Yearly Archives: 2016

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, announced worldwide sales of semiconductors reached $27.1 billion for the month of July 2016, an increase of 2.6 percent compared to the previous month’s total of $26.4 billion. July marked the global market’s largest month-to-month sales increase since September 2013, though sales were down 2.8 percent compared to the July 2015 total of $27.9 billion. Underscoring the welcome uptick, month-to-month sales increased in all regional markets for the first time since October 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The modest increase in global semiconductor sales in July was the global market’s largest month-to-month growth in nearly three years, an encouraging sign of potentially stronger sales during the remainder of 2016 and beyond,” said John Neuffer, president and CEO, Semiconductor Industry Association. “After months of lagging sales, the Americas region was a bright spot in July, posting 3.3 percent growth to lead all regional markets. Meanwhile, most major semiconductor product categories saw increased sales in July compared to the previous month, with DRAM leading the way with 7.1 percent growth.”

In addition to the month-to-month growth in the Americas, sales also increased in China (3.2 percent), Japan (3.1 percent), Asia Pacific/All Other (1.8 percent), and Europe (0.7 percent). Year-to-year sales increased in China (4.7 percent), but dropped in Japan (-1.1 percent), Europe (-4.9 percent), Asia Pacific/All Other (-6.8 percent), and the Americas (-7.5 percent).

“As Congress returns to Washington this week, we urge policymakers to work together to advance initiatives that promote growth and innovation in the semiconductor industry and throughout the U.S. economy,” Neuffer said. “One such measure is the Trans-Pacific Partnership (TPP), a landmark agreement that would tear down barriers to trade with Pacific-Rim countries. Congress should do what’s right for U.S. businesses, consumers, and our economy and approve the TPP.”

To find out how to purchase the WSTS Subscription Package, which includes comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, please visit http://www.semiconductors.org/industry_statistics/wsts_subscription_package/.

July 2016 GSR table and graph

SEMI today announced that twenty-one start-ups have been selected to pitch to investors and exhibit their products at SEMICON Europa‘s INNOVATION VILLAGE in Grenoble, France at the Alpexpo from 25-27 October, 2016. INNOVATION VILLAGE will showcase never-before-seen technologies, with early stage companies introducing their technologies on the exposition floor.

INNOVATION VILLAGE, an area of more than 400m² on the SEMICON Europa exhibition floor, is dedicated to the launch and promotion of technological innovation.  Twenty-one leading European start-ups will be featured, including:

• 3Dis Technologies • HPROB • ProNT GmbH
• Antaios • Irlynx • Silicon Radar
• Applied Nanolayers BV • Madci • Siltectra
• Bright Red Systems Gmbh • Mi2-factory GmbH • Smart Force Technologies
• Fastree3D • Miniswys SA • Smoltek
• FlexEnable • Noivion • Solayl
• FMC – The Ferroelectric Memory Company • Pollen Metrology • Terabee

Start-ups will be given the opportunity to “pitch” their products to potential investors including Applied Ventures LLC, Samsung Ventures, TEL Venture Capital, Robert Bosch Venture Capital GmbH, 3M New Ventures, Aliad-Air Liquide Corporate Venture Capital, Capital ASTER, CEA Investment, VTT Ventures, Capital-E, Siemens Technology Accelerator GmbH and more.

For the first time at the INNOVATION VILLAGE, a new technology transfer program, called the TechnoMarket, from partner Linksium, SATT Grenoble Alpes will be showcased on 26 October. “The national network, SATT, has chosen SEMICON Europa to promote the best technological projects derived from public research within France that can also benefit manufacturers. The new Techno Market event offers new opportunities for businesses,” says Gilles Talbotier, CEO, Linksium.  The TechnoMarket acts as a genuine market place for VCs and companies ready to invest in innovation.

Free admission code: Use the promotional code SCEU-TBN4U to gain free admission to the show floor (not including conferences or forums).  Register now – attend to connect.

For more information about SEMICON Europa, please visit http://www.semiconeuropa.org

Asia-Pacific’s grip as the dominant market for IC sales is forecast to strengthen in 2016 with the region expected to account for 61.0% of the $282.0 billion IC market this year, based on analysis published in IC Insights’ mid-year Update to the 2016 IC Market Drivers report.  The forecast calls for another small gain in total IC marketshare in 2016 after Asia-Pacific held 57.7% share in 2013, 58.4% in 2014, and 60.5% in 2015. The Asia-Pacific region is particularly dominant with regard to IC marketshare in the communications and computer categories, and to a lesser extent in the consumer and industrial categories (Figure 1).  In 2016, IC Insights expects the Asia-Pacific region to surpass Europe and become the largest region for automotive ICs for the first time, as China continues to account for a large and growing portion of new car shipments.  That will leave only the Government/Military end use segment where Asia-Pacific does not have top IC marketshare—a condition that is forecast to hold through 2019.

