Pete's Posts Blog


At The ConFab 2014: The Outlook for the Semiconductor Industry

The semiconductor market will continue at a steady growth rate for the next several years. For a semiconductor company to achieve significant growth in this ultra-competitive environment, it needs to identify market opportunities and predict the future, in terms of markets, both regionally and globally, anticipate technological advancements, as well as envision new applications. At The ConFab in June, Session 1 will provide an overview of these critical issues.

The presenters will be:

Vijay Ullal, COO, Fairchild Semiconductor

Dave Anderson, President and CEO, Novati Technologies

Gopal Rao, Senior Director Business Development, SEMATECH

Adrian Maynes, Program Manager, F450C

Bill McClean, President, IC Insights

Here’s an overview of what each presenter plans to cover:

The Economics of Semiconductor Manufacturing and the Escalating Cost of R&D

Vijay Ullal, COO, Fairchild Semiconductor

While innovation in semiconductor technology is driving change in industries from automotive to mobile, and the sophistication of computers, mobile devices, automobiles, industrial systems and consumer goods evolves, greater pressure is placed on semiconductor research and development (R&D) as well as Supply Chain Management (SCM). Now, the bar has been raised from not only delivering leading-edge technology, but also to delivering far greater value to an organization. This presentation will use examples of to focus R&D as well as revitalize your supply chain in order to highlight your competitive advantages, and better meet these market place demands by moving beyond the “product sell” to an approach that focuses instead on the key attributes customer’s value.

More-than-Moore: A New Era of Innovation

Dave Anderson, CEO, Novati Technologies

The semiconductor industry has focused on Moore’s Law for more than 40 years in its quest for ever shrinking geometries to squeeze more transistors on a chip and improve device speed and performance.  Digital microcircuits have benefited immensely from this extreme scaling but, with fewer companies having the ability to support further scaling, More-than-Moore (MtM) has emerged to apply decades of semiconductor process knowledge to novel applications to produce state-of-the-art biochips, sensors, actuators, imagers and more. Perhaps most importantly, MtM technology is enabling companies to build these components more cost-effectively and with better performance and smaller size than ever before.

Providing a significant advantage over traditional volume foundries, a new wave of boutique nanotechnology development centers is in a unique position to integrate new materials with custom processes. This provides a rapid acceleration of development and production for world-leading ideas and breakthrough MtM products.

The result is a new era of innovation that couples the best of the past with future demands to create valuable applications and markets. The era for enabling the most rapid, but affordable, new product development and deployment has begun.

Enabling the Supply Chain to Accelerate R&D

Gopal Rao, Senior Director of Business Development, SEMATECH

There is a push/pull market energy that is now, more than ever, influencing the device makers, suppliers and the consumers who are thirsty for innovative mobile computing and connected devices. The IC industry has relied on a push based roadmaps to bring products to market. It is important that we acknowledge that the consumer appetite for innovative and cool products has created a pull system that may be considered a roadmap. The challenge facing the whole IC industry is how to recognize, rationalize and leverage these push/pull roadmaps. This talk examines this IC industry challenge and opportunity, specifically in moving the vast supply chain to feed into this fast moving market. The pace of R&D through entire supply chain is essential in staying ahead of the curve and driving down cost of technology and manufacturing. Radical, innovative product designs to meet consumer demand will push into the IC supply chain the need to identify and develop significant cost/performance improvements in IC device performance. What are these improvements? Are the current roadmaps highlighting them or do we need to better, integrated intelligent roadmap that helps the supply chain stay on treadmill of innovation and cost reduction?

450mm Transition towards Sustainability: Facility & Infrastructure Requirements

Adrian Maynes, F450C Program Manager

It is widely accepted that in the next few years the semiconductor industry will begin to transition to the next generation 450mm wafer size. Experts throughout the semiconductor industry are striving to make 450mm a reality from a technical and manufacturing standpoint. Along with the increase in wafer size, the industry is closely examining impacts to the facility infrastructure, as merely scaling the manufacturing process is not a practical option. The size of the 450mm facility infrastructure and its associated utility consumption projections would simply exceed affordability and resource availability.

The facility experts involved in establishing and later implementing 450mm infrastructure requirements are facing the same degree of challenges as the IC and equipment manufacturers. For the first time in semiconductor history, facility professionals are collaborating closely with the industry’s top five consolidated IC manufacturers to bring their collective expertise to bear on the most pressing 450mm fab issues. With special focus on safety, cost, schedule, sustainability, and environmental footprint, this global consortium of industry specialists is aiming to reduce the cost of production, increase productivity for manufacturers, and reduce the environmental footprint on a per chip basis

This presentation will address these various infrastructure requirements and potential issues for a more sustainable manufacturing process. The session will be co-presented by leaders of the Facilities 450mm Consortium (F450C) and the Global 450mm Consortium (G450C). These two groups are collaborating as experts from across the entire supply chain to ensure a smooth transition to the 450mm technology.

