [4-7]. 

Layout-aware diagnosis also has its limits; a diagnosis result may point to multiple locations and one single 

location could be explained by multiple root causes. For instance, an open in a particular net segment could 

be explained by an open defect in metal 2 of that segment, an open in metal3, a single via3, or a double via3. 

In other words, there is a certain amount of ambiguity or noise in the diagnosis results. 

Root Cause Deconvolution (RCD), a statistical enhancement technology recently made available in the Tessent 

Diagnosis and YieldInsight products, is the next step in diagnosis resolution enhancement. It works by 

analyzing multiple layout-aware diagnosis reports together to identify the underlying defect distribution (root 

cause distribution) that is most likely to explain this set of diagnosis results. The results are then back-

annotated to the individual diagnosis suspects. Where layout-aware diagnosis points to a segment, RCD can 

isolate a particular root cause in that segment, as illustrated in Figure 1. This increase in the failure analysis (FA) 

relevance and success rate dramatically reduces the FA cycle time from months to days. RCD also enables 

“virtual FA”, the ability to determine defect distribution for a population of failing devices before any failure 

analysis is performed. Later in this whitepaper, we will also review silicon results.

DIAGNOSIS NOISE
The quality of diagnosis results is typically measured using two metrics; accuracy and resolution. Accuracy is a 

measurement of whether the diagnosis result contains the actual defect or not. It is a binary decision: is the 

true candidate on the list, yes or no. Resolution measures the area of the defective location captured by a 

suspect, that is, the bounding box of a defect and the length of the list of candidates. More candidates equals 

more bounding boxes and more search area. Thus, in general, a shorter list of candidates has a better 

resolution than a longer list. Even with advances in diagnosis technology such as layout-aware diagnosis [1-3], 

cell-aware diagnosis [8], compression-mode diagnosis [9], and chain diagnosis [10], there is ambiguity in the 

diagnosis results that limits the resolution. A diagnosis result can contain multiple suspects (potential 

explanations of the failure). Each suspect typically could contain multiple root causes. The example diagnosis 

report in Figure 2 contains just a single suspect, a bridge between two specific nets. However, these two nets 

are within line of sight in five different layers. That means that there are five potential root causes (a bridge in 

Figure 1: Layout-aware diagnosis improves scan diagnosis resolution to a net segment. Root Cause Deconvolution (RCD) 

leverages statistical enhancement to identify the underlying root cause, in this example, an open VIA defect.
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route_1, a bridge in route_2, etc.) that could explain this report. The report can be said to contain one correct 

and four incorrect root causes.

A higher ambiguity for a given device will typically result in longer physical failure analysis (PFA) cycle times 

and lower PFA success rate. The noise also limits how the diagnosis reports could be used to generate a 

picture of the defect distribution for a set of failing die.

In a simulated experiment, we injected single defects of two different types in different locations in 470 

devices (310 devices with route_2 shorts, 160 devices with route_3 opens). The results are show in Figure 3, 

where the X axis lists all root causes identified by layout-aware diagnosis in the 470 failing die; a total of 49 

different root causes. The red bars indicate how many devices had injected each type of defect. The blue bars 

indicate how many diagnosis reports (how many die) contain each root cause. Each diagnosis report contains 

one or more root cause, depending on the number and nature of the suspects.

Although the actual root causes in this material (route_2 shorts and route_3 opens) are included in many of 

the diagnosis reports, the diagnosis reports also included 47 incorrect root causes. Many frequently reported 

root causes, such as those represented by the 2nd and 4th highest bar in the diagram do not correspond to 

any of the real root causes. 

Figure 2: Example diagnosis report with a single suspect and five potential root causes.

Figure 3: Results from simulated experiment. Number of die where each root cause appears in the diagnosis reports compared to 

the number of die with injected defects. 
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ELIMINATING DIAGNOSIS NOISE
Mentor Graphics developed a new technology called root cause deconvolution (RCD) to eliminate the noise 

from the diagnosis results and determine the underlying root causes represented in a population of failing 

devices. Figure 4 shows the RCD results (green) applied to the data from Figure 3. The RCD results track the 

injected failures with good accuracy. 

These results are obtained using the flow shown 

in Figure 5. Layout-aware diagnosis is performed 

on a set of die that failed manufacturing test (1). 

