Mechanistic modeling of silicon ALE for FinFETs

The gate etch in a finFET process requires that 3D corners be accurately resolved to maintain a uniform gate length along the height of the fin. In so doing, the roughness of the etch surface and the exact etch depth per cycle (EPC) are not as critical as the ability of ALE to be resistant to aspect ratio dependent etching (ARDE).

Researchers Chad Huard et al. from the University of Michigan and Lam Research recently published “Atomic layer etching of 3D structures in silicon: Self-limiting and nonideal reactions” in the latest issue of the Journal of Vacuum Science & Technology A. Proper control of sub-cycle pulse times is the key to preventing gas mixing that can degrade the fidelity of ALE.

Screen Shot 2017-06-20 at 4.46.25 PM

The Figure shows that the geometry modeled was a periodic array of vertical crystalline silicon fins, each 10nm wide and 42nm high, set at a pitch of 42 nm. For continuous etching (a-c), simulations used a 70/30 mix of Ar/Cl gas and RF bias of 30V. Just before the etch-front touches the underlying SiO2 (a), the profile has tapered away from the trench sidewalls and the etch-front shows some micro-trenching produced by ions (or hot neutrals) specularly reflected from the tapered sidewalls. After a 25% over-etch (b), a significant amount of Si remains in the corners and on the sides of the fins. Even after an over-etch of 100% (c), Si still remains in the corners.

In comparison, the ALE process (d-f) shows that after 25% over-etch (e) the bottom SiO2 surface would be almost completely cleared with minimal corner residues, and continuing to 100% over-etch results in little change to the profile. The ALE process times shown here do not include the gas purge and fill times between plasma pulses; to clear the feature using ALE required 200 pulses and assuming 5 seconds of purge time between each pulse results in a total process time of 15–20 min to clear the feature. This is a significant increase in total process time over the continuous etch (2 min).

One conclusion of this ALE modeling is that even small deviations from perfectly self-limited reactions signifi- cantly compromise the ideality of the ALE process. For example, having as little as 10 ppm Cl2 residual gas in the chamber during the ion bombardment phase produced non-idealities in the ALE. Introducing any source of continuous chemical etching into the ALE process leads to the onset of ARDE and roughening of the etch front. These trends have significant implications for both the design of specialized ALE chambers, and also for the use of ALE to control uniformity.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.