Yearly Archives: 2016

Cabot Microelectronics Corporation (Nasdaq: CCMP), a supplier of chemical mechanical planarization (CMP) polishing slurries and a growing CMP pad supplier to the semiconductor industry, announced the appointment of Thomas F. Kelly, Vice President, Corporate Development, which is effective as of September 6, 2016. Mr. Kelly rejoins Cabot Microelectronics after serving as the Director of Global Raw Materials Procurement for Celanese Corporation from 2012 through 2016, and prior to that as the Vice President of New Business Development and the Program Management Organization of Chemtura Corporation, where he was employed from 2008 until 2012. He was employed by Cabot Microelectronics from 1999 through 2008, serving in various senior business operations, product management, and supply chain assurance roles.

“I am delighted to welcome Tom Kelly back to Cabot Microelectronics, and am confident his executive expertise from various global companies in the larger engineered materials and chemicals industries will benefit our company greatly in a number of important areas,” said David H. Li, Cabot Microelectronics’ President and Chief Executive Officer. “Tom knows our business, industry, customers and supply chain well, along with having developed important experience in mergers and acquisitions, business development, and corporate strategy from his more recent roles in helping to lead multi-billion dollar global businesses.”

In addition to this, the Company announced that as of September 1, 2016, Daniel J. Pike has resigned from his position as Vice President, Corporate Development, and will continue to serve the Company in a non-executive transition role until March 1, 2017. Mr. Li stated, “I would like to thank Dan for his significant contribution to the founding and growth of Cabot Microelectronics during his many years of service. All of us wish him well in his future endeavors.”

Technavio analysts forecast the global radio frequency (RF) IC market to grow at a CAGR of nearly 12% during the forecast period, according to their latest report.

The research study covers the present scenario and growth prospects of the global RF IC market for 2016-2020. To calculate the market size, the report considers revenue generated from the shipment of RF ICs globally.

Asia-Pacific (APAC) is expected to be the major demand generating region and is expected to be the major contributor to the market during the forecast period. This is because of the growing demand for RF IC’s in the consumer electronics segment and increasing need for logic and multipoint control units (MCUs) in the automotive segment in the region. The presence of major buyers such as Samsung Electronics, LG Electronics, and Toyota Motor led to the increasing consumption of RF ICs in this region.

Increased demand for electronics from countries such as China and India drives the market in APAC. China’s massive demand for electronics exceeds the production levels in the country. Despite the phenomenal growth, only a small share of semiconductors’ demand in China is actually produced domestically.

Technavio hardware and semiconductor analysts highlight the following four factors that are contributing to the growth of the global RF IC market:

  • Deployment of next-generation LTE wireless networks
  • Advent of carrier aggregation
  • Use of new materials for manufacture of RF devices
  • Growing traction of RF technology for remotes

Deployment of next-generation LTE wireless networks

The increase in data consumption has resulted in the adoption of next-generation LTE networks such as 3G and 4G. The growing consumption has resulted in the growth of commercial networks, making LTE the fastest developing mobile technology. Though specific bands have been designated for LTE, they vary from carrier to carrier.

Sunil Kumar Singh, one of the lead embedded systems research analysts at Technavio, says, “LTE-based computing devices allow consumers to upload and download music and photographs, play games online with minimum signal interference, and watch online TV shows uninterrupted. This has created an opportunity for manufacturers of transceiver chips to offer solutions that address the consumer needs for faster and smoother access to mobile data.”

Advent of carrier aggregation

Carrier aggregation results in an increase in RF content in smartphones and tablets. Carrier aggregation combines a wide range of the available spectrum at the same time to increase download and upload speeds. Though carrier aggregation is not a widespread concept currently, it has already been implemented in South Korea.

“The RF signals are transmitted and received using transceiver chips, which are integrated into RF modules as a component. The advent of carrier aggregation will compel transceiver chip manufacturers to improve and upgrade their offerings according to the requirements of the OEMs,” adds Sunil.