Each diagnosis result contains a set of root 

causes that are potential explanations for the 

failure (2). RCD processes the diagnosis reports, 

eliminates the noise, and identifies the 

underlying distribution of root causes that best 

explain the set of diagnosis reports. In this 

example, RCD determines that a distribution 

containing three root causes best explain these 

diagnosis reports (3). From this distribution, the 

user can focus on the root cause of interest. This 

may be the most significant root cause, or one 

that is deemed interesting for other reasons, for 

instance one that has not been seen before. For 

each suspect in each diagnosis report, RCD 

assigns a probability for the suspect being explained by each of the root causes in the RCD distribution. This 

means that the user can easily identify the die that has the highest probability of representing a particular 

root cause, and use that as way to select die for FA (4). 

Figure 4: RCD results compared to actual defects and number of die 

with each root cause covered in the diagnosis report.

Figure 5: Typical RCD analysis process.
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When comparing the original diagnosis 

results with the RCD results (5), we see 

that RCD (marked in red) has eliminated 

several of the original root causes (blue 

dotted line), thus effectively improving 

the diagnosis results for that individual 

die. In this particular example, the original 

report contained five possible root causes 

for one failing die, while RCD limited this 

to a single result. The layout snapshots 

show the defect bounding boxes before 

and after RCD in blue and red.

This demonstrates how RCD identifies the 

root cause distribution and improves the 

resolution of individual diagnosis results. 

ROOT CAUSE DECONVOLUTION TECHNOLOGY EXPLAINED
To help explain the RCD technology, we will use an example scenario where the actual defect distribution is 

known. In this simple example, there are 200 die that all have metal2 open defects. The defects are located in 

different locations and result in different tester failures in each die. After diagnosis, most reports will likely 

contain metal2 opens as well as other root causes. A typical diagnosis report contains the right answer (the 

actual root cause or defect causing the failure) in addition to some amount of noise (additional root causes). 

By leveraging certain information about the diagnosis suspects as well as information about the design itself, 

we can calculate the probability of seeing these particular diagnosis results for this known defect distribution. 

This process, illustrated in Figure 6, is a core component of RCD.

In this example, where we know 

that the actual root cause is 

metal2 opens, the probability of 

seeing a diagnosis report that 

does not include an open 

suspect in a metal2 net segment 

is relatively low. The probability 

of seeing a diagnosis report that 

includes an open suspect in 

metal2 is relatively high. The 

higher the critical area in the 

metal2 segment of this suspect, 

the higher is the probability of 

seeing this diagnosis report. The 

critical area of a physical net 

segment is the area of that 

segment where a particle of a 

given size will cause a functional 

failure. The critical area per net 

segment per layer is determined 

as part of the layout-aware 

diagnosis process. For example, if the root cause under consideration is a random particle open defect on 

metal2, then the probability of observing a specific suspect will be equal to the suspect’s critical area for open 

DIAGNOSIS NOISE AND YIELD ANALYSIS

There are several ways to deal with the noise in diagnosis reports 

and leverage diagnosis for yield analysis. Many of these are discussed 

and referenced in [11]. One such method is called zonal analysis, 

which manages the noise by finding relative differences in the 

diagnosis reports [4,5,6]. For each signature in the diagnosis reports, 

such as defect type layers, etc., the distribution of die containing 

this signature is compared to the distribution of all failing die. If the 

difference is statistically significant, the signature is flagged. 

This method is very effective for identifying hidden systematic 

defects at fairly high yields, such as the last 1%-2% in high volume 

manufacturing. Zonal analysis is however not able to identify the 

actual defect distribution, which can be very beneficial for early 

yield ramp and excursion wafer analysis.

Figure 6: Based on design diagnosis suspect information, one can determine the 

probability of seeing a set of diagnosis results for a known (given) defect distribution. 
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defects on metal2, divided by the total critical area for all possible suspects. The probability of seeing all the 

suspects we see in the reports and can be calculated to determine an overall probability number.

This process can be repeated for 

a set of different defect 

distributions, as shown in Figure 

7. Let’s expand our example to a 

case where we again have 200 

diagnosis reports, but where we 

consider a handful of potential 

defect distributions. For each 

defect distribution, we can 

establish the likelihood of 

seeing the set of 200 diagnosis 

reports. And from that, we can 

determine the distribution that 

is most likely to explain the 

diagnosis results.

