Yearly Archives: 2017

SEMI-MSIG’s MEMS & Sensors Executive Congress (MSEC) held November 1-2 in San Jose, CA, challenged industry executives to see beyond traditional dividing lines of human-machine interaction. MEMS and sensors were hailed as the enablers for pervasive, connected and contextually aware computing and seen as drivers for an explosion of new applications and possibilities. Securing autonomous vehicles from hackers and improving crop yields to feed the 10 billion people we will have on the planet by 2050 were two popular examples of new applications.

Keynote Speaker Intel’'s Lama Nachman discussed contextually aware systems.

Keynote Speaker Intel’’s Lama Nachman discussed contextually aware systems.

Lama Nachman, Intel fellow and director of the company’s Anticipatory Computing Lab, explored contextually aware systems during her keynote. Lachman said that technology needs to be more proactive, anticipating our needs, e.g., Google Now. One challenge lies in using sensors to measure things for which they were not designed, such as emotions and physiology. Lachman exhorted MSEC attendees to develop more configurable systems and sensors so that they can be used for other applications and possibly drive the next “killer app.”

Lars Reger, CTO, NXP Automotive Business Unit, described the essential and extensive use of MEMS and sensors in automotive connectivity, autonomy, electrification, and safe and secure mobility during his keynote. Reger noted that “motion sensors are the key to increasing security in keyless entry systems, reducing hacking.” He concluded that “entering a new era of automated driving requires functional safety and security,” telling MSEC attendees, “we need the best sensors to achieve a failure-free model in autonomous vehicles.”

Alissa Fitzgerald, founder and managing member, A.M. Fitzgerald & Associates, noted that the pipeline for emerging technologies generally begins with university labs turning out proof-of-concept devices. “The next $1B product is lurking in a lab somewhere,” said Fitzgerald. She also encouraged attendees to look for key trends in emerging technologies, citing “ultra-low power, a migration from capacitive MEMS to piezoelectric sensors and actuators, the stagnation of silicon sensors, and a movement toward paper and plastic sensors.” She drew her results from a review of more than 500 papers from academic conferences, filtered for commercial viability.

Henri Hekman, CEO and president of SoilCares BV, explained how his company is using MEMS near infrared (NIR) devices to scan soil samples. “To feed a surging global population, we cannot increase arable land so we must increase agricultural productivity. The place to start is in the soil.” Hekman said that SoilCares is conducting trials in Africa and North America as it launches in 20 countries in 2017.

SEMI-MSIG Executive Director Frank Shemansky expanded upon themes from MEMS & Sensors Executive Congress. “From device-makers to commercial application developers, there was a collective buzz around ubiquitous intelligent sensing,” said Shemansky. “Speakers explored the critical role of sensing in more natural and immersive user interfaces, including voice, in interpreting emotion, in anticipating needs, in managing medication, and in providing safer, more secure ways to build autonomous vehicles that will actually save human lives. As we look toward 2018 and beyond, the MEMS and sensors industry will continue to work closely with the consumers of our products, as we help them to further advance human-machine interaction in meaningful ways.”

Technology Showcase Winner and Hall of Fame Recognitions
A highly anticipated event at the Executive Congress, the Technology Showcase, was a forum where four finalists competed for attendees’ votes and the title of “winner.” The 2017 Technology Showcase winner, Menlo Digital-Micro-Switch Technology by Menlo Micro, demonstrates fundamental materials’ advancements that improve the size, speed, power handling and reliability of MEMS switches. Menlo Micro’s MEMS-based switching element is the width of a human hair, enabling RF switching 1,000 times faster and lasts 1,000 times longer than traditional mechanical switches.

SEMI-MSIG also inducted two new members into the SEMI-MSIG Hall of Fame: Raji Baskaran, pathfinding lead, Hardware and Software Co-optimization, Intel Corporation: Saffron Technology Group, and Kevin Crofton, executive vice president and COO, SPTS Technologies, an Orbotech Company.

 

A major decrease in manufacturing cost gap between organic light-emitting diode (OLED) display and liquid crystal display (LCD) panel is expected to support the expansion of OLED TVs, according to new analysis from IHS Markit (Nasdaq: INFO).

