Silex joins ENIAC project to develop new solutions for TSV and wafer bonding

Silex Microsystems, the world’s largest pure-play MEMS foundry, today announced that it has joined an international European Union-funded program aimed at developing a new MEMS manufacturing platform based on advanced inkjet-based printing technologies. The program, “Processes for MEMS by Inkjet Enhanced Technologies,” or PROMINENT, is leveraging the proven benefits of inkjet technologies to enable higher manufacturing efficiencies, increased product innovation, faster time-to-market, and lower costs throughout the entire MEMS manufacturing process. Silex’s contributions in this effort will include new low-cost technologies for through-wafer vias, hermetic high-vacuum seals for wafer-to-wafer bonding including advanced material deposition, advances in piezo-MEMS fabrication, and other functional materials processing.

As an innovation-driven industry, MEMS manufacturing depends on continuous innovation and exploitation of new technologies such as ink-jet processes. Ink-jet technology is one of the most mature MEMS technologies, having been in production since the late ‘70s and a mainstream of the digital printing industry since the early ‘80s. Similar to the impact that inkjet printing has had on the printing industry, the technology offers the promise of direct-to-wafer digitally-based patterning of wafer processing which can allow highly flexible prototyping and low-volume production for MEMS devices. In addition, advances in materials, electronics, and thin film compounds in recent years have opened up new avenues to apply ink-jet techniques to traditional manufacturing challenges such as metallization patterning using metallized inks. PROMINENT has been formed to exploit these new techniques and to advance the competitiveness of the European technology community.

“As a key partner in the PROMINENT project, Silex brings its extensive experience in metal TSVs and wafer bonding which will help end-users, partners in the consortium, and future customers advance the use of inkjet technologies for production purposes,” says Dr. Thorbjörn Ebefors, chief technologist at Silex Microsystems. “These new technologies have the potential to reduce costs and speed development time of new MEMS products, at no loss of performance for the customer.”

Printed electronics have recently achieved considerable progress due to new printing technologies and the introduction of nanoparticle inks, paving the way towards integrating these capabilities within silicon-based nanoelectronics,” says Dr. Markku Tilli of Okmetic Oyj, PROMINENT project coordinator.  “The objective of the ENIAC JU project PROMINENT is to demonstrate significant cost reduction in MEMS manufacturing by using printing technologies to reduce materials, chemicals and energy consumption, waste water production, processing cycle time and capital investments.”

PROMINENT will develop novel low-cost, digitally controlled additive manufacturing methods that can radically change the manufacturing methods for MEMS and bring a substantial competitive edge to the European MEMS industry. The objective is not to replace the whole MEMS manufacturing process, but rather to introduce a new way of making its selected steps flow in a different, more flexible and cost-efficient way using methods developed in the printed electronics field.

By using maskless, digitally controlled, localized additive processes instead of the subtractive processes currently in use, selected steps in MEMS manufacturing can be done with a simplified process sequence. This will result in:

  • Lower initial investment costs for a MEMS line, making it easier for manufacturers to introduce new products.
  • New features in the MEMS devices, new application areas.
  • Greatly increased flexibility in production, allowing for smaller batches, mass customization and fast changes in the production process.
  • Increased flexibility, easier prototyping and shorter time-to-market for new MEMS devices.
  • Greatly reduced production costs and environmental impact.

Silex TSV and wafer-bonding


Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.