So far, we have considered 

situations where the defect 

distribution is known. In reality, 

the defect distribution is, of 

course, what we are trying to 

determine. Conceptually, it would be possible to determine the actual defect distribution that best explains a 

set of diagnosis results by repeating the above process for all possible defect distributions. However, even 

when the number of root causes considered is limited to a few hundred, the number of possible distributions 

will approach infinity, which would be computationally impractical. RCD therefore shortcuts this process by 

leveraging optimization techniques based on machine learning to only test the distributions that are the most 

relevant. This way, RCD is able to identify the defect distribution that has the highest probability to explain a 

given set of diagnosis results, as shown in Figure 8. The same probability model is then used for the diagnosis 

reports to understand that any individual suspect is the correct suspect. This tells us which suspect is the right 

one, but also which root cause within each suspect is the most likely one. 

There are two fundamental 

assumptions for this technology. 

First, RCD assumes that root 

cause instances are randomly 

distributed. If a design has 

100,000 instantiations of VIA2s, 

and there is a VIA2 failure 

mechanism, any specific instance 

of the VIA2 is equally as likely to 

fail as any other instance of VIA2 

in the design. In some situations, 

this is not the case. Some 

physical locations may have 

geometries that make them very 

susceptible for failures, and it’s 

not a VIA2 problem in general, 

but a VIA2 problem for that 

specific location. A prerequisite 

Figure 7: Based on design diagnosis suspect information, one can determine the 

probability of seeing a set of diagnosis results for a known (given) defect distribution. 

Figure 8: Based on design diagnosis suspect information, one can determine the 

probability of seeing a set of diagnosis results for a known (given) defect distribution. 
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for RCD analysis is therefore to filter out diagnosis results with systematic locations to ensure that the RCD 

results are not skewed. 

The other assumption RCD makes is that there is one underlying root cause distribution. All the failing devices 

should have seen similar process conditions. As an example, consider a 12-wafer lot where two wafers have 

much higher failure rates than the other. In this case, RCD should be run separately for those two groups of 

wafers. The reason is that we expect to see different defect distributions for these two groups. For a deeper 

understanding of some of these best practices for RCD, see [12].

RCD RESULTS AND APPLICATIONS
To illustrate the practical aspects of RCD, we will review previously published results of applying RCD to the 

early stages of a 28 nm yield ramp [11]. The design used for this case study is a 28 nm yield learning vehicle 

consisting of 24 logically identical 750K gate cores. Layout-aware diagnosis and RCD was performed on all 

cores for four lots manufactured on a 28 nm bulk process. Figure 9 summarizes the results. For Lot1, RCD is 

estimating that 46% of the defects in the population of failing devices have a root cause of short type defects 

at metal6. The RCD results from Lot1 and Lot2 show a similar set of yield detractors, which is consistent with 

the fact that these two lots saw 

similar process conditions. These 

results further suggest that the 

yield loss for these lots is 

dominated by metal4 and 

metal6 shorts. PFA from Lot1 

and Lot2 confirms this result. 

This systematic defect situation 

arises between the inner pair of 

four minimum spaced metal 

lines when surrounded by wide 

metal. This specific geometry 

causes the inner pair of metal 

lines to become closer to one 

another and increase its 

susceptibility to small particle 

defects. Improving the wafer 

clean process successfully 

eliminated the metal4 shorts, 

which is accurately represented 

in the RCD results of Lot3 and 

Lot4. A change to the dielectric 

material used for the interconnect layers was implemented in the processing of Lot4 to produce smaller metal 

CDs, which significantly reduced the metal6 shorts. However, this process change had an adverse effect on 

the lower metal level interconnect open yields. RCD results again accurately reflected these changes with a 

significant decrease in metal6 shorts as well as the emergence of metal2 opens as the dominant yield 

detractor, and revealed that this defect mechanism was sensitive to specific layout geometries. 

Additional case studies are published in [12]. In one example, the root cause of static leakage on a 20 nm test 

chip was found by comparing RCD on two populations with low and high static leakage. In a second example, 

two versions of the same design were produced on the same wafers with different yields. RCD revealed that 

the low-yielding design had one additional fail mechanism not found in the high-yielding design. After this 

was confirmed in FA, a process fix was quickly applied.

