U of Missouri’s “pseudo element” may change electronics, disease treatment

Apr. 30, 2007 — A new discovery by a University of Missouri-Columbia research team, now published in Angewandte Chemie (the journal of the German Society of Chemists), allows scientists to manipulate a molecule discovered 50 years ago to exhibit metal-like properties, creating a new, “pseudo” element. The pseudo-metal properties can be adjusted for a range of uses.

Five decades ago, Fred Hawthorne, professor of radiology and director of the International Institute for Nano and Molecular Medicine at MU, discovered an extremely stable molecule consisting of 12 boron atoms and 12 hydrogen atoms. Known as “boron cages,” these molecules were difficult to change or manipulate, and sat dormant in Hawthorne’s laboratory for many years.

Recently, Hawthorne’s scientific team found a way to modify these cages, resulting in a large, new family of nano-sized compounds. In their study, Hawthorne, and Mark Lee, assistant professor at the institute and first author of the study, found that attaching different compounds to the cages gave them the properties of many different metals.

“Since the range of properties for these pseudo-metals is quite large, they might be referred to as ‘psuedo-elements belonging to a completely new pseudo-periodic table,'” Lee said.

Potential applications of this discovery are abundant, especially in medicine. “All living organisms are essentially a grand concert of chemical reactions involving the transfer of electrons between molecules and metals,” Lee said. “The electron transfer properties of this new family of molecules span the entire range of those found within living systems. Because of this, these pseudo-metals may be tuned for use as specific probes in living systems to detect or treat disease at the earliest state.”

In addition, because the compounds possess such a wide range of flexibility, they might have ramifications for nanotechnology and various kinds of electronics.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.