Figure 1

Figure 1

IC Insights’ Update to the IC Market Drivers 2016 report forecasts total IC usage by system type through the year 2019. Highlights from the forecast include the following items.

– The Asia-Pacific region is forecast to increase its share of the IC market to 62.3% in 2019, from 61.0% forecast for 2016. Over the same time, North American is also forecast to increase marketshare to 23.8%. Conversely, Europe and Japan are expected to lose IC marketshare through 2019. Japan’s IC marketshare is forecast to slip to 5.5% and Europe is forecast to slide to 8.3% in 2019.

– The two fastest growing end-use markets for ICs through 2019 are forecast to be the automotive and industrial/medical segments, having 2015-2019 CAGRs of 8.0% and 7.1%, respectively.  Though having the greatest CAGR through 2019, the automotive IC market is not expected to account for more than 8.0% of total IC sales any time through the forecast period.

– After slumping to only $10.6 billion in 2009, the automotive IC market is forecast to reach nearly 3x that amount ($28.0 billion) in 2019.

– The two largest end-use markets (computer and communications) are forecast to account for 73.7% of the total IC market in 2019, almost the same as the 73.9% share they are forecast to hold in 2016.

– In 2016, analog ICs are forecast to account for the greatest share of IC sales within the automotive (45%) and industrial (50%) segments; logic devices are expected to account for the greatest share of IC sales in communications (41%), consumer (41%), and government/military (32%) applications, and microprocessors are forecast to account for the greatest share (42%) of IC sales in the computer segment.

Nanoelectronics research center imec announces that Kris Myny, one of its young scientists, has been awarded an ERC Starting Grant. The grant of 1.5 million euros is earmarked to open up new research horizons in the field of thin-film transistor technology. This will allow a leap forward compared to current state-of-the-art and enable breakthrough applications in e.g. healthcare and the Internet-of-Things (IoT). ERC Starting Grants are awarded by the European Research Council to support excellent researchers at the stage at which they are starting their own independent research team after a stringent selection procedure; they are among the most prestigious of European research grants.

With his research, Kris Myny wants to realize a breakthrough in thin-film transistor technology, a technology used to create the large-area, flexible circuits that e.g. drive today’s flat-panel displays.

Specifically, he wants to introduce design innovations of unipolar n-type transistor circuits based on amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) as semiconductor. These are currently acknowledged as the most promising transistors for next-generation curved, flexible, or even rollable electronic applications.

Kris Myny said, “My goal is to use these transistors to introduce a new logic family for building digital circuits that will drastically decrease the power consumption compared to current flexible circuits. And this of course without compromising the speed of the electronics. At the same time, we will also make the transistors smaller, in a way that is compatible with large-area manufacturing. In addition, I will also look at new techniques to design ultralow-power systems in the new logic style. These will allow building next-generation large-area flexible applications such as displays, IoT sensors, or wearable healthcare sensor patches.”

In a recent press release, the European Commission announced that in 2017 it would invest a record 1.8 billion in its ERC grant scheme. A sizable part of the budget is earmarked for Starting Grants, reserved for young scientists with two to seven years of post-PhD experience. Jo De Boeck, imec’s CTO says “We congratulate Kris Myny for all his valuable research culminating in this grant. Imec goes to great lengths to select and foster our young scientists and provide them with a world-class infrastructure. These ERC Starting Grants show that their work indeed meets the highest standards, comparable to any in Europe.”

Materials with large dielectric constants — aka “high-K materials” — have recently garnered attention for their potential use within future generations of reduced-dimension semiconductor devices.

Barium strontium titanate, one such material, possesses an inherently large dielectric constant that can be altered significantly by an applied electrical field — by as much as a factor of 10. While this property has been known to exist for more than half a century and many researchers have attempted to exploit it, the technology has been limited by the low quality of the material. By semiconductor industry standards, the material is considered to be defective.

But researchers at University of California, Santa Barbara, who began exploring thin-film tunable dielectrics using sputtered material nearly two decades ago, are now trying to leverage advanced and scalable materials deposition techniques like molecular beam epitaxy (MBE) to create tunable, high-frequency integrated circuits and devices with high-quality materials that are comparable to modern semiconductor technology.

As the group reports this week in Applied Physics Letters, from AIP Publishing, by using extremely high-quality epitaxial materials they were able to greatly reduce the dielectric loss in ferroelectric tunable radio-frequency (RF) capacitors. Advances at the fundamental level, such as this one, open the door to future RF materials and devices that can be electrically reconfigured or “tuned” to adapt to changing environments.

The catch is that the deposition of complex oxides, such as barium strontium titanate, is problematic because of the high temperatures and oxygen-rich environment involved.