Use of new materials for manufacture of RF devices

The manufacture of RF devices such as power amplifiers incurs huge costs for vendors because of the high cost of raw materials. This has resulted in vendors searching for new materials that can reduce the expenditure incurred in the manufacturing process of RF devices. The development of new materials such as GaAs and indium phosphide (InP) will ramp up the production of RF power amplifiers. GaAs-RF power amplifiers use high saturated electron velocity and electron mobility to function, especially at high frequencies.

The new materials display a superior level of integration with other electronic components such as switches being fabricated in silicon on sapphire or other silicon on insulator processes. While, SAW filters and duplexers are being fabricated with piezo-effective materials such as lithium tantalate and lithium niobate. Therefore, companies such as Murata and TriQuint are trying to use cost-effective and superior-performing materials to manufacture RF power amplifiers.

Growing traction of RF technology for remotes

RF remotes accounted for 13% of the global remote market in 2015 and are expected to witness increased adoption during the forecast period, accounting for a little more than 20% by 2020. One of the major factors contributing to it is the decrease in the development cost of RF technology-based products. Moreover, RF remotes are expected to gain traction in the market because of advantages compared with IR remotes. RF remotes have lower power consumption, longer range, and do not need line-of-sight to control the device.

The RF remotes segment will witness high demand considering the demand for advanced TVs such as 3D smart TVs and 4k UHD smart TVs. Consumers demand visually aesthetic TVs that deliver a unique experience in terms of picture quality, viewing angle, and internet connectivity. With such advanced features, remote manufacturers are also manufacturing advanced and sophisticated RF remotes. RF has benefits such as out-of-line and sight communication and control, two-way communication, incorporation of gesture recognition and voice controls, and enhanced bandwidth compared to IR.

The key vendors are:

  • Infineon Technologies
  • Qualcomm
  • Avago Technologies
  • Qorvo
  • Skywork Solutions
  • NXP Semiconductors
  • STMicroelectronics
  • Renesas Electronics

The researchers in Jonathan Claussen’s lab at Iowa State University (who like to call themselves nanoengineers) have been looking for ways to use graphene and its amazing properties in their sensors and other technologies.

Iowa State engineers are developing real-world, low-cost applications for graphene. CREDIT: Photos by Christopher Gannon/Iowa State University.

Iowa State engineers are developing real-world, low-cost applications for graphene. Credit: Photos by Christopher Gannon/Iowa State University.

Graphene is a wonder material: The carbon honeycomb is just an atom thick. It’s great at conducting electricity and heat; it’s strong and stable. But researchers have struggled to move beyond tiny lab samples for studying its material properties to larger pieces for real-world applications.

Recent projects that used inkjet printers to print multi-layer graphene circuits and electrodes had the engineers thinking about using it for flexible, wearable and low-cost electronics. For example, “Could we make graphene at scales large enough for glucose sensors?” asked Suprem Das, an Iowa State postdoctoral research associate in mechanical engineering and an associate of the U.S. Department of Energy’s Ames Laboratory.

But there were problems with the existing technology. Once printed, the graphene had to be treated to improve electrical conductivity and device performance. That usually meant high temperatures or chemicals – both could degrade flexible or disposable printing surfaces such as plastic films or even paper.

Das and Claussen came up with the idea of using lasers to treat the graphene. Claussen, an Iowa State assistant professor of mechanical engineering and an Ames Laboratory associate, worked with Gary Cheng, an associate professor at Purdue University’s School of Industrial Engineering, to develop and test the idea.

And it worked: They found treating inkjet-printed, multi-layer graphene electric circuits and electrodes with a pulsed-laser process improves electrical conductivity without damaging paper, polymers or other fragile printing surfaces.

“This creates a way to commercialize and scale-up the manufacturing of graphene,” Claussen said.

The findings are featured on the front cover of the journal Nanoscale‘s issue 35. Claussen and Cheng are lead authors and Das is first author. Additional Iowa State co-authors are Allison Cargill, John Hondred and Shaowei Ding, graduate students in mechanical engineering. Additional Purdue co-authors are Qiong Nian and Mojib Saei, graduate students in industrial engineering.

Two major grants are supporting the project and related research: a three-year grant from the National Institute of Food and Agriculture, U.S. Department of Agriculture, under award number 11901762 and a three-year grant from the Roy J. Carver Charitable Trust. Iowa State’s College of Engineering and department of mechanical engineering are also supporting the research.