The OLED Display Cost Model analysis estimates that the total manufacturing cost of a 55-inch OLED ultra-high definition (UHD) TV panel — at the larger end for OLED TVs — stood at $582 per unit in the second quarter of 2017, a 55 percent drop from when it was first introduced in the first quarter of 2015. The cost is expected to decline further to $242 by the first quarter of 2021, IHS Markit said.

The manufacturing cost of a 55-inch OLED UHD TV panel has narrowed to 2.5 times that of an LCD TV panel with the same specifications, compared to 4.3 times back in the first quarter of 2015.

55-inch_UHD_TV_panel_manufacturing_cost_v2

“Historically, a new technology takes off when the cost gap between a dominant technology and a new technology gets narrower,” said Jimmy Kim, principal analyst for display materials at IHS Markit. “The narrower gap in the manufacturing cost between the OLED and LCD panel will help the expansion of OLED TVs.”

However, it is not just the material that determines the cost gap. In fact, when the 55-inch UHD OLED TV panel costs were 2.5 times more than LCD TV panel, the gap in the material costs was just 1.7 times. Factors other than direct material costs, such as production yield, utilization rate, depreciation expenses and substrate size, do actually matter, IHS Markit said.

The total manufacturing cost difference will be reduced to 1.8 times from the current 2.5 times, when the yield is increased to a level similar to that of LCD panels. “However, due to the depreciation cost of OLED, there are limitations in cost reduction from just improving yield,” Kim said. “When the depreciation is completed, a 31 percent reduction in cost can be expected from now.”

NXP Semiconductors, Chongqing Economic and Information Technology Commission, and Chongqing Laingian New Area Administrative Committee have signed an agreement to establish the NXP China Applications Development Center for Auto Electronics. The center will help China’s domestic carmakers quickly gain the needed knowledge and expertise to build Electronic Control Units (ECUs) using NXP solutions.

Chongqing, a mega city with more than 30 million inhabitants located in the eastern part of China, plays a vital role in China’s modern automobile industry. As the country’s largest automobile production base with 14 vehicle manufacturers, Chongqing has identified automotive growth as a key strategic pillar and seeks to build its strength and competitive edge by expanding its semiconductor capabilities.

NXP has partnered with the Chongqing Economic and Information Technology Commission and the Chongqing Laingian New Area Administrative Committee to drive more automotive industry growth with the new applications development center. The facility, staffed with NXP automotive experts, provides a tight link to local automotive teams that will bring their products, reference designs and application support needs for consultation.

The agreement outlines a 15-year minimum window of commitment, the hiring of 100 team members and massive joint investment to create rich conditions for growth. It also aims to increase tier one electronic capability and build and support infrastructure with an initial focus on microcontrollers.

About Chongqing and the Application Center

  • Chongqing plays a vital role in China’s modern automobile industry. It has the country’s largest automobile production base with 14 vehicle manufacturers.
  • It is the first R&D organization in Chongqing to focus on automotive semiconductors and four major applications in the automotive industry (traditional vehicle body, new energy, autonomous driving and intelligent networks).
  • Chongqing is developing an automotive electronics industry worth hundreds of billions of RMB and expanding the influence of the city’s innovation in the Chinese and global automotive market.

“It is the right time for NXP to establish the China Auto Electronics Application Development Center in Chongqing,” said Wu Cunrong, mayor of Chongqing. “Combining automotive and electronic information, the automotive electronics industry has a vast space for development. Chongqing is currently targeting global market demand and focusing on automotive electronics research and development in order to promote industrial transformation and upgrading. We hope that the Application Center will enhance the capability of Chongqing in auto electronics R&D, improve the industrial ecosystem and enhance the vitality of industrial development. I hope that the project can start construction as soon as possible, so that we can benefit from its research and development capacity.”

Researchers at UC Berkeley and UC Riverside have developed a new, ultrafast method for electrically controlling magnetism in certain metals, a breakthrough that could lead to greatly increased performance and more energy-efficient computer memory and processing technologies.

In this schematic of a magnetic memory array, an ultrafast electrical pulse switches a magnetic memory bit.

In this schematic of a magnetic memory array, an ultrafast electrical pulse switches a magnetic memory bit.