“Our work was made possible by recent advances in a hybrid form of MBE at UCSB that uses metal organic precursors,” explained Susanne Stemmer, a professor at the Materials Research Laboratory at UCSB.

The material’s large dielectric constants “present fabrication challenges because the inherently high capacitance density of the films requires smaller electrode dimensions and finer lithography than many typical integrated capacitor structures,” said Robert York, a professor in the Electrical & Computer Engineering department at UCSB. “Low-loss reactive devices also pose significant measurement challenges at microwave frequencies. The close collaboration of materials scientists and electrical engineers, and years of experience in device processing, was integral to the success of our work.”

Significantly, the team’s work clarifies that early work within the field that reported disappointing performances of BST-based devices was limited primarily by deposition and processing methods — not by intrinsic limitations of the underlying material itself.

“Our work also demonstrates that with suitable modifications, MBE systems — a proven technology for large-scale manufacturing of compound semiconductor materials — can be used to deposit a wide variety of high-quality materials,” Stemmer noted.

Another key discovery for the team was “exposing the susceptibility of the material to contamination by other organic materials commonly used in photolithography processes, which required some changes in the fabrication process that, in retrospect, may have factored into the low quality factors reported in the past,” York pointed out.

In terms of applications, materials capable of being altered electronically show enormous potential for adaptive or reconfigurable electronic systems — particularly high-frequency communications.

“For example, tunable capacitors using barium strontium titanate can be used to create tunable antennas for cellular communications, which allows a small antenna to be tuned over a wide frequency range or enables a phone to adapt to different surroundings for improved efficiency and battery life,” York said.

Barium strontium titanate devices can also be used to create low-cost phase-shifter devices for phased-array antennas in mobile satellite communication systems.

“In fact, some barium strontium titanate devices are already used for commercial RF electronics and the infrastructure for deposition and fabrication already exists within most semiconductor foundries, so the timeline for exploiting this advance could be relatively short compared to the typical timeline for a materials advance,” York added.

While numerous research avenues exist for further exploring the materials involved, and improving the processing and device design, one immediate next step for the team is to “demonstrate high-performance integrated circuits with films deposited directly on metal electrodes,” Stemmer said. “Integration with other commercially viable substrate materials is also of interest.”

Semiconductor Research Corporation (SRC), a university-research consortium for semiconductors and related technologies, presented its highest honors Sept. 12 to professors from University of California, Berkeley and University of Minnesota at SRC’s annual TECHCON conference in Austin, Texas.

Dr. Tsu-Jae King Liu, TSMC Distinguished Professor in Microelectronics in the Department of Electrical Engineering and Computer Sciences(EECS) at UC Berkeley, received this year’s SRC Aristotle Award for outstanding teaching and a deep commitment to the educational experience of his students. With SRC support, Liu’s team at UC Berkeley has made numerous research contributions to the industry in areas including nanometer-scale semiconductor devices and technology, novel non-volatile memory devices and technology and M/NEMS technology for ultra-low-power integrated circuits.

Additionally, Dr. Chris Kim, a Professor in the Department of Electrical and Computer Engineering at Minnesota, was awarded the SRC Technical Excellence Award for his respective SRC-supported research and contributions to the industry in VLSI circuit design.

Selected by SRC member companies and SRC staff, the award-winning faculty and research teams are being recognized for their exemplary impact on semiconductor productivity through cultivation of technology and talent.

“Advanced research has been instrumental in propelling the semiconductor industry forward, and we are recognizing these valuable researchers and their teams for the critical work they have performed in helping the industry achieve technological triumphs,” said Ken Hansen, SRC CEO and President.

UC Berkeley and Minnesota research helps drive technology innovation

Dr. Liu, a member of the Kavli Energy NanoSciences Institute and Associate Dean of the College of Engineering at UC Berkeley, earned B.S., M.S. and Ph.D. degrees in Electrical Engineering from Stanford University. Prior to joining UC Berkeley, she worked as a researcher at the Xerox Palo Alto Research Center. Dr. Liu’s current research activities include nanometer-scale logic and memory devices for energy-efficient electronics, and she currently leads research on millivolt nanomechanical switches under the NSF Center for Energy Efficient Electronics Science.

“I am very fortunate to have been able to work with many outstanding students during my career at UC Berkeley, and am humbled to receive this prominent recognition for our joint achievements,” said Dr. Liu. “SRC’s support has made it possible for us to make impactful contributions to society, for which I am very grateful.”

Dr. Kim, a recipient of the National Science Foundation’s CAREER award, received his B.S and M.S. degrees from Seoul National University and a Ph.D. from Purdue University. Prior to joining the University of Minnesota, he worked at Intel Corporation that also recognized him with an Intel Ph.D. Fellowship. His current research focuses on digital, mixed-signal and memory circuit design in advanced-CMOS and beyond-CMOS technologies.

