Monthly Archives: June 2013

ISORG and Plastic Logic have co-developed the first conformable organic image sensor on plastic, with the potential to revolutionize weight/power trade-offs and optical design parameters for any systems with a digital imaging element. First mechanical samples will be publicly unveiled at LOPE-C 2013 (ISORG / CEA booth B0-509) from June 12 to 13 in Munich, Germany.

The collaboration is based on the deposition of organic printed photodetectors (OPD), pioneered by ISORG, onto a plastic organic thin-film transistor (OTFT) backplane, developed by the technology leader, Plastic Logic, to create a flexible sensor with a 4×4 cm active area, 375um pitch (175um pixel size with 200um spacing) and 94 x 95 = 8 930 pixel resolution.

organic image sensor

The backplane design, production process and materials were optimized for the application by Plastic Logic to meet ISORG’s requirements. The result, a flexible, transmissive backplane, represents a significant breakthrough in the manufacture of new large area image sensors and demonstrates the potential use of Plastic Logic’s unique flexible transistor technology to also move beyond plastic displays. Combined with ISORG’s unique organic photodetector technology, it opens up the possibilities for a range of new applications, based around digital image sensing, including smart packaging and sensors for medical equipment and biomedical diagnostics, security and mobile commerce (user identification by fingerprint scanning), environmental, industrial, scanning surfaces and 3D interactive user interfaces for consumer electronics (printers, smartphones, tablets, etc.).

ISORG’s CEO, Jean-Yves Gomez stated: “We are extremely pleased to showcase our disruptive photodiode technology in a concrete application for imaging sensing. The ability to create conformal and large area image sensors, which are also thinner, lighter and more robust and portable than current equipment is of increasing importance, especially in the medical, industrial and security control sectors.”

Indro Mukerjee, CEO Plastic Logic said: “I am delighted that Plastic Logic can now demonstrate the far-reaching potential of the underlying technology. Our ability to create flexible, transmissive backplanes has led us not only to co-develop a flexible image sensor, but is also key to flexible OLED displays as well as unbreakable LCDs.”

The 10th International Conference on Group IV Photonics (GFP 2013) will feature presentations spanning a broad range of topics focused on silicon photonics and other Group IV element-based photonic materials and devices. Professionals from industry, academia, and government around the world will gather from August 28-30, 2013 for the GFP 2013 conference, held for the first time in Seoul, Korea at the Grand Hilton Seoul. 

Planned as a single-track conference, GFP 2013 will feature both oral and poster sessions of contributed and invited papers focused on silicon photonics and other Group IV element-based photonic materials, applications, and manufacturing technology. In addition, a post-deadline session will feature the most up-to-date results involving Group IV element photonic materials and devices, including integration and fabrication technologies.

Some of the major topic areas will include:

  • Electro-Photonic Convergence on Silicon: mainstreaming industrial Si photonics; optical interconnect technology, including light sources, modulators, and detectors; technology platforms, design tools/rules, and industrial fabrication concerns.
  • Novel Materials and Structure: novel materials and material combinations, and/or structures generating scientific interest; graphene, complex oxides, photonic crystals, gratings, as well as plasmonics and its hybrids.
  • Photonic Devices and Nanophotonics: devices and systems that are at the stage of focusing on real applications but do not necessarily need/require integration with electronics; couplers, (bio) sensors, Si photonics for telecom applications.

A supplier exhibition and a range of sponsorship opportunities are available for participating companies to promote awareness, discuss the latest new products, interact with customers and develop new sales contacts.  Individualized sponsorship opportunities are available. Contact conference planner Megan Figueroa at +1 732 562 3895 or via e-mail at [email protected] for more information.

For the first time ever, no clear winner has emerged to claim top honors in the MEMS business for 2012, with Bosch of Germany and French-Italian STMicroelectronics ending up evenly splitting the title of No. 1 supplier for the year, according to a MEMS Competitive Analysis Report from information and analytics provider IHS (NYSE: IHS).

