Yearly Archives: 2016

TouchSystems, a provider of professional-grade touch display and digital signage solutions, announced today the latest generation of its P-Series large format touch displays. The 46-inch P4630P-3 touch display is designed for 24/7 operation and features 10-point multi-touch projected capacitive (PCAP) touch technology, OPS compatibility, built-in thermal management, speakers and more in a bezel-free chassis.

The new P4630P-3 features NECs energy efficient LED edge-lighting technology and programmable run time increasing efficiency. The zero-bezel integrated PCAP sensor provides fast touch response without adding bulk. Paired with an optional OPS device, customers will benefit from reduced installation costs and reduced cost of ownership in an aesthetically pleasing complete solution.

The P4630P-3 is ideal for high-traffic areas such as public use terminals, retail outlets, hospitality, kiosks, and healthcare facilities. The display features internal temperature sensors with self-diagnostics and fan-based technology for increased protection against overheating to maximize the lifetime of the investment.

Adding to the display performance, the P4630P-3 features integrated Open Pluggable Specification (OPS) compatibility for best-in-class connectivity. Customers can easily install the media player of their choice without the need for additional brackets, cable management, or related hardware, further reducing implementation costs and providing for cleaner installation.

“This is the ideal product for wide variety of interactive applications,” Said Carol Nordin, President of TouchSystems. “Designed for versatility and ease of integration, featuring durable bezel free PCAP touch technology, 24/7 operation, energy efficient LED backlighting, multiple mounting options and so much more.”

To bolster the high-performance of the P4630P-3 multi-touch display features a 3-year parts and labor warranty that includes the backlight.

STMicroelectronics (NYSE:STM) has been named the MEMS Manufacturer of the Year at the MEMS World Summit, the MEMS Manufacturing Conference gathering the top executives in the Worldwide MEMS Manufacturing Industry. The event took place in Shanghai on July 25-26, 2016.

The prestigious recognition from the advisory board members of the MEMS World Summit, which consists of leading research institutes, leading Equipment Manufacturers and MEMS Manufacturers, underlines ST’s position as an industry leader with 11 billion MEMS sensors shipped to date and the only company with the expertise to cover the full range of micro-machined silicon devices that include both sensors and micro-actuators. In naming ST, the jury highlighted the significant role of ST’s high-efficiency 6-axis MEMS sensor modules in driving the transformation of smartphones into intelligent personal assistants as one of the key winning factors. Other high-score criteria for ST included product development, revenue, and company culture.

“ST has always been a leader in MEMS and we want to recognize their continued presence at the top. The evaluating criteria for selecting this year’s winner were also based on factors such as revenue, product development, company culture, and company awareness,” said Salah Nasri, Advisory Board Chair of MEMS World Summit.

“The performance of 6-axis MEMS sensor modules, which have become a key building block of today’s consumer and IoT devices, has enabled new features in smartphones and more broadly new user experiences,” said Andrea Onetti, Group VP and General Manager, MEMS Sensors Division, STMicroelectronics. “ST is honored to receive this award as we strive to bring continuous innovation to the development and deployment of MEMS technologies for a variety of fields, including industrial and automotive.”

Andrea Onetti collected the Award on behalf of ST at the MEMS World Summit’s Gala Dinner.

It is now feasible to make a prized material for spintronic devices and semiconductors — monolayer graphene nanoribbons with zigzag edges.

Miniscule ribbons of graphene are highly sought-after building blocks for semiconductor devices because of their predicted electronic properties. But making these nanostructures has remained a challenge. Now, a team of researchers from China and Japan have devised a new method to make the structures in the lab. Their findings appear in the current issue of Applied Physics Letters, from AIP Publishing.

“Many studies have predicted the properties of graphene nanoribbons with zigzag edges,” said Guangyu Zhang, senior author on the study. “But in experiments it’s very hard to actually make this material.”

Previously, researchers have tried to make graphene nanoribbons by placing sheets of graphene over a layer of silica and using atomic hydrogen to etch strips with zigzag edges, a process known as anisotropic etching. These edges are crucial to modulate the nanoribbon’s properties.