“This award recognizes our group’s invention of a new class of compact on-chip sensors called “silicon odometers” that can accurately and efficiently measure circuit aging effects,” said Dr. Kim. “Over the span of several SRC projects, our team has experimentally demonstrated more than a dozen different odometer designs in technologies ranging from 130 to 32 nanometers.”

TECHCON showcases academia’s brightest

TECHCON brings together the brightest minds in microelectronics research to exchange news about the progress of research ranging from materials to architectures created by SRC’s network of more than 100 of the top engineering universities. Students and industry leaders discuss basic research that is intended to accelerate advancements for both private and public entities.

The presentation of the Aristotle and Technical Excellence awards reflects the purpose of TECHCON, which is to enable future generations of chip technology. The Aristotle Award is given to SRC-funded university faculty that have profoundly and continuously impacted their students’ professional performances in a way that provides long-term benefit to the SRC member companies. The Technical Excellence Awards recognize researchers who have made key contributions to technologies that significantly enhance the productivity of the semiconductor industry.

More than 12,000 students have been prepared by SRC programs, professors and mentors for entry into the semiconductor business. These students provide a path for technology transfer and a source of relevantly educated technical talent for the industry.

SEMI, a supplier of independent semiconductor market research, today announced SEMI FabView, a mobile-friendly, interactive version of its popular World Fab Forecast quarterly report for electronic supply chain players and analysts. The new product was announced during the press conference at SEMICON Taiwan, where 43,000 industry professionals are convening this week. SEMI FabView tracks spending and capacities of over 1,100 facilities, including over 60 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LED fabs.

semi fabview

SEMI FabView features high-level fab data such as capacity, technology nodes, and equipment spending, with other device manufacturing insights such as fabs by region, wafer size, product type and construction status. This new online platform enables anytime access on the changes taking place in fab construction and expansion, production volume, device types, and more. The ability to quickly access the latest data for quarterly business reviews or earnings calls, or to validate an investment decision, is a key feature of this new product.

“SEMI FabView, an online platform, provides SEMI members and customers access to the industry benchmark World Fab Forecast database information in an entirely new way,” said Dan Tracy, senior director of SEMI Industry Research & Statistics for SEMI. “By adding the interactive elements of SEMI FabView, subscribers now have on-the-go real-time access to expert analysis that can be implemented in their models or forecasts.”

SEMI FabView users can:

  • view forecast for equipment and construction spending, capacity changes, and fab status from new plans to closures
  • organize data views by filtering data and accessing analyst commentary for each company and fab to see the latest SEMI forecast
  • access forecast data by company, geographical region, wafer size, technology geometry and specific stages of fab life cycle ─ from announced and planned new fabs to fabs that are in transition (e.g., when a cleanroom is converting to a larger wafer size or a different product type)

SEMI FabView is available for a product demo; contact [email protected]. Learn more about SEMI FabView here: www.semi.org/en/semi-fabview

BY DR. BERND DIELACHER, DR. MARTIN EIBELHUBER and DR. THOMAS UHRMANN, EV Group, St. Florian, Austria

Over the past several decades, miniaturization has significantly improved clinical diagnostics, pharmaceutical research and analytical chemistry. Modern biotechnology devices— such as biosensors, fully integrated systems for diagnostics, cell-analysis or drug discovery—are often chip-based and rely on close interaction of biological substances at the micro- and nanoscale. Thus, process technologies that enable the production of surface patterns and integration of fluidic components with small feature sizes are needed (FIGURE 1).

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with biological substances.

FIGURE 1. Biotechnology devices utilize a variety of structures at the micro- and nanoscale that interact with
biological substances.

Today’s miniaturized biotechnology devices can be found in numerous applications, including fields related to human health as well as environmental and industrial sciences. For example, chemical sensors and biosensors are commonly used to analyze pH values, levels of electrolytes and blood-gas. Glucose sensors are a prominent example of highly successful commercial devices used for diabetes monitoring, where miniaturization has enhanced the development of implantable chips for continuous glucose level monitoring inside the human body.Fully integrated systems, including micro- and nanopumps for accurate insulin release, have also been shown. In general, such controlled drug delivery systems offer new opportunities for the treatment of common acute and chronic diseases. Moreover, microneedle arrays, which allow minimally invasive and painless delivery of drugs through the skin, neural electrodes for stimulation or monitoring signals inside the brain, or prosthetic devices such as artificial retinas, have also been developed.