With both companies just shy of the $800 million mark, Bosch and STMicroelectronics each had MEMS revenue of approximately $793 million in 2012. The two companies do not use the same exchange rates every quarter when converting their revenue from euros to the U.S. dollar, and as a difference of less than 1 percent separates the revenue levels of both, IHS found it was not possible this time to declare a clear winner as to who was No. 1 for 2012.

“With billions of dollars up for grabs, competition in the MEMS market is intense,” said Jérémie Bouchaud, director and senior principal analyst for MEMS & sensors at IHS. “Nowhere is the rivalry more furious than the battle for the market’s top spot. In fact, the content for number one is so closely contested that Bosch and STMicroelectronics battled each other to a draw in 2012.”

MEMS in the money

Overall, the top 20 MEMS manufacturers last year accounted for a whopping 77 percent of the industry total of some $8.3 billion, as shown in Table 1. The figure excludes foundry revenue in order to avoid double-counting of fabless and foundry takings within the same ranking. For instance, excluded is MEMS foundry revenue from STMicroelectronics for its fabrication of Hewlett-Packard inkjet print heads, or similar foundry revenue from Texas Instruments for Lexmark inkjet print heads.

top 20 mems suppliers
Table 1.

Foremost among all the players were the four companies at the top, each with revenue ranging from $675 million to $800 million, and collectively well ahead of the rest of the pack.

Bosch vs. STMicroelectronics

Bosch, the No. 3 entity in 2011, enjoyed a MEMS revenue boost of 8 percent last year including a nearly 5 percent uptick in its primary automotive MEMS business, which accounted for 82 percent of overall Bosch MEMS takings. Bosch is unchallenged as the top automotive MEMS supplier with 27 percent share of the market. The company also has a growing consumer and mobile MEMS trade—up 17 percent for the year—thanks to the soaring sales of pressure sensors in handsets, compensating for slightly down revenues in accelerometers and microphones. But while the company did well in 2012, its result was impacted by an unfavorable exchange currency rate, especially in its U.S. automotive business.

STMicroelectronics, the No. 4 player in 2011, counted on a robust consumer and mobile business as its main source of MEMS revenue. While rival Bosch dominates automotive, STM leads in consumer and mobile MEMS with 32 percent of the market. STM also made inroads into automotive with $15 million in 2012, up from $10 million the year earlier. Gyroscopes were ahead of accelerometers in contributing to STM’s cache, and similar to Bosch, pressure sensors for handsets boomed because of shipments into smartphones like the Samsung Galaxy S III.

Texas Instruments tumbles from the top

Falling out of the No. 1 spot was Texas Instruments, down to No. 3, with revenue down 3 percent to $751 million. While front projectors for business and education still formed the majority of its digital light processing (DLP) chip revenue, the segment was flat last year. In particular, DLP revenue in home theater and rear-projection TVs was down, especially with the exit of Mitsubishi as the last remaining rear-projection TV brand in North America. DLP revenue for pico-projectors also has not taken off as expected, with the chipset still too expensive and its adoption slow in the consumer and mobile markets.

At the No. 4 spot was Hewlett-Packard with revenue of $677 million. HP also suffered a drop in ranking, down from No. 2 in 2011, as revenue associated with its inkjet printer heads contracted 10 percent last year. This follows a 15 percent decline in the shipment of inkjet printers. Moreover, HP’s revenue from the replacement of disposable print heads has been shrinking continually as the company long ago started to move to printers with permanent print heads.

Rounding out the Top 5 but at a relatively far remove from the four other companies above it was Canon of Japan, with revenue of $377 million.

InvenSense on the rise

In all, revenue for companies from the succeeding sixth spot all the way to No. 15 each had takings between $100 million to just under $300 million.

Worth noting outside of the Top 5 was California-based InvenSense at No. 13, with revenue up 30 percent to $186 million. InvenSense is the most successful MEMS startup ever, its market breakthrough coming in 2009 thanks to its design in the Nintendo Wii Motion Plus gaming accessory. While InvenSense initially had been heavily dependent on gaming, the company wisely diversified its business and now looks to handsets and tablets as even more important sources of revenue.