But this method only worked well to make ribbons that had two or more graphene layers. Irregularities in silica created by electronic peaks and valleys roughen its surface, so creating precise zigzag edges on graphene monolayers was a challenge. Zhang and his colleagues from the Chinese Academy of Sciences, Beijing Key Laboratory for Nanomaterials and Nanodevices, and the Collaborative Innovation Center of Quantum Matter teamed up with Japanese collaborators from the National Institute for Materials Science to solve the problem.

They replaced the underlying silica with boron nitride, a crystalline material that’s chemically sluggish and has a smooth surface devoid of electronic bumps and pits. By using this substrate and the anisotropic etching technique, the group successfully made graphene nanoribbons that were only one-layer thick, and had well-defined zigzag edges.

“This is the first time we have ever seen that graphene on a boron nitride surface can be fabricated in such a controllable way,” Zhang explained.

The zigzag-edged nanoribbons showed high electron mobility in the range of 2000 cm2/Vs even at widths of less than 10nm — the highest value ever reported for these structures — and created clean, narrow energy band gaps, which makes them promising materials for spintronic and nano-electronic devices.

“When you decrease the width of the nanoribbons, the mobility decreases drastically because of edge defects,” said Zhang. “Using standard lithography fabrication techniques, studies have seen mobility of 100 cm2/Vs or even lower, but our material still exceeds 2000 cm2/Vs even at the sub-10 nanometer scale, demonstrating that these nanoribbons are of very high quality.”

In future studies, extending this method to other kinds of substrates could enable the quick large scale processing of monolayers of graphene to make high-quality nanoribbons with zigzag edges.

Analog Devices, Inc. (NASDAQ: ADI) and Linear Technology Corporation (NASDAQ: LLTC) this week announced that they have entered into a definitive agreement under which Analog Devices will acquire Linear Technology in a cash and stock transaction that values the combined enterprise at approximately $30 billion.

Under the terms of the agreement, Linear Technology shareholders will receive $46.00 per share in cash and 0.2321 of a share of Analog Devices common stock for each share of Linear Technology common stock they hold at the closing of the transaction. The transaction values Linear Technology at approximately $60.00 per share, representing an equity value for Linear Technology of approximately $14.8 billion.

“The combination of Analog Devices and Linear Technology brings together two of the strongest business and technology franchises in the semiconductor industry,” said Vincent Roche, President and Chief Executive Officer of Analog Devices. “Our shared focus on engineering excellence and our highly complementary portfolios of industry-leading products will enable us to solve our customers’ biggest and most complex challenges at the intersection of the physical and digital worlds. We are creating an unparalleled innovation and support partner for our industrial, automotive, and communications infrastructure customers, and I am very excited about what this acquisition means for our customers, our employees, and our industry. ”

Bob Swanson, Executive Chairman and Co-founder of Linear Technology, added, “For 35 years, Linear Technology has had great success by growing its business organically. However, this combination of Linear Technology and Analog Devices has the potential to create a combination where one plus one truly exceeds two. As a result, the Linear Technology Board concluded that this is a compelling transaction that delivers substantial value to our shareholders, and the opportunity for additional upside through stock in the combined company. Analog Devices is a highly respected company. By combining our complementary areas of technology strength, we have an excellent opportunity to reinforce our leadership across the analog and power semiconductor markets, enhancing shareholder value.

Together, Linear Technology and Analog Devices will advance the technology and deliver innovative analog solutions to our customers worldwide. We are committed to working with the ADI team to ensure a smooth transition.”

Mr. Roche concluded, “We have tremendous respect and admiration for the franchise created by Linear Technology. I have no doubt that the combination of our two companies will create a trusted leader in our industry, capable of generating tremendous value for all of our stakeholders.”

Following the transaction close, Mr. Roche, President and CEO of Analog Devices will continue to serve as President and CEO of the combined company, and David Zinsner, SVP and CFO of Analog Devices, will continue to serve as SVP and CFO of the combined company. Analog Devices and Linear Technology anticipate a combined company leadership team with strong representation from both companies across all functions.

The Linear Technology brand will continue to serve as the brand for Analog Devices’ power management offerings. The combined company will use the name Analog Devices, Inc. and continue to trade on the NASDAQ under the symbol ADI.

Analog Devices intends to fund the transaction with approximately 58 million new shares of Analog Devices common stock, approximately $7.3 billion of new long-term debt, and the remainder from the combined company’s balance sheet cash. The new long-term debt is supported by a fully underwritten bridge loan commitment and is expected to consist of term loans and bonds, with emphasis on pre- payable debt, to facilitate rapid deleveraging.