The findings of the group, led by Berkeley electrical engineering and computer sciences (EECS) professor Jeffrey Bokor, are published in a pair of articles in the journals Science Advances (Vol. 3, No. 49, Nov. 3, 2017) and Applied Physics Letters (Vol. III, No. 4, July 24, 2017).

Computers use different kinds of memory technologies to store data. Long-term memory, typically a hard disk or flash drive, needs to be dense in order to store as much data as possible. But the central processing unit (CPU) — the hardware that enables computers to compute — requires its own memory for short-term storage of information while operations are executed. Random Access Memory (RAM) is one example of such short-term memory.

Reading and writing data to RAM needs to be extremely fast in order to keep up with the CPU’s calculations. Most current RAM technologies are based on charge (electron) retention, and can be written at rates of billions of bits per second (or bits/nanosecond). The downside of these charge-based technologies is that they are volatile, requiring constant power or else they will lose the data.

In recent years, magnetic alternatives to RAM, known as Magnetic Random Access Memory (MRAM), have reached the market. The advantage of magnets is that they retain information even when memory and CPU are powered off, allowing for energy savings. But that efficiency comes at the expense of speed. A major challenge for MRAM has been to speed up the writing of a single bit of information to less than 10 nanoseconds.

“The development of a non-volatile memory that is as fast as charge-based random-access memories could dramatically improve performance and energy efficiency of computing devices,” says Bokor. “That motivated us to look for new ways to control magnetism in materials at much higher speeds than in today’s MRAM.”

“Inspired by recent experiments in the Netherlands on ultrafast magnetic switching using sub-picosecond duration laser pulses, we built special circuits to study how magnetic metals respond to electrical pulses as short as a few trillionths of a second,” or picoseconds, says coauthor Yang Yang (M.S.’13 Ph.D.’17 MSE). “We found that in a magnetic alloy made up of gadolinium and iron, these fast electrical pulses can switch the direction of the magnetism in less than 10 picoseconds. That is orders of magnitude faster than any other MRAM technology.”

“The electrical pulse temporarily increases the energy of the iron atom’s electrons,” says Richard Wilson, currently an assistant professor of mechanical engineering at UC Riverside who began his work on this project as a postdoctoral researcher in EECS at Berkeley.  “This increase in energy causes the magnetism in the each of the iron and gadolinium atoms to exert torque on one another, and eventually leads to a reorientation of the metal’s magnetic poles. It’s a completely new way of using electrical currents to control magnets.”

After their initial demonstration of electrical writing in the special gadolinium-iron alloy, the research team sought ways to expand their method to a broader class of magnetic materials.  “The special magnetic properties of the gadolinium-iron alloy are what makes this work,” says Charles-Henri Lambert, a Berkeley EECS postdoc. “Therefore, finding a way to expand our approach for fast electrical writing to a broader class of magnetic materials was an exciting challenge.”

Addressing that latter challenge was the subject of a second study, published in Applied Physics Letters in July.  “We found that when we stack a single-element magnetic metal such as cobalt on top of the gadolinium-iron alloy, the interaction between the two layers allows us to then manipulate the magnetism of the cobalt on unprecedented time-scales as well,” says Jon Gorchon, a postdoctoral research in the Materials Sciences Division at Lawrence Berkeley Lab and in EECS at UC Berkeley.

“Together, these two discoveries provide a route toward ultrafast magnetic memories that enable  a new generation of high-performance, low power computing processors with high-speed, non-volatile memories right on chip, ” Bokor says.

Additional team members include Akshay Pattabi, a Berkeley EECS Ph.D. candidate, and Berkeley EECS professor Sayeef Salahuddin. The research was supported by grants from the National Science Foundation and the U.S. Department of Energy.

Xilinx, Inc. (NASDAQ: XLNX) today announced the appointment of two new members to the Company’s Board of Directors, increasing its total size to eleven. Mary Louise (ML) Krakauer, an independent director who will also serve on the Board’s Compensation Committee, joins the Board alongside Victor Peng, the Company’s chief operating officer. Both Ms. Krakauer and Mr. Peng bring decades of executive management experience and industry expertise to Xilinx.