InvenSense has also pioneered serial production of 6-axis inertial measurement unit comprising accelerometers and gyroscopes in a 4 x 4-millimeter package. Combo sensors last year accounted for half of the company’s revenue, and InvenSense is now producing a very small 9-axis inertial measurement unit also containing a 3-axis magnetometer that measures only 3 x 3 millimeters.

In an industry where finer features are driving market needs, current deposition processes are no longer sufficient to address challenges like interconnect dimensions below 16/14nm or high aspect ratio TSVs (>8) without experiencing defects, voids, or low reliability. Beyond process performance, cost remains a critical consideration for manufacturing next-generation devices. Today, Alchimer is announcing a new collaboration with imec to validate its wet deposition technology.

Alchimer is a provider of wet deposition technologies for dual damascene, TSVs, MEMS and solar. The new joint development project with imec will evaluate and implement copper filling solutions for advanced nano-interconnect technologies. The focus of the project will be on Alchimer’s Electrografting products, which have demonstrated void-free filling on 7nm node devices and allow direct Cu fill on barrier with no seed layer required for damascene processes.

As CMOS scaling creates finer features, market requirements for copper damascene include smaller dimensions (≤16/14 nm) with a thin barrier layer, and thin or no Cu seed layer. Filling processes must be defect/void free to meet reliability specifications, and achieve high yields. Conventional physical vapor deposition (PVD) and chemical vapor deposition (CVD) processes are not meeting these requirements. Alchimer’s wet deposition technologies are based on a molecular build-up process that breaks through the limitations of dry deposition processes.

"We believe that as the industry moves to smaller technology nodes, performance and cost will drive technology adoption," said Bruno Morel, CEO of Alchimer. "The performance of eG in advanced damascene applications, including single and dual damascene below 20nm, hasbeen very promising both in terms of performance and cost of ownership. Collaborating with imec gives us access to tremendous resources to validate our technology’s suitability at 300mm and understand what it would take to get ready for 450mm."

The goal of the JDP is to obtain reliability data and electrical performance for eG wet deposition processes in a 300mm manufacturing environment for sub-22nm technologies. As part of the JDP, the companies will assess the plating chemistry and work to identify the optimal process conditions for 300mm wafer-level advanced damascene plating applications.

 

 

Researchers from Ulsan National Institute of Science and Technology (UNIST), South Korea, and University of Illinois, U.S.A, developed the large-scale heteroepitaxial growth III-V nanowires on a Si wafer.

The research team demonstrated a novel method to epitaxially synthesize structurally and compositionally homogeneous and spatially uniform ternary InAsyP1-y nanowire on Si at wafer-scale using metal-organic chemical vapor deposition (MOCVD). The high quality of the nanowires is reflected in the remarkably narrow PL and X-ray peak width and extremely low ideality factor in the InAsyP1-y nanowire/Si diode.

semiconductor nanowires
These are optical and SEM images of the InAsyP1-y nanowire array.

A nanowire is a nanostructure with a diameter of the order of a nanometer (10-9 meters). Alternatively, nanowires can be defined as structures that have a thickness or diameter constrained to tens of nanometers or less and an unconstrained length. Technology related to nanowires has been selected as one of the 10 Breakthrough Technologies of 2004 by MIT Technology Review.

High-aspect-ratio semiconductors have led to significant breakthroughs in conventional electrical, optical, and energy harvesting devices. Among such structures, III-V semiconductor nanowires offer unique properties arising from their high electron mobility and absorption coefficients, as well as their direct bandgaps.                                   

A common technique for creating a nanowire is Vapor-Liquid-Solid (VLS) synthesis. This process can produce crystalline nanowires of some semiconductor materials. However, metal catalysts, usually expensive noble metals, should be used for initiating the VLS mechanism. In addition, these metal catalysts are known to significantly degrade the quality of semiconductor nanowires by creating deep levels, thus limiting practical applications of nanowires into opto-electronic devices.