This transaction has been unanimously approved by the boards of directors of both companies. Closing of the transaction is expected by the end of the first half of calendar year 2017, and is subject to regulatory approvals in various jurisdictions, the approval of Linear Technology’s shareholders, and other customary closing conditions.

Researchers from Moscow Institute of Physics and Technology (MIPT), Skolkovo Institute of Science and Technology (Skoltech), the Technological Institute for Superhard and Novel Carbon Materials (TISNCM), the National University of Science and Technology MISiS (Russia), and Rice University (USA) used computer simulations to find how thin a slab of salt has to be in order for it to break up into graphene-like layers. Based on the computer simulation, they derived the equation for the number of layers in a crystal that will produce ultrathin films with applications in nanoelectronics. Their findings were in The Journal of Physical Chemistry Letters (which has an impact factor of 8.54).

Transition from a cubic arrangement into several hexagonal layers. Credit: Authors of the study

Transition from a cubic arrangement into several hexagonal layers. Credit:
Authors of the study

From 3D to 2D

Unique monoatomic thickness of graphene makes it an attractive and useful material. Its crystal lattice resembles a honeycombs, as the bonds between the constituent atoms form regular hexagons. Graphene is a single layer of a three-dimensional graphite crystal and its properties (as well as properties of any 2D crystal) are radically different from its 3D counterpart. Since the discovery of graphene, a large amount of research has been directed at new two-dimensional materials with intriguing properties. Ultrathin films have unusual properties that might be useful for applications such as nano- and microelectronics.

Previous theoretical studies suggested that films with a cubic structure and ionic bonding could spontaneously convert to a layered hexagonal graphitic structure in what is known as graphitisation. For some substances, this conversion has been experimentally observed. It was predicted that rock salt NaCl can be one of the compounds with graphitisation tendencies. Graphitisation of cubic compounds could produce new and promising structures for applications in nanoelectronics. However, no theory has been developed that would account for this process in the case of an arbitrary cubic compound and make predictions about its conversion into graphene-like salt layers.

For graphitisation to occur, the crystal layers need to be reduced along the main diagonal of the cubic structure. This will result in one crystal surface being made of sodium ions Na? and the other of chloride ions Cl?. It is important to note that positive and negative ions (i.e. Na? and Cl?)–and not neutral atoms–occupy the lattice points of the structure. This generates charges of opposite signs on the two surfaces. As long as the surfaces are remote from each other, all charges cancel out, and the salt slab shows a preference for a cubic structure. However, if the film is made sufficiently thin, this gives rise to a large dipole moment due to the opposite charges of the two crystal surfaces. The structure seeks to get rid of the dipole moment, which increases the energy of the system. To make the surfaces charge-neutral, the crystal undergoes a rearrangement of atoms.

Experiment vs model

To study how graphitisation tendencies vary depending on the compound, the researchers examined 16 binary compounds with the general formula AB, where A stands for one of the four alkali metals lithium Li, sodium Na, potassium K, and rubidium Rb. These are highly reactive elements found in Group 1 of the periodic table. The B in the formula stands for any of the four halogens fluorine F, chlorine Cl, bromine Br, and iodine I. These elements are in Group 17 of the periodic table and readily react with alkali metals.

All compounds in this study come in a number of different structures, also known as crystal lattices or phases. If atmospheric pressure is increased to 300,000 times its normal value, an another phase (B2) of NaCl (represented by the yellow portion of the diagram) becomes more stable, effecting a change in the crystal lattice. To test their choice of methods and parameters, the researchers simulated two crystal lattices and calculated the pressure that corresponds to the phase transition between them. Their predictions agree with experimental data.

Just how thin should it be?

The compounds within the scope of this study can all have a hexagonal, “graphitic”, G phase (the red in the diagram) that is unstable in 3D bulk but becomes the most stable structure for ultrathin (2D or quasi-2D) films. The researchers identified the relationship between the surface energy of a film and the number of layers in it for both cubic and hexagonal structures. They graphed this relationship by plotting two lines with different slopes for each of the compounds studied. Each pair of lines associated with one compound has a common point that corresponds to the critical slab thickness that makes conversion from a cubic to a hexagonal structure energetically favourable. For example, the critical number of layers was found to be close to 11 for all sodium salts and between 19 and 27 for lithium salts.