“We are delighted to have ML and Victor join the Board of Directors,” said Dennis Segers, chairman of the board of Xilinx. “ML comes to us through an extensive search, and she brings deep executive and operational experience to the Board. Her expertise in human capital management, in particular, will enhance the effectiveness of our Compensation Committee. The Board also continues to focus on our previously announced CEO succession plan. Victor’s appointment reflects the continued expansion of his role and responsibilities at Xilinx, and we look forward to adding to our Board his unique combination of Company knowledge, technical expertise and leadership skills that have made him an outstanding executive.”

Ms. Krakauer retired as the executive vice president, chief information officer of Dell Corporation in January 2017, where she was responsible for global IT, including all operations and integration activity. She also served as the executive vice president, chief information officer of EMC Corporation in 2016. Prior to that she served as executive vice president, Business Development, Global Enterprise Services for EMC in 2015 and as executive vice president, Global Human Resources for EMC from 2012 to 2015, where she was responsible for executive, leadership, and employee development, compensation and benefits, staffing, and all of the people-related aspects of acquisition integration.  Previously, she held leadership roles at Hewlett-Packard Corporation, Compaq Computer Corporation, and Digital Equipment Corporation. Ms. Krakauer serves on the board of Mercury Systems, Inc., a Nasdaq-listed commercial provider of secure sensor and safety critical mission processing subsystems.

Mr. Peng joined Xilinx in 2008, and became the Company’s chief operating officer in April of this year, with responsibility for global sales, global operations and quality, product development, and product and vertical marketing. Prior to that, he served as the Company’s executive vice president and general manager of Products, a position he held since July 2014. Mr. Peng has over 30 years of experience defining and bringing to market leadership FPGAs, All Programmable SoCs, GPUs, high performance microprocessors and chip sets, and microprocessor IP products. Mr. Peng previously held executive roles at AMD, ATI, and MIPS Technologies.

Eighty years after the theoretical prediction of the force required to overcome the van der Waals’ bonding between layers in a crystal, engineering researchers at Tohoku University have measured it directly. They report their results this week in the Journal of Applied Physics, from AIP Publishing.

In its proof-of-concept, the team also created more durable gallium selenide crystals. The accomplishment could advance the development of terahertz and spintronics technologies, used in a range of applications from medical imaging to quantum computers.

“This is the first time anyone has directly measured the van der Waals bonding force in the layers of a crystal,” Tadao Tanabe, one of the authors, said. “Even high school students know of this force, but in crystals it was very difficult to measure directly.”

Though considered promising for many technologies, the use of gallium selenide crystals has been hampered by the fact that they’re notoriously fragile. To make them stronger, Tanabe’s team, including Department of Materials Science colleague Yutaka Oyama, imagined growing crystals with small amounts of the selenium replaced with the rare element tellurium.

The researchers surmised that tellurium’s larger electron cloud would produce greater van der Waals’ forces between the crystal layers, strengthening the overall structure. Van der Waals’ are weak electric forces that attract atoms to one another through subtle shifts in the atom’s electron configurations.

The team grew and compared three different types of crystals: one pure gallium selenide, one with 0.6 percent tellurium and one with 10.6 percent tellurium. To test the effect on the tellurium on interlayer bonding, the team invented the equivalent of a crystal sandwich opener. Their system is able to measure with exquisite detail the tensile strength, the force required to pull the crystal until it breaks.

“The tensile testing system is very simple in some ways,” Tanabe said. “But it was very difficult to develop a way to identify the exact point at which the crystal broke.”

The crystals tested were about 3 millimeters in width, and only 1/5 of a millimeter thick, about half the thickness of a piece of standard printer paper. Each crystal is comprised of hundreds of individual layers.

The team used special double-sided tape on either side of a crystal to hold it between an anchored stage and a moveable one that could be pulled away slowly, at a rate of 50 millionths of a meter per second. “This enabled us to very precisely measure the interlayer force at which the crystal broke,” Tanabe said.

The researchers found that the interlayer van der Waals bonding in the tellurium-doped crystals was seven times stronger than in pure gallium selenide ones.

With the addition of tellurium, the soft and cleavable gallium selenide crystal becomes rigid by enhancement of the van der Waals’ bonding force, the authors report, paving the way for using this system to improve crystal-based technologies.