In this work, however, Prof. Choi’s group developed a novel technique of growing III-V semiconductor nanowires without metal catalysts or nano-patterning. Metal-organic chemical vapor deposition (MOCVD, AIXTRON A200) was used for the growth of the InAsyP1-y. 2 inch Si (111) wafer was cleaned with buffer oxide etch for 1 minute and deionized (DI) water for 2 seconds. Then, the wafer was immediately dipped in poly-L-lysine solution (Sigma-Aldrich inc.) for 3 minutes then rinsed in DI water for 10 seconds. The Si substrate was then loaded into the MOCVD reactor without any delay. The reactor pressure was lowered to 50 mbar with 15liter/min of hydrogen gas flow. Then the reactor was heated to growth temperatures (570 – 630 ℃), and stabilized for 10 minutes.

Kyoung Jin Choi, associate professor at Ulsan National Institute of Science and Technology (UNIST), Korea, and Xiuling Li, Professor at University of Illinois, U.S.A. led the research and this description of the new research was published on the web on May 7 in ACS Nano. (Title: Wafer-Scale Production of Uniform InAsyP1-y Nanowire Array on Silicon for Heterogeneous Integration).

"If we develop new technology which manages the density of nanowire and bandgap energy with further study, it is also possible to produce high-efficiency and low-cost large scale solar cells," said Prof. Choi. "This technology will give us a chance to lead the research on the new renewable energy."

Altera Corporation today introduced its Generation 10 FPGAs and SoCs, offering system developers breakthrough levels of performance and power efficiencies. Generation 10 devices are optimized based on process technology and architecture to deliver the industry’s highest performance and highest levels of system integration at the lowest power. Initial Generation 10 families include Arria 10 and Stratix 10 FPGAs and SoCs with embedded processors. Generation 10 devices leverage the most advanced process technologies in the industry, including Intel’s 14-nm Tri-Gate process and TSMC’s 20 nm process. Early access customers are currently using the Quartus II software for Generation 10 product development.

Altera said its Stratix 10 FPGAs and SoCs are designed to enable the most advanced, highest performance applications in the communications, military, broadcast and compute and storage markets, while slashing system power. Leveraging Intel’s 14nm Tri-Gate process and an enhanced high-performance architecture, Stratix 10 FPGAs and SoCs have an operating frequency over one gigahertz, 2X the core performance of current high-end 28nm FPGAs. For high-performance systems that have the most strict power budgets, Stratix 10 devices allow customers to achieve up to a 70 percent reduction in power consumption at performance levels equivalent to the previous generation.

Altera is announcing the technology details of Stratix 10 FPGAs and SoCs today as part of the Generation 10 portfolio introduction, and will disclose more details on the product at a later date. Stratix 10 FPGAs and SoCs provide the industry’s highest performance and highest levels of system integration, including:

  • More than four million logic elements (LEs) on a single die
  • 56-Gbps transceivers
  • More than 10-TeraFLOPs single-precision digital signal processing
  • A third-generation ultra-high-performance processor system
  • Multi-die 3D solutions capable of integrating SRAM, DRAM and ASICs

Arria 10 FPGAs and SoCs are the first device families to roll out as part of the Generation 10 portfolio. Leveraging an enhanced architecture that is optimized for TSMC’s 20nm process, Arria 10 FPGAs and SoCs deliver higher performance at up to 40 percent lower power compared to the previous device family.

Early access customers are currently using the Quartus II software for development of Arria 10 FPGA and SoCs. Initial samples of Arria 10 devices will be available in early 2014. Altera will have 14 nm Stratix 10 FPGA test chips in 2013 and Quartus II software support for Stratix 10 FPGAs and SoCs in 2014.

Sapphire is currently used in some exotic, luxury phones. However, the sapphire price reduction combined with the massive adoption of touch screens in smartphones have stimulated the interest of cell phone OEMS for this material. Crystal growth equipment manufacturer GTAT is leading the charge and recently created a lot of buzz around this application and on the OEM front. Apple is rumored to have conducted an extended due diligence.