Based on this data, the researchers established a relationship between the critical number of layers and two parameters that determine the strength of the ionic bonds in various compounds. The first parameter indicates the size of an ion of a given metal–its ionic radius. The second parameter is called electronegativity and is a measure of the ? atom’s ability to attract the electrons of element B. Higher electronegativity means more powerful attraction of electrons by the atom, a more pronounced ionic nature of the bond, a larger surface dipole, and a lower critical slab thickness.

And there’s more

Pavel Sorokin, Dr. habil., is head of the Laboratory of New Materials Simulation at TISNCM. He explains the importance of the study, ‘This work has already attracted our colleagues from Israel and Japan. If they confirm our findings experimentally, this phenomenon [of graphitisation] will provide a viable route to the synthesis of ultrathin films with potential applications in nanoelectronics.’

The scientists intend to broaden the scope of their studies by examining other compounds. They believe that ultrathin films of different composition might also undergo spontaneous graphitisation, yielding new layered structures with properties that are even more intriguing.

Like a whirlpool, a new light-based communication tool carries data in a swift, circular motion.

Described in a study published today (July 28, 2016) by the journal Science, the optics advancement could become a central component of next generation computers designed to handle society’s growing demand for information sharing.

It may also be a salve to those fretting over the predicted end of Moore’s Law, the idea that researchers will find new ways to continue making computers smaller, faster and cheaper.

“To transfer more data while using less energy, we need to rethink what’s inside these machines,” says Liang Feng, PhD, assistant professor in the Department of Electrical Engineering at the University at Buffalo’s School of Engineering and Applied Sciences, and the study’s co-lead author.

The other co-lead author is Natalia M. Litchinitser, PhD, professor of electrical engineering at UB.

Additional authors are: Pei Miao and Zhifeng Zhang, PhD candidates at UB; Jingbo Sun, PhD, assistant research professor of electrical engineering at UB; Wiktor Walasik, PhD, postdoctoral researcher at UB; and Stefano Longhi, PhD, professor at the Polytechnic University of Milan in Italy, and UB graduate students.

For decades, researchers have been able to cram evermore components onto silicon-based computer chips. Their success explains why today’s smartphones have more computing power than the world’s most powerful computers of the 1980s, which cost millions in today’s dollars and were the size of a large file cabinet.

But researchers are running into a bottleneck in which existing technology may no longer meet society’s demand for data. Predictions vary, but many suggest this could happen within the next five years.

Researchers are addressing the matter in numerous ways including optical communications, which uses light to carry information. Examples of optical communications vary from old lighthouses to modern fiber optic cables used to watch television and browse the internet.

Lasers are a central part of today’s optical communication systems. Researchers have been manipulating lasers in various ways, most commonly by funneling different signals into one path, to carry more information. But these techniques — specifically, wavelength-division multiplexing and time-division multiplexing — are also reaching their limits.

The UB-led research team is pushing laser technology forward using another light manipulation technique called orbital angular momentum, which distributes the laser in a corkscrew pattern with a vortex at the center.

Usually too large to work on today’s computers, the UB-led team was able to shrink the vortex laser to the point where it is compatible with computer chips. Because the laser beam travels in a corkscrew pattern, encoding information into different vortex twists, it’s able to carry 10 times or more the amount of information than that of conventional lasers, which move linearly.

The vortex laser is one component of many, such as advanced transmitters and receivers, which will ultimately be needed to continue building more powerful computers and datacenters.

Researchers at the University of Illinois at Urbana Champaign have developed a new method for making brighter and more efficient green light-emitting diodes (LEDs). Using an industry-standard semiconductor growth technique, they have created gallium nitride (GaN) cubic crystals grown on a silicon substrate that are capable of producing powerful green light for advanced solid-state lighting.

