Keeping it Cool
Back in 2008 we addressed 3D cooling activities [see PFTLE 43, "Keeping it cool in the dog days of summer"] looking a the activities at IBM Zurich, GaTech, and CALCE (U Md) as the groups especially active in this area.
Since then we have looked further at the liquid cooling activities of Bakir at GaTech [see IFTLE 83, "Orange County IEEE CPMT 3DIC Workshop"] and Brunschwiler at IBM Zurich [see "IBM to use water cooling for future 3D IC processors"] and the fact that one of the drivers for 2.5D is that it offers better thermal performance that current 3D stack solutions [ see IFTLE 97, "DATE in Dresden, Synopsys 3D EDA solution"]. For the most part, though, IFTLE has taken the position that thermal would not be the roadblock for 3DIC and that initial products would be ones where the thermal solution was not driving the technology.
Now that we are quickly approaching full commercial production of a number of products, it’s probably a good time to focus more on proposed thermal solutions for the future. To update yourself on where things stand, I suggest Herman Oprins’ article "Modeling and experimental characterization of hot spot dissipation in 3D stacks." He concludes that thermal management issues in these 3D stacks are one of the main challenges for 3D integration since the use of polymer adhesives with low thermal conductivity, the presence of interconnection structures, back end of line (BEOL), redistribution layers (RDL), and through-Si vias (TSVs) increases the complexity of the conductive heat transfer paths in a 3D stack.
Oprins concludes that hot spot power dissipation results in significantly higher temperatures in 3D stacked chips compared to the same power dissipation in single 2D chips. This temperature increase is mainly due to the reduced thermal spreading in the thinned dies on the one hand, and to the use of adhesives with low thermal conductivity for the vertical integration of the chips on the other hand. To limit the temperature increase in 3D-ICs, "too thin chips should be avoided" because the thinner the silicon substrate, the higher the thermal spreading resistance is in the case of hot spots. Simulations show that a minimum die thickness of 50