Adoption of sapphire in mobile display covers represents the single largest opportunity. It remains, however, uncertain. Yole Développement sees four major challenges: technology, supply chain, cost and market acceptance. Crystal growth and finishing technologies still need to be optimized in order to guarantee stable performance and reduce the price gap with chemically strengthened glass like Corning’s Gorilla. Yole Développement’s analyst estimates that the current cost of manufacturing a sapphire display cover is around $22 but could drop to $12 and ultimately below $10. It remains to be seen if the bill of material increase vs. the $3 glass display cover will be absorbed by the OEM in exchange for increased market share or if the consumer will value the increased durability brought in by the sapphire cover and accept paying a premium.

sapphire substrate use

It is difficult to predict the success of sapphire in this application. However, Yole Développement expects that some OEMs will probe the market and introduce some models featuring sapphire by late 2013 – early 2014. Initial customer reaction will have a strong influence on the future of the technology. If successful, strong market traction could ease the funding for the more than $1.5 billion in capex needed to serve this industry and set up the supply chain to serve this application.

Glass cover lens manufacturers might seize the opportunity. Because of their vast existing glass finishing capacity that could be converted to process sapphire and their privileged access to leading smartphone OEMs, those companies could beat established sapphire finishing companies into this market. However, another scenario would see collaborations between some leading sapphire and cover lens makers in order to pool technical knowledge, capacity and customer access under the push of some smartphone OEMs.

In any case, if this opportunity materializes, it will transform the sapphire industry with new players emerging, and overall production capacity increasing by a factor of more than 7x.

Defense semiconductor and other applications represent 25% of the sapphire industry revenue

“These applications will bring in revenue of $240 million in 2013 and, excluding the display cover opportunity, will increase at a nine percent CAGR to US$366 million in 2018. Watch windows are currently the single largest application with revenue of US$120 million in 2012. Most applications are fairly mature with relatively low growth opportunity with the exception of the emerging mobile device camera lens cover and the aerospace market, driven by the F-35 jet fighter program and the emergence of sapphire-based transparent armors,” explains Eric Virey, senior analyst, Compound Semiconductors, at Yole Développement.

Most applications have their own “eco-systems” with preferred material vendors, finishing companies, growth technologies and barrier of entrance. The defense market, for example, is characterized by strong technical barriers in both growth and finishing, combined with export restrictions and national preferences. The semiconductor market is also fairly concentrated with two companies, Saint-Gobain Crystals and Gavish which both hold the bulk of the market due to their technology for growing the large sapphire tubes used in many plasma tools. However, competition is increasing on simpler parts like viewports and lift pins.

Industry transformation could open the door for new applications

Driven by the promise of large volumes for the LED industry, sapphire crystal growth and manufacturing capacity has increased by more than 8x in the last five years. In just the last two years, more than 80 companies have announced their intention to enter the industry, bringing the potential number of players to 130+ with more than 50 of these potential new entrants located in China.

The entrance of aggressive new players with large idle capacity is likely to challenge established players in many applications. Yole Développement expects those players to initially enter domestic and international markets with low barrier of entrance and later expand their reach as their technology matures.

Excess capacity and increased competition have created a challenging environment for sapphire makers. However, they also drove prices down dramatically and stimulated technology improvements to further reduce cost and improve capability (crystal sizes, shapes …). Yole Développement expects that ultimately, this will be favorable for the industry: lower price and improved crystal growth and finishing capabilities will open the door to a large gamut of new applications where sapphire has been considered for its performance but never adopted because of its cost.

eMemory, an embedded non-volatile memory (eNVM) provider, and United Microelectronics Corporation, a global semiconductor foundry, today announced an expanded technology cooperation to integrate eMemory’s one-time-programmable (OTP) and multiple-time-programmable (MTP) embedded non-volatile memory technologies into UMC’s 28nm process. The agreement will broaden the foundry’s specialty process portfolio that already includes a range of eMemory eNVM IP solutions from 0.18um and below.

eMemory President Dr. Rick Shen pointed out, "We are happy to take our important strategic partner UMC to a higher level. We stand by our core principles of ‘embedded wisely, embedded widely,’ as we incorporate our core technologies into UMC’s process platforms. This represents the integration of the strengths of both companies and will allow us to provide our IC design clients eNVM platforms that boast quality and reliability, thereby enabling them to stay ahead of the rest of the market."