The Iowa State Research Foundation Inc. has filed for a patent on the technology.

“The breakthrough of this project is transforming the inkjet-printed graphene into a conductive material capable of being used in new applications,” Claussen said.

Those applications could include sensors with biological applications, energy storage systems, electrical conducting components and even paper-based electronics.

To make all that possible, the engineers developed computer-controlled laser technology that selectively irradiates inkjet-printed graphene oxide. The treatment removes ink binders and reduces graphene oxide to graphene – physically stitching together millions of tiny graphene flakes. The process makes electrical conductivity more than a thousand times better.

“The laser works with a rapid pulse of high-energy photons that do not destroy the graphene or the substrate,” Das said. “They heat locally. They bombard locally. They process locally.”

That localized, laser processing also changes the shape and structure of the printed graphene from a flat surface to one with raised, 3-D nanostructures. The engineers say the 3-D structures are like tiny petals rising from the surface. The rough and ridged structure increases the electrochemical reactivity of the graphene, making it useful for chemical and biological sensors.

All of that, according to Claussen’s team of nanoengineers, could move graphene to commercial applications.

“This work paves the way for not only paper-based electronics with graphene circuits,” the researchers wrote in their paper, “it enables the creation of low-cost and disposable graphene-based electrochemical electrodes for myriad applications including sensors, biosensors, fuel cells and (medical) devices.”

Last March, the artificial intelligence (AI) program AlphaGo beat Korean Go champion LEE Se-Dol at the Asian board game.

“The game was quite tight, but AlphaGo used 1200 CPUs and 56,000 watts per hour, while Lee used only 20 watts. If a hardware that mimics the human brain structure is developed, we can operate artificial intelligence with less power,” points out Professor YU Woo Jong.

In the junctions (synapses) between neurons, signals are transmitted from one neuron to the next. TRAM is made by a stack of different layers: A semiconductor molybdenum disulfide (MoS2) layer with two electrodes (drain and source), an insulating hexagonal boron nitride (h-BN) layer and graphene layer. This two-terminal architecture simulates the two neurons that made up to the synaptic structure. When the difference in the voltage of the drain and the source is sufficiently high, electrons from the drain electrode tunnel through the insulating h-BN and reach the graphene layer. Memory is written when electrons are stored in the graphene layer, and it is erased by the introduction of positive charges in the graphene layer. CREDIT: IBS

In the junctions (synapses) between neurons, signals are transmitted from one neuron to the next. TRAM is made by a stack of different layers: A semiconductor molybdenum disulfide (MoS2) layer with two electrodes (drain and source), an insulating hexagonal boron nitride (h-BN) layer and graphene layer. This two-terminal architecture simulates the two neurons that made up to the synaptic structure. When the difference in the voltage of the drain and the source is sufficiently high, electrons from the drain electrode tunnel through the insulating h-BN and reach the graphene layer. Memory is written when electrons are stored in the graphene layer, and it is erased by the introduction of positive charges in the graphene layer. CREDIT: IBS

In collaboration with Sungkyunkwan University, researchers from the Center for Integrated Nanostructure Physics within the Institute for Basic Science (IBS), have devised a new memory device inspired by the neuron connections of the human brain. The research, published in Nature Communications, highlights the devise’s highly reliable performance, long retention time and endurance. Moreover, its stretchability and flexibility makes it a promising tool for the next-generation soft electronics attached to clothes or body.

The brain is able to learn and memorize thanks to a huge number of connections between neurons. The information you memorize is transmitted through synapses from one neuron to the next as an electro-chemical signal. Inspired by these connections, IBS scientists constructed a memory called two-terminal tunnelling random access memory (TRAM), where two electrodes, referred to as drain and source, resemble the two communicating neurons of the synapse. While mainstream mobile electronics, like digital cameras and mobile phones use the so-called three-terminal flash memory, the advantage of two-terminal memories like TRAM is that two-terminal memories do not need a thick and rigid oxide layer. “Flash memory is still more reliable and has better performance, but TRAM is more flexible and can be scalable,” explains Professor Yu.