A new method of cubic phase synthesis: Hexagonal-to-cubic phase transformation. The scale bars represent 100 nm in all images. (a) Cross sectional and (b) Top-view SEM images of cubic GaN grown on U-grooved Si(100). (c) Cross sectional and (d) Top-view EBSD images of cubic GaN grown on U-grooved Si(100), showing cubic GaN in blue, and hexagonal GaN in red. Credit: University of Illinois

A new method of cubic phase synthesis: Hexagonal-to-cubic phase transformation. The scale bars represent 100 nm in all images. (a) Cross sectional and (b) Top-view SEM images of cubic GaN grown on U-grooved Si(100). (c) Cross sectional and (d) Top-view EBSD images of cubic GaN grown on U-grooved Si(100), showing cubic GaN in blue, and hexagonal GaN in red. Credit: University of Illinois

“This work is very revolutionary as it paves the way for novel green wavelength emitters that can target advanced solid-state lighting on a scalable CMOS-silicon platform by exploiting the new material, cubic gallium nitride,” said Can Bayram, an assistant professor of electrical and computer engineering at Illinois who first began investigating this material while at IBM T.J. Watson Research Center several years ago.

“The union of solid-state lighting with sensing (e.g. detection) and networking (e.g. communication) to enable smart (i.e. responsive and adaptive) visible lighting, is further poised to revolutionize how we utilize light. And CMOS-compatible LEDs can facilitate fast, efficient, low-power, and multi-functional technology solutions with less of a footprint and at an ever more affordable device price point for these applications.”

Typically, GaN forms in one of two crystal structures: hexagonal or cubic. Hexagonal GaN is thermodynamically stable and is by far the more conventional form of the semiconductor. However, hexagonal GaN is prone to a phenomenon known as polarization, where an internal electric field separates the negatively charged electrons and positively charged holes, preventing them from combining, which, in turn, diminishes the light output efficiency.

Until now, the only way researchers were able to make cubic GaN was to use molecular beam epitaxy, a very expensive and slow crystal growth method when compared to the widely used metal-organic chemical vapor deposition (MOCVD) method that Bayram used.

Bayram and his graduate student Richard Liu made the cubic GaN by using lithography and isotropic etching to create a U-shaped groove on Si (100). This non-conducting layer essentially served as a boundary that shapes the hexagonal material into cubic form.

“Our cubic GaN does not have an internal electric field that separates the charge carriers–the holes and electrons,” explained Liu. “So, they can overlap and when that happens, the electrons and holes combine faster to produce light.”

Ultimately, Bayram and Liu believe their cubic GaN method may lead to LEDs free from the “droop” phenomenon that has plagued the LED industry for years. For green, blue, or ultra-violet LEDs, their light-emission efficiency declines as more current is injected, which is characterized as “droop.”

“Our work suggests polarization plays an important role in the droop, pushing the electrons and holes away from each other, particularly under low-injection current densities,” said Liu, who was the first author of the paper, “”Maximizing Cubic Phase Gallium Nitride Surface Coverage on Nano-patterned Silicon (100)”, appearing Applied Physics Letters.

Having better performing green LEDs will open up new avenues for LEDs in general solid-state lighting. For example, these LEDs will provide energy savings by generating white light through a color mixing approach. Other advanced applications include ultra-parallel LED connectivity through phosphor-free green LEDs, underwater communications, and biotechnology such as optogenetics and migraine treatment.

Enhanced green LEDs aren’t the only application for Bayram’s cubic GaN, which could someday replace silicon to make power electronic devices found in laptop power adapters and electronic substations, and it could replace mercury lamps to make ultra-violet LEDs that disinfect water.

STMicroelectronics (NYSE:STM) today announced that it has acquired ams’ (SIX: AMS) assets related to NFC1 and RFID2 reader business. ST has acquired intellectual property, technologies, products and business highly complementary to its secure microcontroller solutions serving mobile devices, wearables, banking, identification, industrial, automotive and IoT markets. Approximately 50 technical experts from ams have been transferred to ST.

The acquired assets, combined with ST’s secure microcontrollers, position ST for a significant growth opportunity, with a complete portfolio of technologies, products and competencies that comprehensively address the full range of the NFC and RFID markets for a wide customer base.

“Security and NFC connectivity are key prerequisites for the broad rollout of mobile and IoT devices anticipated in the coming years. This acquisition builds on our deep expertise in secure microcontrollers and gives ST all of the building blocks to create the next generation of highly-integrated secure NFC solutions for mobile and for a broad range of Internet of Things devices,” said Claude Dardanne, Executive Vice President and General Manager of STMicroelectronics’ Microcontroller and Digital ICs Group. “We welcome this highly competent team from ams into ST for the benefit of our customers.”