eMemory’s eNVM technologies target a wide range of applications in mainstream consumer electronics, including power management ICs for smart phones and tablet computers, advanced LCD drivers, touch panel controllers, battery management, sensor controller, audio codec, and near field communications. The current silicon IP (SIP) include NeoBit, NeoFuse, NeoMTP, NeoFlash, and NeoEE, making eMemory the top provider in the industry for providing a full array of SIP products for both OTP and MTP eNVM technologies.

eMemory’s MTP technology can be applied for different product needs including <10 times programming, low-medium or medium-high densities with high endurance requirements, and multiple-time-programmable embedded non-volatile memory technology applications. Furthermore, the technologies are highly compatible with logic processes for different process generations, making eMemory an ideal partner for wafer foundries seeking seamless eNVM integration into their process platforms.

UMC is a global semiconductor foundry that provides advanced technology and manufacturing for applications spanning every major sector of the IC industry. UMC’s foundry solutions allow chip designers to leverage the company’s leading-edge processes, which include 28nm poly-SiON and gate-last High-K/Metal Gate technology, mixed signal/RFCMOS, and a wide range of specialty technologies. Production is supported through 10 wafer manufacturing facilities that include two advanced 300mm fabs; Fab 12A in Taiwan and Singapore-based Fab 12i. Fab 12A consists of Phases 1-4 which are in production for customer products down to 28nm. Construction is underway for Phases 5&6, with future plans for Phases 7&8. The company employs over 15,000 people worldwide and has offices in Taiwan, mainland China, Europe, Japan, Korea, Singapore, and the United States.

eMemory was established in August, 2000, and has focused on logic process eNVM silicon IP development. eMemory currently has about 200 employees.

 

Freescale Semiconductor, Ltd. appointed Krishnan Balasubramanian to its board of directors in May 2013.

Mr. Balasubramanian (known as Bala) brings more than 37 years experience in the semiconductor industry to his new role on Freescale’s board of directors. Bala currently serves on the board of MetroCorp Bancshares, Inc. and has previously served in a number of executive positions at Texas Instruments and has experience in manufacturing, technology development and business leadership.

“As an independent director, Bala brings a valuable outside perspective along with a deep understanding of the global semiconductor industry,” said Dan McCranie, Freescale’s chairman of the board.

“Bala’s experience with executive management supervision, regulatory matters and technological operations in the semiconductor industry makes him a welcome addition to our board,” said Gregg Lowe, Freescale’s president and CEO. “We look forward to his many contributions to the board.”

Freescale Semiconductor is a provider of embedded processing solutions. The company is based in Austin, Texas, and has design, research and development, manufacturing and sales operations around the world.

CEA-Leti announced today that researchers Dominique Vicard and Jean Brun received the Avantex Innovation Prize for the use of the E-Thread technology in textiles.

The award was presented June 10 during the award ceremony at the opening of the Techtextil and Avantex Symposia in Frankfurt, Germany.

According to Avantex, the “innovation awards go to outstanding achievements in research, new materials, products, technologies and applications.”

E-Thread is a microelectronic packaging technology developed by Leti that allows for a direct connection of a chip to a set of two conductors, which can provide the functions of antenna, power and/or data bus. This allows a 10x improvement in size, assembly time and reliability compared to classic microelectronic packaging. The E-Thread assembly can then be incorporated inside a yarn and used by the textile and plastic industries using standard production tools. Electronics such as LEDs, RFIDs or sensors can then be truly integrated in materials and objects.

In choosing this technology for the innovation award, the Avantex jury said “electronics integrated in textiles during the textile processing and not simply by adding the components in a last step will be a significant step forward.” The jury also said the prize was awarded to “this development, as it shows that research and development is also for the textile industry of vital importance and that it can lead to the creation of new companies.”

E-Thread is one of the technologies used within the European FP7 PASTA project (Platform for Advanced Smart Textile Application), and is the key technology asset of the Primo1D startup company, that will be created by Leti during the second half of 2013.

Vicard previously won a 40,000-euro startup award from OSEO, the French organization committed to supporting entrepreneurship, for proposing embedding electronic functions in textile yarns using the E-Thread technology.

Samples of E-Thread will be on display during the symposia, Hall 3.1, stand B11.