Soft lithography used to fabricate transistors on curved substrates

Champaign, Illinois–University of Illinois (UI) researchers have fabricated silicon thin-film transistors–critical components of numerous sensor and display technologies–using soft lithographic block-printing techniques and polymer inks in place of photolithography.

“Conventional photolithography works great for many applications–such as cramming a lot of information into small amounts of silicon real-estate,” explains Ralph Nuzzo, a UI professor of chemistry and of materials science and engineering. “The desire for new patterning processes is being driven by the need to fabricate components over large formats and to use unconventional materials.”

Soft lithography is compliant, so the patterning process can conform to small surface irregularities, flexible substrates, and 3-dimensionally curved surfaces. Possessing the advantages of block printing, the patterning technique can be used in applications where photolithography can not, according to the researchers.

“Thin-film transistor arrays deposited on spherically curved substrates could be used in optical detectors to take pictures over a very wide field of view,” says John Abelson, a UI professor of materials science and engineering. “The human eye, for comparison, focuses images on a nearly spherically curved retina that neatly accommodates the relatively simple optics of the eye’s lens.”

Soft lithographic patterning techniques–such as micron-scale polymer molding–on curved substrates do present special challenges. “For example, the mold must be flexible enough to conform to the curvature of the substrate, yet stiff enough to preserve the integrity of the pattern,” Nuzzo says.

To test the general effectiveness of polymer molding, Nuzzo, Abelson, and graduate students Martin Erhardt and Hyun-Chul Jin fabricated thin-film transistors on both planar and curved substrates using two different transistor architectures.

“One design was a common gate, common channel architecture for single-level patterning on a spherically curved glass substrate,” says Abelson. “The other was an isolated channel, inverted staggered architecture with multilevel pattern registration on a planar glass substrate.”

To fabricate the microstructures on a spherically curved substrate, the researchers first deposited thin films of aluminum, silicon and silicon nitride. A patterned silicone mold was then placed in contact with the substrate, and a polyurethane precursor flowed into the mold by capillary action. Following curing, the mold was peeled away, leaving a polyurethane pattern on the substrate, roughly 30 microns high. Typical etching and metallization steps completed the fabrication process.

“While many engineering issues from throughput to electrical performance must still be solved,” Nuzzo said, “this work demonstrates the versatility of the soft lithographic patterning technique.”


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.