The first NFC controller, leveraging the acquired assets, is already sampling to lead customers, as well as a new high-performance, highly-integrated System-in-Package solution which combines this NFC controller with ST’s secure element.

ST acquired the ams assets in exchange for a (i) cash payment of $77.8 million (funded with available cash), and (ii) deferred earn-out contingent on future results for which ST currently estimates will be about $13 million but which in any case will not exceed $37 million.

Busch, LLC, manufacturer and retailer of vacuum pumps, compressors and blowers with a reputation for reliable high-performing vacuum products, this week announced plans to build a new 44,000 sq. ft. building in Austin, Texas. The new facility will offer single piece flow re- manufacturing with four flow line capabilities, processing 16 modules per day from disassembly to testing. It also has the potential to serve as a distribution hub for pumps and parts.

Some upgraded features of the building include additional space, a training center, a fully exhausted disassembly area and visual production planning by way of large screens in each area tracking actual movements in the flow lines. Additionally, the new facility offers climate controls for the production area and process measurement capability of all hard parts. A visitor walkway will allow visitors to view the production area without entering it, and customers will be able to track their repairs via the web in real time.

Additionally, the entire workflow of the building is in line with the seven steps of flow line production: purge and de-systemize, disassembly/hot wash, blast, presentation, assembly, frame assembly, and testing.

By Yoichiro Ando, SEMI Japan

The 2016 global semiconductor market is forecast to decrease by 2.4 percent from the previous year according to the World Semiconductor Trade Statistics (WSTS). SEMI forecasts that the global semiconductor manufacturing equipment market will be effectively flat this year. However, SEMI also forecasts double-digit growth in 2017 with significant new fab construction starts in 2016 and 2017 that will drive later equipment. The forecast foresees the Japan market will shrink through 2017. This article provides insight behind those forecast numbers.

Overview

Large-scale investments in 300mm wafer lines in Japan are primarily made by three companies: Toshiba (NAND Flash), Sony (image sensors) and Micron Memory Japan (DRAM). The logic players’ investments are largely for upgrading and expanding existing capacity; the companies producing power, surface acoustic wave (SAW), and automotive semiconductor devices are actively adding capacity by constructing new fabs and expanding existing fabs. These activities are planned on 200mm or smaller wafers, so the investments are smaller in terms of dollar values. However, they are important to Japan’s semiconductor industry in the coming Internet of Things (IoT) age.

Toshiba plans a new mega fab

Toshiba continues to expanding its 300 mm NAND fabs in Yokkaichi in 2015 and 2016 ─ including the second phase construction of Fab 5, new Fab 2 for 3D NAND flash memory production, and plan for a new fab (Fab 6).

Toshiba New Fab 2

Toshiba’s new Fab 2 cleanroom (Source: Toshiba)

The new Fab 6 will be dedicated to 3D NAND flash memory production, and is planned to be built in an adjacent area of the current Yokkaichi factory site. Detailed plans of the construction (such as construction period, production capacity, and investment to manufacturing instrument used) will be decided in FY 2016 based on market trends. Fab 6 is expected to be built in FY 2017. Production capacity of the fab is projected to be more than 200,000 wafers per month (300mm wafers) at full capacity.

Toshiba and Western Digital announced a plan in July 2016 to invest a total of 1.5 trillion JPY for the next three years in Yokkaichi operations. This investment will be for the construction of the new fab as well as for updating equipment for existing fabs such as new Fab 2 and Fab 5.

Sony expands 300mm capacity

Sony is also actively expanding its 300mm wafer fabs for increased production of complementary metal-oxide-semiconductor (CMOS) image sensors. Sony plans to expand production capacity not only with its existing lines but also to acquire fabs from other companies. Specifically, Sony acquired Tsuruoka factory in Yamagata prefecture in 2014 from Renesas Electronics Corporation, and it is now operated as Yamagata Technology Center (TEC) of Sony Semiconductor Manufacturing Corporation, which is a semiconductor production subsidiary of Sony Corporation. In 2015, Sony acquired the 300mm line of the Toshiba Oita factory, for production of CMOS image sensors.