Researchers at the U.S. Department of Energy’s (DOE) National Renewable Energy Laboratory (NREL) established a new world efficiency record for quantum dot solar cells, at 13.4 percent.

Colloidal quantum dots are electronic materials and because of their astonishingly small size (typically 3-20 nanometers in dimension) they possess fascinating optical properties. Quantum dot solar cells emerged in 2010 as the newest technology on an NREL chart that tracks research efforts to convert sunlight to electricity with increasing efficiency. The initial lead sulfide quantum dot solar cells had an efficiency of 2.9 percent. Since then, improvements have pushed that number into double digits for lead sulfide reaching a record of 12 percent set last year by the University of Toronto. The improvement from the initial efficiency to the previous record came from better understanding of the connectivity between individual quantum dots, better overall device structures and reducing defects in quantum dots.

The latest development in quantum dot solar cells comes from a completely different quantum dot material. The new quantum dot leader is cesium lead triiodide (CsPbI3), and is within the recently emerging family of halide perovskite materials. In quantum dot form, CsPbI3 produces an exceptionally large voltage (about 1.2 volts) at open circuit.

“This voltage, coupled with the material’s bandgap, makes them an ideal candidate for the top layer in a multijunction solar cell,” said Joseph Luther, a senior scientist and project leader in the Chemical Materials and Nanoscience team at NREL. The top cell must be highly efficient but transparent at longer wavelengths to allow that portion of sunlight to reach lower layers. Tandem cells can deliver a higher efficiency than conventional silicon solar panels that dominate today’s solar market.

This latest advance, titled “Enhanced mobility CsPbI3 quantum dot arrays for record-efficiency, high-voltage photovoltaic cells,” is published in Science Advances. The paper was co-authored by Erin Sanehira, Ashley Marshall, Jeffrey Christians, Steven Harvey, Peter Ciesielski, Lance Wheeler, Philip Schulz, and Matthew Beard, all from NREL; and Lih Lin from the University of Washington.

The multijunction approach is often used for space applications where high efficiency is more critical than the cost to make a solar module. The quantum dot perovskite materials developed by Luther and the NREL/University of Washington team could be paired with cheap thin-film perovskite materials to achieve similar high efficiency as demonstrated for space solar cells, but built at even lower costs than silicon technology–making them an ideal technology for both terrestrial and space applications.

“Often, the materials used in space and rooftop applications are totally different. It is exciting to see possible configurations that could be used for both situations,” said Erin Sanehira a doctoral student at the University of Washington who conducted research at NREL.

Dialog Semiconductor plc (XETRA:DLG), a provider of highly integrated power management, AC/DC power conversion, charging, and low power connectivity technology, announced today that it has completed the acquisition of privately-held Silego Technology Inc. (“Silego”), a provider of Configurable Mixed-signal ICs (CMICs).

Headquartered in Santa Clara, California with approximately 235 employees worldwide, Silego is the pioneer and market leader in CMICs that integrate multiple analog, logic, and discrete component functionality into a single chip. Silego’s product portfolio will strengthen Dialog’s presence in markets including IoT, computing and automotive.

“The acquisition of Silego brings a highly complementary technology to Dialog. What Silego has developed is truly unique – a mixed-signal platform which customers can configure to their design requirements on the fly, drastically reducing the time to bring their products to market,” said Jalal Bagherli, CEO of Dialog. “With global scale and customer access, Dialog is the right platform to further accelerate industry wide CMIC adoption. Furthermore, we gain an exceptional group of talented people that will fit well with Dialog’s culture. Together, we will significantly increase the value we can bring to our customers by creating a better-positioned and more-diversified mixed signal offering.”

“We believe Dialog will be a great environment for the Silego team to grow as part of a much larger company serving global customers,” stated John Teegen, CEO of Silego Technology. “Our proprietary and configurable approach has allowed Silego to establish leadership while creating a new market. By leveraging Dialog’s technology and capabilities, I am confident we can further drive adoption of CMICs.”

Silego anticipates achieving over $80 million of revenue in 2017 and double-digit growth in 2018. The transaction is expected to be accretive to Dialog’s underlying EPS for full calendar year 2018 and accretive to Dialog’s gross margin.

This article first appeared on SemiMD.com.

With mask costs rising and the need for flexibility growing, companies are beginning to adopt embedded field programmable gate arrays in their SoC designs.