Microfluidics plays a key role in the transport and manipulation of biological fluids in biotechnology devices. For example, laminar flow behavior can be overserved, which allows a well-defined control of liquids. Capillary forces can enable fluid flow without the need of active pumps. In addition, short distances reduce diffusion times of molecules, which lead to faster biological reactions. Overall, microfluidic devices offer a high degree of parallelization while using extremely-low-volume samples. Microfluidic devices that perform complete tasks or analysis, usually done in a laboratory, are referred to as lab-on-chip (LOC) devices. Other names include bio-chips or micro-Total-Analysis- Systems (μ-TAS). These systems are used in applications such as in-vitro diagnostics, high-throughput screening, genomics and drug discovery. LOC devices are also ideally suited for point-of-care testing (POCT), where they provide rapid diagnostics at the patient site.

Nanoimprint lithography

To successfully commercialize such products in a fast growing market with stringent requirements and high regulatory hurdles, precise and cost-effective micro- structuring technologies are essential. Nanoimprint lithography (NIL) has evolved from a niche technology to a powerful high-volume manufacturing method that is able to serve today’s needs and overcome the challenges of increasing complexity of microfluidic devices in particular, and biotechnology devices in general. NIL is a patterning technique capable of producing a multitude of different sizes and shapes on a large scale by imprinting either into a biocompatible resist or directly into the bulk material with resolutions down to 20 nm. NIL can be distinguished between three types of imprint technologies: hot-embossing or thermal NIL, UV-NIL, and micro- contact printing (μ-CP).

Hot-embossing is a cost-effective and relatively simple process, well suited for the fabrication of polymer microfluidic devices with very high replication accuracy of small features down to 50 nm (FIGURE 2). A polymer sheet or spin-on-polymer is heated above its glass transition temperature, transforming the material into a viscous state. A stamp containing the negative copy of the struc- tures is then pressed into the polymer with sufficient force to conformally mold the polymer. De-embossing is done after cooling the substrate below a certain temperature where the material retains its shape when removing the stamp. During hot-embossing, the structure is trans- ferred by displacement of the viscous material. The process is characterized by short flow paths of the material, moderate flow velocities and imprinting temperatures. Residual stress is therefore low, especially when comparing the process to injection molding, which is an alternative production technique for microfluidics.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

FIGURE 2: a) 200-μm wide microfluidic channels and b) 10- μm pillar arrays with high aspect ratios (7:1) fabricated by hot- embossing (Courtesy of National Research Council Canada). c) Schematic drawing of hot-embossing process flow.

Because of the much higher process temperatures and pressures associated with injection molding, final products produced by this process usually experience higher internal residual stress, which easily results in significant deformation, such as warpage and shrinkage. In addition, a surface solidifi- cation layer is formed at the interface of the cold mold during the injection of the high-temperature molten polymer. This effect significantly influences the replication accuracy and optical quality. Extensive effort in process development and simulation is therefore often necessary for injection molding to replicate small features in an accurate manner. In contrast, hot-embossing allows precise replication of micro- and nanostructures with less effort and is superior when replicating high-aspect ratio features or when using very-thin substrates. Structures with high-aspect ratios are often needed in microfluidic chips for filtration elements, particle separation or cell sorting.

The ability to use very thin substrates enables the patterning of spin-on-polymer layers on top of other materials or even roll-to-roll embossing using polymer foils for very-high-throughput production. Parallel wafer-based batch processing also enables fabrication of typical-sized microfluidic chips with throughputs compa- rable to or even higher than injection molding or similar techniques. Since master stamps for hot-embossing do not need to withstand the high temperatures and forces required for mold inserts for injection molding, they are less expensive to produce. Therefore, hot-embossing is also a well suited technology for R&D and allows easier design changes in volume-production. UV-NIL refers to a technique where a transparent stamp is pressed into a photo-curable resist and cross-linked by UV-light while still in contact (FIGURE 3). In biotechnology applications, the resist is usually coated onto silicon or glass substrates. Unlike hot-embossing, the UV-NIL stamp is brought in contact with the resist using minimum force to conformally join the stamp and substrate. The different mechanisms of curing and stamp attachment account for different advantages and fields of application of the respective technologies.

FIGURE 3: (a) 100-nm grating with residual layer <10 nm imprinted into 90 nm height resist on silicon substrate and (b) 350-nm photonic crystal fabricated by UV-NIL. c) Schematic drawing of UV-NIL process flow.

FIGURE 3: (a) 100-nm grating with residual layer

UV-NIL provides very-high-alignment accuracy, pattern fidelity, and throughput whereas hot-embossing is capable of imprinting higher aspect ratios and larger structures in the upper micron range as well as combinations of micro- and nanostructures. UV-NIL offers additional opportunities for biotechnology devices where features with ultra- high precision are needed. Examples include optical-based biosensors that often rely on noble metal nanostructures that influence properties of coupled light upon the binding of molecules onto the nanostructures.Regardless of what the sensing principle is based on (e.g. localized surface plasmon resonance or photonic band gaps), small changes in shape and size can significantly alter the properties of the sensing element.

