

KLA-Tencor Introduction

Value of Process Control

Strategy for Future Process Control Challenges

KLA-Tencor: Process Control Innovation Leadership First to market. Winning performance. Continuous innovation.

<1990's	1990's	2000's	Today
1 st Wafer Inspector Invented	213X Line Monitoring	236X Hi Speed BB UV 28XX BB DUV	29XX
1 st Reticle Inspector Invented	Die-to-Database STAI Inspection Op	R <i>light</i> Wafer Plane tics Inspection	Teron 6XX
1 st Laser Scattering Wafer Inspector	AIT AIT UV	Puma 9XXX Laser Line Scanning	Puma 9850
1st In-Line Overlay	Archer Platform	AIM μAIM Targets Targets	Archer 500
1st Bare Wafer Inspector	Surfscan SP1 Surfscar 360° Collector Bac	SP1 DLS Surfscan SP2 kside Platform	Surfscan SP5 SURFmonitor

"We're blind without you guys..."

Defect / Yield

You can't fix what you can't find

Blocked Implant

Blocked Contact

Trench Bridge

Cu Bridge

Metrology / Performance

You can't control what you can't measure

Find And Fix Today's Critical Problems

We Must Find, Classify & Measure Really Small Defects

Eye of Needle 2,000,000nm

Flu Virus 100nm DNA Strand 6nm Semiconductor Defect 10nm Size

Innovation in Optical Wafer Inspection To Get to 10nm Solution in <30 years

5 The ConFab – May 2015

KLA Tencor

A world on a wafer...

This is a disk.....

And this is a sphere.....

70,000,000,000,000,000 nm^2

70 E15 square nanometers

5,000,000,000,000,000 ft²

5 E15 square feet

A world on a wafer...

If this is a 300mm wafer.....

This mouse is about ~10 nm2

What Must Our Systems Do?

One Chip

Our Tools Will Find Defects the Size of a Small Coins on the streets of Las Vegas from many miles in space...in Seconds

Scale of data : up to 20TB of data / wafer

Wafer

- Massive "Intelligent" Data Compression necessary
- Statistical Machine Learning Essential

KLA-Tencor Introduction

Value of Process Control

Strategy for Future Process Control Challenges

The Value of Process Control is Delivered in Many Forms

The Ten Fundamental Truths of Process Control For Any Industry

- 1. You can't fix what you can't find. You can't control what you can't measure.
- 2. It is always more cost-effective to over-inspect than to under-inspect.
- 3. The most expensive defect is the one that wasn't detected inline.
- 4. Fab managers don't like surprises: always quantify your lots at risk when making changes to your process control strategy.
- 5. Variability is the enemy of a well-controlled process.
- 6. Time is the enemy of fab profitability.
- 7. Improving yield also improves device reliability.
- 8. Process control requirements increase with each design rule.
- 9. High-stakes problems require a layered process control strategy.

10. Adding process control *reduces* production costs and cycle time.

The Most Expensive Defect is The One That Wasn't Detected In-Line...

Improving Yield Will Also Improve Device Reliability...

Reliability is Critical

The same defect types that impact yield also impact reliability.*

Reliability is Critical Devices Cannot Fail – There is No Room for Maybe

It is More Cost-Effective to Over-Inspect Than Under-Inspect...

If it's worth achieving, it's better to over-achieve than under-achieve

The Number of Process Steps is Exploding

As the number of process steps increase, <u>ALL STEPS</u> must be held to a tighter standard for:

- 1. Excursions (wafer yield)
- 2. Defect density (die yield)
- 3. Variability (C_{pk})

Cleaner Unit Processes are Required

Number of Process Steps

Cumulative Yields will drop unless there is an improvement in step yield

KLA-Tencor Introduction

Value of Process Control

Strategy for Future Process Control Challenges

Challenges to Moore's Law

RISK AHEAD

- Many new materials and technology challenges
- Lithography / Patterning
- Rising fab, design, development and litho costs

 Transistor costs if yields aren't achieved

Transistor Cost Improvements Slowing

Time

Accelerating Yield is the Best Solution to Achieving Cost Goals of Moore's Law

Problems for IC Manufacturers Continue to Grow How Robust is My Design and Process Window?

- Is My Design Robust?
- Where are the Weak Points?
- What is the Impact of Process Variance?
- What is My Process Window?
- What are the Sources of Error?
- What is the Impact of Process Variance?

Strategy & Structure: Growing Investment in System of Systems

Process Window Discovery, Expansion and Control

Intelligent Feed Forward and Feedback Required for Pattern Control

Existing feedback loops

Optimized feedback loops

Feed forward loops

Process Control Critical to IC Industry Success

Investment in Process Control Provides Strong ROI

Process Control Helps

- Ramp Yields Faster
- Lower Costs
- Improve Cycle Times
- Lower Risks
- Provide More Predictable Delivery
- Increase Profits