Major Trends Impacting the IC Industry of the Future

Bill McClean, Presdient, IC Insights

IC Insights forecasts that 2014 will continue the integrated circuit industry cyclical upturn that began in 2013.  This cyclical upturn is expected to gain momentum over the next several years, resulting in a 6.4% IC market CAGR over the 2013-2018 time period, which would be more than 3x the 1.7% CAGR the IC market displayed from 2007-2012. Although a high level of uncertainty still looms over the global economy, sales of smartphones and tablet PCs continue to soar.  IC Insights will present its forecast for the IC market in the context of the IC industry cycle model.  In order to make sense out of the current turmoil, a top-down analysis of the IC market will be given and include trends in worldwide GDP growth, electronic system sales, and semiconductor industry capital spending and capacity.

Normal
0

false
false
false

EN-US
X-NONE
X-NONE

/* Style Definitions */
table.MsoNormalTable
{mso-style-name:”Table Normal”;
mso-tstyle-rowband-size:0;
mso-tstyle-colband-size:0;
mso-style-noshow:yes;
mso-style-priority:99;
mso-style-parent:””;
mso-padding-alt:0in 5.4pt 0in 5.4pt;
mso-para-margin-top:0in;
mso-para-margin-right:0in;
mso-para-margin-bottom:8.0pt;
mso-para-margin-left:0in;
line-height:107%;
mso-pagination:widow-orphan;
font-size:11.0pt;
font-family:”Calibri”,”sans-serif”;
mso-ascii-font-family:Calibri;
mso-ascii-theme-font:minor-latin;
mso-hansi-font-family:Calibri;
mso-hansi-theme-font:minor-latin;}

 

The ConFab R&D Panel is Set

A panel session at The ConFab, to be held June 22-25 in Las Vegas, will focus on how the semiconductor industry can continue to innovate in an environment where lower revenue growth is combined with rising development costs and consolidation.  The panel will discuss where the next big growth drivers will come from and the ability of the industry to continue scaling and remain on Moore’s Law through the introduction of new technologies such as EUV, Advanced Packaging and 450mm.  How will the costs to develop these and other technologies affect innovation and what levers can be utilized to gain more efficiencies in R&D.  The panel will also discuss what role startups will play in the industries going forward and how can increased collaboration benefit the industry. 

The panel, to be moderated by Scott Jones of Alix Partners, will consist of:

Rory McInerny, Vice President Platform Engineering Group, Intel

Chris Danely, Senior Analyst, JP Morgan

Mike Noonen, Co-founder, Silicon Catalyst

Lode Lauwers, Senior Director of Business Development, imec

Some of the subjects that will be covered:

Where does do the next growth drivers come from?

When will wearables, medical devices and the internet of things really drive revenue growth?

What challenges do we have on the R&D side in servicing the growth areas more quickly?

How are the costs of scaling and the development costs of SOCs affecting growth?

What advances from the chip design and architecture side are compensating for the challenges in scaling?

What view does the institutional investing community have on investing in innovation versus acquiring it?

What is the state of the Start-up environment in Semiconductors?

How do we leverage collaboration more to improve on our return on R&D investment?

Click here for more information on The ConFab 2014 agenda.

Webcast on 3D Integration/Advanced Packaging, Lithography

If you’ve been following the field of 3D integration for any time at all, then you’re familiar with Sitaram Arkalgud. In addition to being a great guy, he led the charge on 3D integration at SEMATECH in the early days. He’s now at Invensas and I’m very much looking forward to hearing from him again, this Thursday at 1:00 Eastern. You can hear from him too, by tuning into our webcast. But first you’ll have to register: https://event.webcasts.com/starthere.jsp?ei=1032084

Sitaram will be joined by Rich Rogoff, vp and general manager of the Lithography Systems Group at Rudolph Technologies. Rich recently wrote an interesting article “A square peg in a round hole: The economics of panel-based lithography for advanced packaging” and he’s going to expand on that in the second part of the webcast on Thursday.

Here’s a little more information on the webcast, Sitaram and Rich.

2.5/3D integration and advanced packaging enable better chip performance in a smaller form factor, meeting the needs of smartphones, tablets, and other advanced devices. However, 2.5/3D packaging creates a new set of manufacturing challenges, such as the need to fabricate copper pillars, TSVs, wafer bumping and redistribution layers – which may involve thicker photoresists, spin-on dielectrics and BCB coatings — and processing may be done on panels instead of round wafers. In this webcast, experts will detail various options, future scenarios and challenges that must still be overcome.

Sitaram Arkalgud is Vice President, 3D technology at Invensas Corp., where he leads the company’s 3D-IC research and development efforts. Prior to Invensas, he started and led 3D-IC development at SEMATECH, where the focus was on delivering manufacturable process technologies for 3D interconnects. Previously, Sitaram worked in a variety of roles spanning R&D and manufacturing in memory and logic technologies at Infineon/Qimonda and Motorola. He is the author of several publications and holds 14 U.S. patents. Sitaram holds a master’s degree and a Ph.D. in materials engineering from Rensselaer Polytechnic Institute in Troy, N.Y., and a bachelor’s degree in metallurgical engineering from Karnataka Regional Engineering College, Surathkal, India.

Richard Rogoff is Vice President and General Manager of the Lithography Systems Group at Rudolph Technologies. Prior to joining Rudolph he spent 23 years with ASML in various executive, operational and engineering positions. Most recently he served as Vice President of ASML optics business unit. He received a B.S. in Microelectronic Engineering from Rochester Institute of Technology and a M.B.A. from INSEAD Business School.