In order to produce nanostructures made of metals, either additive or subtractive processes can be used. The former involves the deposition of a metal layer onto the patterned resist followed by a lift-off process, whereas the latter involves the transfer of the pattern into an underlying metal layer by etching processes. In both cases, the small residual layer must first be removed. Having a uniform residual layer is of high importance, especially for subse- quent etching processes, and can be easily achieved with current equipment over large areas. Imprinted UV-NIL resists can also be used directly as functional layers. After many years of continuous resist development, a broad portfolio of optimized resist materials is available for various bio-applications. Another interesting aspect, especially for microfluidic devices, is the potential of nanostructures to influence surface properties. For example, nanostructures can change the surface behavior from hydrophilic to hydrophobic, which can be used to locally influence the fluid flow.

While UV-NIL is ideally suited for fabricating very small features, it is not well suited for features larger than several tens of micrometers. In cases where both highly-accurate nanostructures and large microfluidic channels are needed, hot-embossing can be used to imprint the channels on a separate substrate. The two substrates can subsequently be bonded together to produce the final device.

A third NIL option is μ-CP, where a pre-inked stamp is used to transfer materials such as biomolecules onto a substrate in a distinct pattern (FIGURE 4). Local modification of surface chemistry can, for example, be used to guide the growth of neurons on a chip. On the other hand, it can be used for the precise placement of capture molecules in biosensor fabrication. This technique is applicable on all common surfaces, such as silicon, glass or polymers with micro- and nanometer resolution and offers new possibilities for functionalization of biotechnology devices.

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

FIGURE 4: Bio-functionalized, micro-patterned array
created by micro-contact printing for the detection of protein- protein interactions in live cells. a) Antibody-patterns induce the recruitment of two interacting proteins to micro-patterns, which is detected by fluorescence microscopy. b) Missing interaction of the two candidate proteins leads to homogenous distribution on the functionalized surface. c) Schematic drawing of micro-contact printing process flow. [Images adapted from Schwarzenbacher et al., 2008, Nature Methods; Weghuber et al., 2010, Methods in Enzymology].

Although most current microfluidic devices do not follow the same degree of miniaturization in terms of chip-size compared to the microelectronics industry, large-scale parallel processing has a significant advantage in terms of costs and flexibility (FIGURE 5). Alternative fabrication techniques for microfluidic chips, such as injection molding, are principally serial processes and have limita- tions in up-scaling.Using nanoimprinting,30chipsofthe size of a microscopy slide (25 x 75 mm) can easily fit on a single 300-mm substrate. This format can be considered a good reference for an average- sized microfluidic chip. In terms of throughput, wafer-based batch processing is able to reach similar or better cycle times per device compared to alternative solutions, such as injection molding. UV-NIL has even been introduced on GEN2 substrates (370 x 470 mm). In addition, roll- to-roll processing can reach even higher throughput levels but is restricted to the structuring of flexible foils.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

FIGURE 5: Large-area parallel processing offers significant advantages in terms of cost and flexibility. Additional processes, such as electrode fabrication or spotting of reagents, can also be efficiently integrated.

Wafer bonding

NIL has an additional advantage in terms of post- processing. Electrode fabrication, surface treatments or spotting of bio-reagents can be efficiently integrated in a large-area batch. The same is true for sealing and encapsulation, an essential process step for all biotechnology devices. It is usually mandatory to close micro-fluidic channels, to fabricate a hermetic sealing for protection against environmental influences or even to provide packaging that is compatible for implantation into human bodies. In addition, interconnections to the outer world have to be incorporated, such as holes or fluidic connectors. Electronic connections or assembling the device together with an integrated microelectronic chip is also often necessary. Thus, bonding of different device layers, capping layers or interconnection layers is a key process that can be implemented together with NIL in a cost-effective large-area batch process. NIL has an additional advantage of providing a high surface quality that can significantly improve subsequent bonding of polymer devices. Surface roughness, total-thickness variation as well as warpage are usually lower than in devices fabricated by injection molding. In the following section, several well-suited bonding processes for sealing biotechnology devices are discussed (FIGURE 6).

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

FIGURE 6: Typical bonding options for biotechnology devices that are well suited in combination with NIL processes.