TRAM is made up of a stack of one-atom-thick or a few atom-thick 2D crystal layers: One layer of the semiconductor molybdenum disulfide (MoS2) with two electrodes (drain and source), an insulating layer of hexagonal boron nitride (h-BN) and a graphene layer. In simple terms, memory is created (logical-0), read and erased (logical-1) by the flowing of charges through these layers. TRAM stores data by keeping electrons on its graphene layer. By applying different voltages between the electrodes, electrons flow from the drain to the graphene layer tunnelling through the insulating h-BN layer. The graphene layer becomes negatively charged and memory is written and stored and vice versa, when positive charges are introduced in the graphene layer, memory is erased.

IBS scientists carefully selected the thickness of the insulating h-BN layer as they found that a thickness of 7.5 nanometers allows the electrons to tunnel from the drain electrode to the graphene layer without leakages and without losing flexibility.

Flexibility and stretchability are indeed two key features of TRAM. When TRAM was fabricated on flexible plastic (PET) and stretachable silicone materials (PDMS), it could be strained up to 0.5% and 20%, respectively. In the future, TRAM can be useful to save data from flexible or wearable smartphones, eye cameras, smart surgical gloves, and body-attachable biomedical devices.

Last but not least, TRAM has better performance than other types of two-terminal memories known as phase-change random-access memory (PRAM) and resistive random-access memory (RRAM).

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced more than a dozen semiconductor industry icons, leaders, and founders will come together at the annual SIA Award Dinner on Thursday, Nov. 10 in San Jose to celebrate the 25th anniversary of the Robert N. Noyce Award, the industry’s highest honor. Former Noyce Award recipients who will attend the event include Dr. Craig Barrett, Dr. Morris ChangJohn DaaneFederico FagginTed Hoff, Dr. John E. Kelly IIIStanley MazorJim MorganJerry SandersGeorge ScaliseMike SplinterRay StataRich Templeton, and Pat Weber. The evening’s program will include a conversation with former Noyce recipients about the industry’s storied past and its tremendous promise for the future.

SIA previously announced Martin van den Brink, president and chief technology officer at ASML Holding and renowned pioneer in semiconductor manufacturing technology, will receive the 2016 Noyce Award. SIA presents the Noyce Award annually in recognition of a leader who has made outstanding contributions to the semiconductor industry in technology or public policy.

“Recipients of the Noyce Award represent the finest our industry has to offer, individuals who have shaped the trajectory of semiconductor technology and spurred groundbreaking innovations,” said John Neuffer, president and CEO, Semiconductor Industry Association. “This year we are privileged to present the 2016 Noyce Award to Martin van den Brink, a man whose career accomplishments have fundamentally transformed semiconductor manufacturing, and to do so with many former Noyce winners on hand. We look forward to this unique opportunity to celebrate the semiconductor industry alongside these legends in our industry and true trailblazers of modern technology.”

For information about the SIA Award Dinner, including tickets and sponsorship opportunities, please visit www.semiconductors.org.

“The sapphire industry is still plagued by overcapacity and rapid price declines,” asserts Yole Développement (Yole) in its latest report Sapphire Applications & Market 2016: LED & Consumer Electronics. Demand for LED is increasing but will not provide enough volumes to sustain the close to one hundred sapphire makers competing in the market. Yole estimates that up to 30 companies have stopped sapphire-related activities over the last 18 months. The most prominent were OCI, DK-Aztek, HQC, Shangcheng etc. Many more have frozen most of their capacity and China counts dozens of “zombie” companies only alive by political will.

sapphire market

This autumn is showing a new interest for sapphire and its numerous applications. Under this context, the “More than Moore” market research and strategy consulting company presents its latest report entitled Sapphire Applications & Market 2016: LED & Consumer Electronics report.
Moreover, in collaboration with CIOE, Yole also announces the Sapphire Forum, 2nd edition: 2nd International Forum on Sapphire Market & Technologies, taking place in Shenzhen, China, on Sept. 6 & 7. More information & Registration.

Is there still a future for sapphire display covers? How much can LED demand sustain the industry? Is China going to completely dominate this industry? Save the date and learn more about the sapphire industry with Yole’s analysts.

