December 4, 2008: Oxford Nanopore Technologies is participating in the Revolutionary Approaches and Devices for Nucleic Acid analysis project (READNA). The newly-launched READNA consortium includes researchers from 16 academic and industrial institutions and will receive €12m in funding over four years, under the European Union’s Seventh Framework Programme (FP7).
As part of the consortium, Oxford Nanopore will receive €730,000 in grant funding to support the development of its nanopore technology into an early exonuclease/nanopore DNA sequencing system. The company will also work on projects to integrate protein nanopores and solid-state materials for the further progression of nanopore sequencing, the development of a new technique that uses nanopores for genome-wide methylation studies and the development of droplet-based bilayer arrays for rapid, multiplexed genotyping.
Oxford Nanopore will collaborate closely with researchers from the University of Oxford, including Professor Hagan Bayley’s Chemical Biology group, the Biological Physics group and the Wellcome Trust Centre for Human Genetics. The University will receive €2m to support READNA projects.
“We are proud to be part of the READNA project, which includes representatives from Europe’s leading research institutions and developers of genomic technologies,” said Dr Gordon Sanghera, CEO of Oxford Nanopore. “The consortium aims to revolutionise nucleic acid analysis. Our role as the developer of a new generation of sequencing technology, based on nanopores, is critical to the project. With support also being given to our academic collaborators, we believe we are in the best position to deliver a meaningful improvement in sequencing technology with our label-free, single-molecule nanopore system.”
The READNA consortium aims to revolutionise the analysis of nucleic acids by the improvement of existing methods and the development of new technologies.
In step one of Nanopore’s BASE sequencing system, Engineered α-hemolysin protein (shown in blue) is introduced into a planar lipid bilayer, which acts as an artificial biological membrane.