A common requirement in biotechnology applications is optical transparency, at least from one side, since most devices rely on optical readouts. Glass is therefore often used as a capping layer for highly complex devices made of silicon. In such cases, anodic bonding can provide a high-quality hermetic seal, where bonding is achieved by high voltage and heat causing inter-diffusion of ions. Another process for joining glass or polymer devices is thermal bonding using high temperatures and pressures. Special attention has to be paid when using this technique for bonding polymer and, in particular, polymer micro-fluidic devices. Thermal bonding is performed by heating the substrate near or above the glass transition temper- ature, which softens the material. The additional pressure generates sufficient flow of polymer at the interface to achieve intimate contact and inter-diffusion of polymer chains. Pressure is removed after the substrate is cooled down to a specific value below the glass transition temperature. Un-optimized temperature and pressure can easily lead to deformation of microstructures. Plasma as well as UV and ozone treatment can be used to activate the polymer surface, which allows bonding at reduced temperatures and reduces the risk of deformation. Anodic and thermal bonding are interlayer-free processes and therefore do not introduce any additional material to the device.

Adhesive bonding is another process that found widespread use in sealing or encapsulating bio-technology devices. Many biocompatible adhesives are available today and high bond strength can be expected from this technique. Bonding with adhesives can be used to join many different materials. Often liquid adhesives are used, which can be cured thermally or by exposure to UV light. The latter offers a significant advantage that addresses another important issue in many pharmaceu- tical or diagnostic devices where bio-molecules have to be incorporated before sealing the device. UV-curing allows bonding at room-temperature whereas higher temperatures usually lead to denaturation or complete destruction of bio-molecules.

Adhesives usually have to be selectively deposited on the substrate, which can be achieved with μ-contact printing. Similar to bio-molecule printing, an adhesive can be trans- ferred onto the substrate according to the pattern of the stamp. In contrast, however, an adhesive can be spin coated onto a transfer plate, which is then brought into contact with the substrate. By releasing the transfer plate, the adhesive will remain on the heightened structures. This production process is an elegant solution for micro-fluidic devices where micro-channels stay free of adhesive without the need for alignment. With these methods the adhesive can be coated as a thin layer (typically on the order of several microns) with very good uniformity over large areas. Commercially available adhesive tapes offer another solution, which can be easily laminated onto the microfluidic chips either in the form of double-side-adhesive tapes or pressure-sensitive-tapes. By using this process, the tape covers the top of microfluidic channels and can alter chemical or physical parameters of the channels, which can then influence the fluidic behavior or biological function of the device. Due to the availability of a variety of different tapes, however, such influences can be addressed and eliminated in many applications.

Summary

Micro- and nanotechnology combined with biotechnology has the potential to revolutionize many areas of healthcare, agriculture and industrial manufacturing. The market for miniaturized bio-devices is rapidly growing with technologies becoming increasingly complex. For successful translation of these technologies into new products, the availability of fabrication tools is key. Today’s NIL equipment offers a well suited solution, where complexity in design does not necessarily add manufacturing cost. Together with sealing and bonding processes that are well aligned with these structuring techniques, limitations of current fabrication methods can be overcome to enable the production for next-generation biotechnology devices.

Further reading

T. Glinsner and G. Kreindl, “Nanoimprint Lithography,” in Lithography, M. Wang, Ed. InTech, 2010.
T. Glinsner, T. Veres, G. Kreindl, E. Roy, K. Morton, T. Wieser,
C. Thanner, D. Treiblmayr, R. Miller, and P. Lindner, “Fully automated hot embossing processes utilizing high resolution working stamps,” Microelectron. Eng., vol. 87, no. 5–8, pp. 1037–1040, May 2010.
G. Kreindl, T. Glinsner, and R. Miller, “Next-generation lithography: Making a good impression,” Nat. Photonics, vol. 4, no. 1, pp. 27–28, Jan. 2010.

It is the double helix, with its stable and flexible structure of genetic information, that made life on Earth possible in the first place. Now a team from the Technical University of Munich (TUM) has discovered a double helix structure in an inorganic material. The material comprising tin, iodine and phosphorus is a semiconductor with extraordinary optical and electronic properties, as well as extreme mechanical flexibility.

Flexible yet robust – this is one reason why nature codes genetic information in the form of a double helix. Scientists at TU Munich have now discovered an inorganic substance whose elements are arranged in the form of a double helix.

The substance called SnIP, comprising the elements tin (Sn), iodine (I) and phosphorus (P), is a semiconductor. However, unlike conventional inorganic semiconducting materials, it is highly flexible. The centimeter-long fibers can be arbitrarily bent without breaking.

“This property of SnIP is clearly attributable to the double helix,” says Daniela Pfister, who discovered the material and works as a researcher in the work group of Tom Nilges, Professor for Synthesis and Characterization of Innovative Materials at TU Munich. “SnIP can be easily produced on a gram scale and is, unlike gallium arsenide, which has similar electronic characteristics, far less toxic.”

Countless application possibilities

The semiconducting properties of SnIP promise a wide range of application opportunities, from energy conversion in solar cells and thermoelectric elements to photocatalysts, sensors and optoelectronic elements. By doping with other elements, the electronic characteristics of the new material can be adapted to a wide range of applications.