“Capacity increased again over the last 12 months, although the pace is abating, thanks to a reduction in the number of new projects and significant attrition,” explains Dr Eric Virey, Senior Market and Technology Analyst, LED & Sapphire at Yole. And he adds: “But continuous excess supply combined with the significant drop in LED wafer demand in Q3 and Q4-2015 led to an acceleration of ASP decrease over the last 12 months. Prices for cores and wafers have dropped 50 to 70% over the last 2 years. Four inch wafers have been hard hit and 2” cores now sell for no profits, as a fall-off of 4” and 6” manufacturing and for the sole purpose of absorbing fixed cost.”

The 2” core market is disappearing as the LED industry transitions to larger diameters and optical wafers are now a captive market. Suppliers need to find new applications for the parts of the boules that are left over after extracting 4” or 6” cores. For now, those are often sold by the kg at low prices for the manufacturing of small optical and mechanical parts.

With strong price pressure and an increasing fraction of the market being captive, revenue of sapphire companies have dropped 20% in 2015 despite a volume increase of 20% across all applications.

Unless strong signals emerge soon to indicate that the display cover opportunity could finally materialize in 2017, many more companies will disappear within the next 12-18 months. While this situation is critical for many players, on the longer term, the market will finally be weeded out of its weakest players. The survivors could emerge stronger and the overall industry healthier. “Despite a slight reshuffle in the ranking, the top 5 companies by revenue in 2015 remained the same as in 2014. But 2 newcomers from China, TDG and JeShine appeared in the top 20,” asserts Eric Virey from Yole.

On the way to industry maturity, new applications such as µLED displays could emerge. While they won’t represent an opportunity of the same scale as display covers, they could offer nice upsides to the companies that can capture them.

In Yole’s sapphire report, a detailed analysis of company revenues per region and product type as well as the update on capacity for crystal growth, finished and PSS wafers with all major changes and information on dozens of existing and emerging players have been detailed. More information is available on i-micronews.com, LED reports section.

Two scientists at the University of Central Florida have discovered how to get a solid material to act like a liquid without actually turning it into liquid, potentially opening a new world of possibilities for the electronic, optics and computing industries.

When chemistry graduate student Demetrius A. Vazquez-Molina took COF-5, a nano sponge-like, non-flammable manmade material and pressed it into pellets the size of a pinkie nail, he noticed something odd when he looked at its X-ray diffraction pattern. The material’s internal crystal structure arranged in a strange pattern. He took the lab results to his chemistry professor Fernando Uribe-Romo, who suggested he turn the pellets on their side and run the X-ray analysis again.

The result: The crystal structures within the material fell into precise patterns that allow for lithium ions to flow easily – like in a liquid.

The findings, published in the Journal of the American Chemical Society earlier this summer, are significant because a liquid is necessary for some electronics and other energy uses. But using current liquid materials sometimes is problematic.

For example, take lithium-ion batteries. They are among the best batteries on the market, charging everything from phones to hover boards. But they tend to be big and bulky because a liquid must be used within the battery to transfer lithium ions from one side of the battery to the other. This process stores and disperses energy. That reaction creates heat, which has resulted in cell phones exploding, hover boards bursting into flames, and even the grounding of some airplanes a few years ago that relied on lithium batteries for some of its functions.

But if a nontoxic solid could be used instead of a flammable liquid, industries could really change, Uribe-Romo said.

“We need to do a lot more testing, but this has a lot of promise,” he said. “If we could eliminate the need for liquid and use another material that was not flammable, would require less space and less packaging, that could really change things. That would mean less weight and potentially smaller batteries.”

Smaller, nontoxic and nonflammable materials could also mean smaller electronics and the ability to speed up the transfer of information via optics. And that could mean innovations to communication devices, computing power and even energy storage.

“This is really exciting for me,” said Vazquez-Molina who was a pre-med student before taking one of Uribe-Romo’s classes. “I liked chemistry, but until Professor Romo’s class I was getting bored. In his class I learned how to break all the (chemistry) rules. I really fell in love with chemistry then, because it is so intellectually stimulating.”

