|
The number of products incorporating nanoscale materials is increasing at a rapid rate, but manufacturers are still struggling to find ways to control these materials in the production environment as they ramp up to commercial scale.
By Sarah Fister Gale
In the past few years, the nanotech revolution has gone from great ideas to commercial realization. Manufacturers across multiple industries, from pharmaceuticals and health care to coatings, semiconductors, and microelectronics, are recognizing the current and future impact nanomaterials can have on their products.
Nanomaterials offer great promise for a new generation of products because they deliver higher strength, lower weights, and more easily soluble attributes than have been previously seen in conventional materials.
“Nanotech isn’t a new market or industry–it’s an enabling technology that improves many types of products,” notes Jurron Bradley, senior analyst at Lux Research, a provider of strategic advice and intelligence for emerging technologies, based in New York. “You find it in coatings boosting the efficiency of automobile engines, in nano-enabled finishes protecting electronic devices, and nanoparticulate reformulations that make cholesterol-reducing drugs more effective. These innovations aren’t always visible to consumers, but they improve products and boost margins. That’s why nanomaterials use is only going to keep growing.”
The market has seen recent rapid growth, with great expectations for the near future, says Bradley. In its recently released report, “Nanomaterials State of the Market Q3 2008: Stealth Success, Broad Impact,” Lux estimates that nanotechnology was incorporated into $1.4 trillion worth of products in 2007, up from $497 billion in 2004, representing a compound annual growth rate of 41%. The research firm expects this figure to grow at a compound annual growth rate of 14% through 2015, climbing to $4.0 trillion worth of manufactured goods in that year.
The report notes that established nanotechnology–which includes nanoscale objects and devices based on long-known processes and technologies, such as semiconductor chips with nanometer features and nanoscale particles such as carbon black–dominates the current market, accounting for $1.3 trillion of the $1.4 trillion in nano-enabled manufacturing output in 2007. By 2015, Lux expects emerging nanotech–novel materials currently under development–to take center stage, accounting for $3.1 trillion of the $4.0 trillion in output.
The materials and manufacturing sector saw the greatest impact as nanotech made its way into intermediates like coatings and composites for products like automobiles and buildings; electronics followed at $35 billion from emerging nanotech applications in fields like displays and batteries, while health care trailed with $15 billion in revenue, driven by pharmaceutical applications.
“We are seeing a lot of growth in the electronics and IT sectors,” Bradley says. “Manufacturers still have to prove the technology is viable, but they are seeing much greater acceptance.”
Figure 1. An atomic force microscope (AFM) image of Unidym carbon nanotubes (CNTs) on a substrate. Photo courtesy of Unidym Inc. |
That acceptance is coming after years of trial and error among researchers on how to scale up from the lab to a volume manufacturing facility. From managing human health and safety issues and designing air handling and filtration systems that can manage nanoscale particles, to controlling the way materials are introduced into the environment, processed, and removed, manufacturers are being forced to re-evaluate all of their contamination control processes for the nanoscale.
But is it safe?
A flurry of attention-grabbing research reports and studies warning of the dangers of nanomaterials from special interests groups, such as the Project on Emerging Nanotechnologies and Friends of the Earth, have gained much media attention over the past couple of years, inciting fears among consumers about risky nanomaterials in their products and demanding caution from manufacturers unsure about whether to risk using a product that has potentially or perceived harmful consequences. Even as these materials are proved safe, public perception of risks can have lingering negative effects on marketability, particularly for products sold directly to consumers.
“There is still a lot of concern about nanoparticles,” notes Harry Way, technical director of Netzsch Fine Particle Technologies, a manufacturer of advanced process technology for nanomaterials based in Exton, PA. “In reality, though, we’ve all been exposed to nanoparticles for as long as we’ve been burning things.”
In spite of that statement, the use of nanomaterials in products and the accompanying concerns have made environmental and human health and safety a top priority for standards writers and special interest groups.
A report released in July 2008, “Nanotechnology Oversight: An Agenda for the New Administration,” by former Environmental Protection Agency (EPA) official J. Clarence Davies calls for greater oversight in the use of nanotech materials and defines a roadmap for the next presidential administration that includes immediate and longer-term steps to shore up what he sees as shortcomings of nanotechnology oversight.
Davies calls for the White House and federal agency policymakers to maximize the use of existing laws to improve nanotechnology oversight by defining nanomaterials as “new” substances under federal toxics and food laws, thereby enabling EPA and the Food and Drug Administration (FDA) to consider the novel qualities and effects of nanomaterials. Davies also calls for federal pesticide and workplace safety laws to be used to protect against potential adverse impacts of nanomaterials.
The report highlights the importance of creating sensible nanotechnology policies that will help ensure the safe and sustainable application of nanotechnologies to climate change, food security, water purification, health care, and other pressing global problems.
“The next presidential administration will face a host of complex policy issues concerning energy, the environment, food safety, consumer products, and the workplace,” he writes in the report. “One issue, however, that will impact virtually all of these policy areas is nanotechnology oversight.”
The National Institute for Occupational Safety and Health (NIOSH), the leading federal agency conducting research and providing guidance on the occupational safety and health implications and applications of nanotechnology, is conducting ongoing research into 10 areas of concern that it has identified for safety research regarding the use of nanomaterials. These include toxicity and dosages, fire safety, effectiveness of engineering controls, and safety of current exposure levels.
Meanwhile, many other global organizations are producing their own research and standards documents relating to nanotechnology, including the American National Standards Institute (ANSI), the Institute for Electrical and Electronics Engineers (IEEE), The British Standards Institute (BSI), and the International Organization for Standardization (ISO).
The first steps have been to create standards for measurement, nomenclature, and characterization of nanomaterials, notes Kalman Migler, in the Materials Science and Engineering Laboratory at the
National Institute of Standards and Technology (NIST), a non-regulatory federal agency that advances measurement science, standards, and technology, based in Gaithersburg, MD.
“We need to develop reference materials so that we all have the same samples to do the same tests,” he says of the need for standards concerning these issues. “Standards for nano will create immense value by bringing order and efficiency to the marketplace.”
Migler points out that in order to accurately assess the toxicology or characteristics of nanomaterials, the fundamental properties must first be agreed upon. “It creates a uniform approach and develops confidence between buyers and sellers.”
A group within IEEE, a non-profit professional association for the advancement of technology based in Piscataway, NJ, produced IEEE 1650