Sony plans to invest 70 billion JPY in FY 2016, and expand image sensor production capacity ─ now 70,000 wafers per month as of first quarter of 2016. The restoration of Kumamoto TEC damaged by the Kumamoto earthquake would make investment in other TECs decrease.

Micron and TowerJazz

Micron Technology operates a 300mm fab in Hiroshima (Micron Memory Japan Fab 15). The fab manufactures DRAM with 12nm process technology. Micron invested US$750 million in 2015 and $500 million in 2016 for the technology upgrades. The capacity has been flat in these two years.

Panasonic TowerJazz Semiconductor, a Panasonic and TowerJazz joint venture, operates a 300mm foundry fab in Uozu. The company invested $10 million in 2015 and plans to invest the same amount in 2016 to improve the productivity.

Investments in 200mm and smaller wafer lines

Other major semiconductor manufacturers primarily invest in existing fabs and lines for maintenances and productivity improvements. Therefore, investment amount is modest. However, these fabs will be the major source for semiconductor devices of the Internet of Things applications.

  • Renesas Electronics Corporation plans upkeep of production capacity of Kumamoto fab (200mm wafer fab) and Naka fab (300mm wafer fab).
  • Fujitsu enhances Fab B2 of Mie Fujitsu Semiconductor Limited, which provides foundry services with 300mm wafer lines. Taiwan’s major foundry UMC participated in capital of Mie Fujitsu Semiconductor Limited, and assists with 40nm process technology.
  • Rohm Co., Ltd. plans to invest more than 10 billion JPY in enhancement of 200mm lines of fab and others in the headquarters.
  • Fuji Electric Co., Ltd. continues enhancement of its 200mm wafer lines for IGBT of Yamanashi plant in FY 2016. Fuji Electric further expands its SiC power device production capacity by enhancing 200mm wafer lines at Matsumoto fab.
  • Mitsubishi Electric Corporation manufactures power devices at 200mm wafer line of Kumamoto fab. Mitsubishi Electric continues enhancement of power device production capacity.
  • Shindengen Electric Manufacturing Co., Ltd. is enhancing its power semiconductor module production by adding a new line each for Akita Shindengen Co., Ltd. and Higashine Shindengen Co., Ltd. from FY 2015.

Electronic Parts and Optoelectronic Devices

The electronic parts companies are emerging as new fab owners in Japan. Their recent activities are summarized below:

  • New Japan Radio Co., Ltd. continues enhancement of production capacity of SAW devices and GaAs ICs at its Kawagoe fab in 2016.
  • Hamamatsu Photonics K.K. continues enhancement of MEMS fabrication facility (Fab 13) which started operation in March 2014.
  • Upkeep of new clean room of Toyota Motor Corporation, which started operation in 2014, is now underway. Currently, this line is used for research and development, and trial production of SiC devices.
  • Murata Manufacturing Company, Ltd. is building a new fab for SAW filter production at its headquarter factory in Toyama. The new fab construction will be completed in September 2016. Total investment to the facility is planned to be 12 billion JPY. Then it will be equipped with 200 mm (mostly secondary) equipment.
  • Taiyo Yuden Co., Ltd. continues its enhancement plan of Oume fab in FY 2016, which was acquired from Hitachi in 2013 for SAW device production.
  • TDK agreed to acquire 125mm wafer lines in Tsuruoka Factory from Renesas Electronics Corporation in November 2015. TDK plans to enhance its production capacity of super miniature electronic components at this plant. Production will start in FY 2016 after replacement of manufacturing equipment to conform to products to be manufactured. Investment will continue in FY 2016 as well for startup of the mass production and maintenance at this plant.

SEMI World Fab Forecast

To obtain line-by-line investment and capacity trends in Japan and other regions in the world, SEMI Fab Forecast is a powerful and affordable tool. The report is in easy to use, with Excel spreadsheet format that covers six quarters of actual data and six quarters of forecast on over 1,000 fab/lines. For further information, please see www.semi.org/en/MarketInfo/FabDatabase.

Connect with Japan Semiconductor Industry at SEMICON Japan
SEMICON Japan (December 14-16, Tokyo) offers excellent opportunities to interact and connect with the Japan semiconductor industry. To join the exhibition, please see www.semiconjapan.org/en/exhibit.