Uribe-Romo has his high school teacher in Mexico to thank for his passion for chemistry. After finishing his bachelor’s degree at Instituto Tecnológico y de Estudios Superiores de Monterrey in Mexico, Uribe-Romo earned a Ph.D. at the University of California at Los Angeles. He was a postdoctoral associate at Cornell University before joining UCF as an assistant professor in 2013.

The findings were pursued by a team lead by Uribe-Romo in collaboration with scientists at UCLA’s Department of Chemistry and Biochemistry. It’s a partnership the team is pursuing to see if COF-5 is indeed the material that could revolutionize battery and mobile device industries.

By Paul Trio, SEMI

Growing Demands, Constraints Continue

For many years, the ATE industry has been challenged with controlling the cost of both production and development test by implementing innovative approaches and employing clever strategies (e.g., multi-site test implementation, DFT, etc.) to make “ends” meet, so to speak.  This predicament has been a perpetual struggle, but the industry manages to soldier on. However, the demands for next-generation technology continues to introduce new challenges to the ATE realm. For example, shorter production ramp-up and higher yields result in the increasing demand for test data and information in real-time. Not only is there a need for more data quickly, but also for better test data quality. Adding to the complexity is that existing formats are typically slow/limited or even proprietary. As a result, the equipment manufacturers are burdened with supporting multiple proprietary data transport and communications systems.  This requires the use of valuable engineering resources to develop and maintain these multiple proprietary systems, whereas a single standard system would open up resources to develop new ATE features and products.

ATE Industry Alliance

These ATE industry problems are being addressed by CAST – Collaborative Alliance for Semiconductor Test – a SEMI Special Interest Group (SIG). SEMI SIGs provide a forum that fosters discussion and aligns stakeholders on industry-critical issues. CAST was formed in 2008 by semiconductor device makers and test industry suppliers to engage in and resolve common industry issues related to higher test equipment utilization, lower costs, and greater return on investment. In 2009, CAST became a SEMI Special Interest Group. Its charter includes fostering pre-competitive collaboration as well as developing and promoting standards that enable industry productivity improvements.

Figure 1 CAST Industry Stakeholders

Figure 1 CAST Industry Stakeholders

CAST members include a range of semiconductor industry leaders, ranging from automated test equipment (ATE) companies to integrated device manufacturers (IDMs) to fabless manufacturers to outsourced semiconductor assembly and test (OSAT) companies. Companies participating in CAST include: Advantest, ASE, Galaxy Semiconductor, GLOBALFOUNDRIES, Infineon, Maxim, Nvidia, Optimal+, PDF Solutions, Qualcomm, Roos Instruments, STMicroelectronics, Teradyne, Tesec, Texas Instruments, Xcerra.

CAST Structure

The CAST organization is primarily comprised of a steering committee and two working groups. The CAST Steering Committee meets quarterly to review progress on programs and identify new solutions needed by the industry. The Steering Committee is comprised of decision-makers and strategic thinkers of the participating companies mentioned above.

The current CAST working groups that are addressing data transport and control are the Rich Interactive Test Database (RITdb) WG and the Tester Event Messaging for Semiconductor (TEMS) WG.

Figure 2 SEMI CAST Working Group Focus Areas

Figure 2 SEMI CAST Working Group Focus Areas

Enabling Adaptive Test through Next Generation Standard Test Data Format

While Standard Test Data Format (STDF) is widely used in the semiconductor industry today, its current specification does not directly support the new use models in today’s test environment, such as real time or pseudo real time queries, adaptive test and streaming access. The STDF V4 record format is not extendible and the specification itself can be imprecise, such that it tends to result in many interpretations. These limitations become apparent when there is a need for more efficient and flexible format to manage “big test data.”

The RITdb group has been working on the next generation format following STDF with more flexibility in data types as well as allowing support for adaptive test. The WG aims to provide a standards-driven data environment for semiconductor test including simple standards-based data capture, transport and relationship model for eTest, probe, and final test data. Their work also aims to support equipment configuration management and operational performance data. RITdb is a SQLite database with one table, independent from an operating system. Key value store optimized for test data.