Due to the arrangement of atoms in the form of a double helix, the fibers, which are up to a centimeter in length can be easily split into thinner strands. The thinnest fibers to date comprise only five double helix strands and are only a few nanometers thick. That opens the door also to nanoelectronic applications.

“Especially the combination of interesting semiconductor properties and mechanical flexibility gives us great optimism regarding possible applications,” says Professor Nilges. “Compared to organic solar cells, we hope to achieve significantly higher stability from the inorganic materials. For example, SnIP remains stable up to around 500°C (930 °F).”

Just at the beginning

“Similar to carbon, where we have the three-dimensional (3D) diamond, the two dimensional graphene and the one dimensional nanotubes,” explains Professor Nilges, “we here have, alongside the 3D semiconducting material silicon and the 2D material phosphorene, for the first time a one dimensional material – with perspectives that are every bit as exciting as carbon nanotubes.”

Just as with carbon nanotubes and polymer-based printing inks, SnIP double helices can be suspended in solvents like toluene. In this way, thin layers can be produced easily and cost-effectively. “But we are only at the very beginning of the materials development stage,” says Daniela Pfister. “Every single process step still needs to be worked out.”

Since the double helix strands of SnIP come in left and right-handed variants, materials that comprise only one of the two should display special optical characteristics. This makes them highly interesting for optoelectronics applications. But, so far there is no technology available for separating the two variants.

Theoretical calculations by the researchers have shown that a whole range of further elements should form these kinds of inorganic double helices. Extensive patent protection is pending. The researchers are now working intensively on finding suitable production processes for further materials.

Interdisciplinary cooperation

An extensive interdisciplinary alliance is working on the characterization of the new material: Photoluminescence and conductivity measurements have been carried out at the Walter Schottky Institute of the TU Munich. Theoretical chemists from the University of Augsburg collaborated on the theoretical calculations. Researchers from the University of Kiel and the Max Planck Institute of Solid State Research in Stuttgart performed transmission electron microscope investigations. Mössbauer spectra and magnetic properties were measured at the University of Augsburg, while researchers of TU Cottbus contributed thermodynamics measurements.

Lomonosov MSU physicists found a way to “force” silicon nanoparticles to glow in response to radiation strongly enough to replace expensive semiconductors used in display business. According to Maxim Shcherbakov, researcher at the Department of Quantum Electronics of the Moscow State University and one of the authors of the study, the developed method considerably enhances the efficiency of nanoparticle photoluminescence.

The key term in the problem is photoluminescence — the process, when materials irradiated by visible or ultraviolet radiation start to respond with their own light, but in a different spectral range. In the study, the material glows red.

In some of the modern displays, semiconductor nanoparticles, or the so-called quantum dots, are used. In quantum dots, electrons behave completely unlike those in the bulk semiconductor, and it has long been known that quantum dots possess excellent luminescent properties. Today, for the purposes of quantum-dot based displays various semiconductors are used, i.e. CdSe, etc. These materials are toxic and expensive, and, therefore, researchers have long been scrutinizing the far cheaper and much more studied silicon. It is also suitable for such use in all respects except one — silicon nanoparticles vaguely respond to radiation, which is not appealing for optoelectronic industry.

Scientists all over the world were seeking to solve this problem since the beginning of the 1990’s, but until now no significant success has been achieved in this direction. The breakthrough idea about how to “tame” silicon originated in Sweden, at the Royal Institute of Technology, Kista. A post-doctoral researcher Sergey Dyakov (a graduate of the MSU Faculty of Physics and the first author of the paper) suggested placing an array of silicon nanoparticles in a matrix with a non-homogeneous dielectric medium and cover it with golden nanostripes.

‘The heterogeneity of the environment, as has been previously shown in other experiments, allows to increase the photoluminescence of silicon by several orders of magnitude due to the so-called quantum confinement,’ says Maxim Shcherbakov. ‘However, the efficiency of the light interaction with nanocrystals still remains insufficient. It has been proposed to enhance the efficiency by using plasmons (quasiparticle appearing from fluctuations of the electron gas in metals — ed). Plasmon lattice formed by golden nanostripes allow to “hold” light on the nanoscale, and allow a more effective interaction with nanoparticles located nearby, bringing its luminescence to an increase.’

The MSU experiments with samples of “gold-plated” matrix with silicon nanoparticles made in Sweden brilliantly confirmed the theoretical predictions – the UV irradiated silicon for the first time shone bright enough to be used it in practice.

The first author of the paper Sergey Dyakov will present the findings on The 10th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (September 17-22, Crete). The work was also published in the Physical Review B (“Optical properties of silicon nanocrystals covered by periodic array of gold nanowires”).