Figure 9: RCD results from 28nm yield ramp. 
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RCD APPLICATIONS
From a flow and usage perspective, RCD is different than other diagnosis improvements in the sense that it 

relies on statistical enhancement of a set of diagnosis results in order to improve the resolution of the 

individual reports. The number of reports required to generate meaningful results depends on the yield 

scenario. As a general rule of thumb, for a yield excursion, which typically has one dominant root cause, 100-

200 diagnosis reports (100-200 failing die) is required. In a relative mature yield situation with lots of small 

contributors to yield loss, 1,000-2,000 diagnosis reports are required. 

However, RCD does not require any additional data beyond what is required for layout-aware diagnosis. This 

means that RCD fits well into existing diagnosis flows. Many fabless semiconductor companies enable their 

foundries to address yield issues by performing diagnosis on low-yielding wafers and providing the diagnosis 

results to the foundry. The foundry will then use the diagnosis results along with other data to analyze the 

problem and perform FA on select die. These diagnosis reports are often encoded, which means that all 

design information such as instance and net names are removed from the report. The foundry (the user of the 

reports) uses the physical locations of the suspects for the investigation and FA. RCD is fully compatible with 

this flow. By adding the RCD analysis step and enriching the diagnosis report with the RCD probability score, 

as shown in Figure 10, the fabless company can provide higher resolution results to the foundry and enable 

the foundry to resolve yield issues faster without any changes to the analysis process on the foundry side, and 

without providing any sensitive design information.

With the ability to identify root cause of yield loss from fail data alone, RCD is a very cost effective way of 

establishing a clear picture of the defect distribution before any FA is done. This is something that in the past 

has been virtually impossible for fabless companies, with little access to manufacturing data, to do. 

RCD also provides a rich data set for yield monitoring. RCD simplifies and reduces the cost of comparing 

failure mechanisms across multiple designs, IPs, and manufacturing processes. RCD results can easily be added 

to existing yield monitoring flows and systems.

CONCLUSION
Diagnosis-driven yield analysis with RCD is a quick and cost effective way to determine the underlying root 

causes represented in a population of failing devices from test data alone. RCD enables the concept of “virtual 

FA”: determining the defect distribution for a population of failing devices before any failure analysis is 

performed. RCD provides a dramatic reduction in FA cycle time by increasing FA relevance and success rate. To 

Figure 10: Common diagnosis flow modified to add RCD analysis to enrich the diagnosis results. 
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learn more about how the RCD technology works, see [11]. For additional case studies and applications of RCD,  

see [13].

REFERENCES
1. Mentor Graphics, “Layout-aware Diagnosis” whitepaper. 

2. Y.-J. Chang, et.al., “Experiences with Layout-Aware Diagnosis — A Case Study,” Electronic Device 

Failure Analysis, Vol. 12, Issue 2, May 2010, pages 12-18. 

3. M. Sharma, et.al., “Layout-aware Diagnosis Leads to Efficient and Effective Physical Failure Analysis,” 

ISTFA 2011. 

4. Mentor Graphics, “Faster Time to Root Cause with Diagnosis-Driven Yield Analysis” whitepaper. 

5. C. Hao, W. Yang, “Diagnoisis-Driven Yield Analysis Improves Mature Yield,” Chip Design Magazine, Fall 

2011.

6. C. Schuermyer, et.al., “Device Selection for Failure Analysis of Chain Fails Using Diagnosis Driven 
Yield Analysis,” ISTFA 2011. 

7. M. Sharma, et.al., “Efficiently Performing Yield Enhancements by Identifying Dominant Physical Root 
Cause from Test Fail Data,” ITC 2008. 

8. F. Hapke, et.al., “Improving Failure Analysis for Cell-Internal Defects through Cell Aware Technology,” 
ISTFA 2013. 

9. A. Leininger, et.al., “Compression Mode Diagnosis Enables High Volume Volume Monitoring 
Diagnosis Flow,” ITC 2005.

10.  Y. Huang, et.al., “Scan Chain Diagnosis by Adaptive Signal Profiling with Manufacturing ATPG 
Patterns,” ATS 2009. 

11. B. Benware, et.al. (MGC, GF), “Determining a Failure Root Cause Distribution From a Population 
of Layout-Aware Scan Diagnosis Results,” IEEE Design & Test of Computers, 01/2012. 

12. Y. Pan, et.al. (GF), “Leveraging Root Cause Deconvolution Analysis for Logic Yield Ramping,” 

ISTFA, 2013. 