Figure 3 STDF to RITdb: PTR

Figure 3 STDF to RITdb: PTR

To date, the group has defined the mapping from STDF v4 to RITdb. A translator developed by the RITdb is also available. The overall schema has already been defined and many file translations have already been tested. Work by the RITdb group will ultimately be developed into SEMI Standards. Therefore, the group has been working on the (SEMI Standard) spec which will be in MS Word, while the database itself will be in a different format. There will be a spec editor that will help ensure the spec is used correctly. The group also plans to expand the spec beyond probe and final test. Meanwhile, the group is working on experiments related to streaming RITdb as well as work on using different extensions (e.g., tester log, streaming). Additional work will be needed on probe maps as well as on doing test cases (i.e., be able to run verifiers to validate the spec).

Improving Test Yield through Common ATE Data Communication Interface

Semiconductor test operations involved in ATE today continues to see a surging demand for data for real-time data analysis and real-time ATE input and control of the test flow to improve test yield, throughput, efficiency, and product quality.  At the same time, test equipment and test operations around the world utilize a diverse range of data formats, specifications, and interface requirements that create significant customer service and application engineering costs for ATE vendors, OSAT companies, IDM test operations, software providers, and handler equipment. A common ATE hardware and software communications interface would help reduce the cost, time and complexity of integrating ATE equipment into data-intensive test operations.

The TEMS WG was chartered to develop a standardized ATE data messaging system based on industry standard internet communication protocols between a Test Cell host and a server.  The standard will be limited to ATE data messaging, using RITdb entity types, where applicable, as well as the standard data format, and control requirements. It will have no impact on other test communication interfaces such as those involving handlers, probers, test instrumentation, and other systems covered by existing standards (e.g., SEMI E30E4E5STDF, etc.).

The group will essentially develop a set of standards to define a vendor neutral way to collect test cell data. The primary spec defines the Model while a subordinate spec defines the Transport layer to maintain consistency with prior standards.

Figure 4 TEMS Focus Area

Figure 4 TEMS Focus Area

Similar to the RITdb activity, the TEMS group plans to transition its two working documents to the SEMI Standards space. As the group continues to fine-tune these documents while maintaining alignment with the RITdb WG, the preliminary SEMI Standards work (e.g., authorize formation of corresponding task force) is expected to occur by the end of the year.

Other ATE Challenges Looming

System Level Test (SLT) is an approach used to guarantee the performance of a product for a particular customer application. However, the term “System Level Test” (SLT) is frequently applied to both the testing of full systems as well as to the testing of chips to ensure their ultimate performance in target systems. This often leads to confusion.

For its 2016 workshop to be held in early November, CAST will address the topic of “Component SLT”, which is the set of application-specific functional tests that are performed prior to I.C. shipment to guarantee a chip’s quality and performance when it will be ultimately used in the final system.  It may also encompass incoming inspection of I.C. components by customers prior to assembly into systems.  Currently, component SLT tends to be implemented primarily on complex SoC devices using custom hardware and software.

Component SLT considerations:

  • Normally component SLT would be applied using a card or board based on the target system’s functional card or board — but with a socket where the IC component is temporarily placed while SLT tests are applied.
  • Component SLT is used by some chip vendors as an IC component test after conventional Final Test on ATE.
  • Potentially, component SLT could also be applied using a custom card within the ATE system that mimics system application tests.
  • Any level of standardization will ease the capital burden and operational flexibility at OSATs.
  • It will be a key requirement to be able to generate data from component SLT that can be shared backwards and forwards along the semiconductor supply chain for yield optimization and quality/reliability management.

Those looking to share their perspectives on component SLT and their vision for its future direction are invited to present at the CAST workshop. The community is particularly interested in opportunities to improve the Component SLT ​infrastructure or methods — that is, identify potential opportunities for CAST to drive improvements through pre-competitive collaboration.

Participating in SEMI CAST Special Interest Group

The SEMI CAST Special Interest Group is open to all SEMI Members. For more information or to join CAST, please contact Paul Trio at SEMI ([email protected]).

SEMI announced today that the deadline for presenters to submit an abstract for the annual SEMI Advanced Semiconductor Manufacturing Conference (ASMC) is October 17.  ASMC, which takes place May 15-18, 2017 in Saratoga Springs, New York, will feature technical presentations of more than 90+ peer-reviewed manuscripts covering critical process technologies and fab productivity. This year’s event features keynotes, a panel discussion, networking events, technical sessions on advanced semiconductor manufacturing, as well as educational tutorials.

ASMC, in its 28th year, continues to fill a critical need in our industry and provides a venue for industry professionals to network, learn and share knowledge on new and best-method semiconductor manufacturing practices and concepts.  Selected speakers have the opportunity to present in front of IC manufacturers, equipment manufacturers, materials suppliers, chief technology officers, operations managers, process engineers, product managers and academia. In addition to publication in the ASMC proceedings, select papers will be invited to participate in a special section of ASMC 2017 to be featured in IEEE Transactions on Semiconductor ManufacturingTechnical abstracts are due October 17, 2016. 

This year SEMI (www.semi.org) is including two new technology areas (3D/TSV/Interposer; Fabless Experience). SEMI is soliciting technical abstracts in these key technology areas:

  • Packaging and Through Silicon Via (3D/TSV)
  • Fabless Experience (FE)
  • Advanced Equipment Processes and Materials (AEPM)
  • Advanced Metrology
  • Advanced Patterning / Design for Manufacturability (AP/DFM)
  • Advanced Process Control (APC)
  • Contamination Free Manufacturing (CFM)
  • Defect Inspection and Reduction (DI)
  • Data Management and Data Mining Tools (DM)
  • Discrete Power Devices (DP)
  • Equipment Reliability and Productivity Enhancements (ER)
  • Enabling Technologies and Innovative Devices (ET/ID)
  • Factory Automation (FA)
  • Green Factory (GF)
  • Industrial Engineering (IE)
  • Lean Manufacturing (LM)
  • MOL and Junction Interfaces (MJ)
  • Smart Manufacturing (SM)
  • Yield Methodologies (YM)

Complete descriptions of each topic and author kit can be accessed at http://www.semi.org/en/node/38316.  If you would like to learn more about the conference and the selection process, please contact Margaret Kindling at [email protected] or call 1.202.393.5552.

Papers co-authored between device manufacturers, equipment or materials suppliers, and/or academic institutions that demonstrate innovative, practical solutions for advancing semiconductor manufacturing are highly encouraged.  To submit an abstract, click here.

Technical abstracts are due October 17, 2016.  To learn more about the SEMI Advanced Semiconductor Manufacturing Conference, visit http://www.semi.org/en/asmc2017.

AirProducts_logo_pms347

Date: September 14, 2016 at 1 p.m. ET

Free to attend

Length: Approximately one hour

NEW register_button

For a semiconductor technology node, the BEOL definition must support minimal parasitic impact to technology, sufficient reliability, required dimensional scaling from previous nodes for standard cell and custom logic requirements, and high yielding/low cost integration schemes. This webcast will discuss the key BEOL elements and innovations in these areas for the 7nm nodes and beyond. The individual elements are often in conflict with each other, but must be considered in unison to determine the overall best definition.

Speaker:

Larry ClevengerLarry Clevenger, Ph.D., Senior Technical Staff Member , 5nm, 7nm, 10nm and 14nm BEOL Architect, IBM Research

Dr. Larry Clevenger is an internationally recognized leader in semiconductor technology – taking new products from innovation to definition to early production. Since 2000 he has defined new semiconductor technologies for IBM as a chip hardware lead architect. His area of excellence is optimizing the on-chip interconnect from silicon devices to semiconductor packaging substrates for performance, yield, and cost. He is a member of the IBM Academy of Technology and he is a life time IBM Master Inventor, with over 230 issued patents. Dr. Clevenger received a B.S. in Material Engineering from UCLA and a Ph.D. in Electronic Materials from MIT.

Sponsored by Air Products

Air Products has been a leading global supplier of high-purity gases, chemicals, and delivery systems to the electronics industry for over 40 years. We serve all major segments of the industry with a unique combination of offerings, experience, and commitment.  We’re advancing materials science. We’re advancing semiconductors. We’re advancing mobility. What can we help you advance?  www.airproducts.com/advancing