BY DAVE LAMMERS, Contributing Editor

It was back in 1985 that Ross Freeman invented the FPGA, gaining a fundamental patent (#4,870,302) that promised engineers the ability to use “open gates” that could be “programmed to add new functionality, adapt to changing standards or specifications, and make last-minute design changes.”

Freeman, a co-founder of Xilinx, died in 1989, too soon to see the emerging development of embedded field programmable logic arrays (eFPGAs). The IP cores offer system-on-chip (SoC) designers an ability to create hardware accelerators and to support changing algorithms. Proponents claim the approach provides advantages to artificial intelligence (AI) processors, automotive ICs, and the SoCs used in data centers, software-defined networks, 5G wireless, encryption, and other emerging applications.

With mask costs escalating rapidly, eFPGAs offer a way to customize SoCs without spinning new silicon. While eFPGAs cannot compete with custom silicon in terms of die area, the flexibility, speed, and power consumption are proving attractive.

Semico Research analyst Rich Wawrzyniak, who tracks the SoC market, said he considers eFPGAs to be “a very profound development in the industry, a capability that is going to get used in lots of places that we haven’t even imagined yet.”

While Altera, now owned by Intel, and Xilinx, have not ventured publicly into the embedded space, Wawrzyniak noted that a lively bunch of competitors are moving to offer eFPGA intellectual property (IP) cores.

Multiple competitors enter eFPGA field

Achronix Semiconductor (Santa Clara, Calif.) has branched out from its early base in stand-alone FPGAs, using Intel’s 22nm process, to an IP model. It is emphasizing its embeddable Speedcore eFPGAs that can be added to SoCs using TSMC’s 16FF foundry process. 7nm IP cores are under development.

Efinix Inc. (Santa Clara recently rolled out its Efinix Programmable Accelerator (EPA) technology.

Efinix (efinixinc.com) claims that its programmable arrays can either compete with established stand-alone FPGAs on performance, but at half the power, or can be added as IP cores to SoCs. The Efinix Programmable Accelerator technology can provide a look up table (LUT)-based logic cell or a routing switch, among other functions, the company said.

Efinix was founded by several managers with engineering experience at Altera Corp. at various times in their careers — Sammy Cheung, Tony Ngai, Jay Schleicher, and Kar Keng Chua — and has financial backing from two Malaysia-based investment funds.

Flex Logix Technologies, (Mountain View, Calif.) (www.flex-logix.com) an eFPGA startup founded in 2014, recently gained formal admittance to TSMC’s IP Alliance program. It supports a wide array of foundry processes, providing embedded FPGA IP and software tools for TSMC’s 16FFC/FF+, 28HPM/HPC, and 40ULP/LP.

QuickLogic adds SMIC to foundry roster

Menta  (http://www.menta-efpga.com/) is another competitor in the FPGA space. Based in Montpellier, France, Menta is a privately held company founded a decade ago that offers programmable logic IP targeted to both GLOBALFOUNDRIES (14LPP) and TSMC (28HPM and 28HPC+) processes.

Menta offers either pre-configured IP blocks, or custom IPs for SoCs or ASICs. The French company supports its IP with a tool set, called Origami, which generates a bitstream from RTL, including synthesis. Menta said it has fielded four generations of products that in use by customers now “for meeting the sometimes conflicting requirements of changing standards, security updates and shrinking time-to-market windows of mobile and consumer products, IoT devices, networking and automotive ICs.”

QuickLogic, a Silicon Valley stalwart founded in 1988, also is expanding its eFPGA capability. In mid-September, QuickLogic (Sunnyvale, Calif.) (quicklogic.com) announced that its eFPGA IP can now be used with the 40nm low-leakage process at Shanghai-based Semiconductor Manufacturing International Corp. (SMIC). QuickLogic also offers its eFPGA technology on several of the mature GLOBALFOUNDRIES processes, and is participating in the foundry’s 22FDX IP program.

Wawrzyniak, who tracks the SoC market for Semico Research, said an important market is artificial intelligence, using eFPGA gates to add a flexible convolutional neural network (CNN) capability. Indeed, Flex Logix said one of its earliest adopters is an AI research group at Harvard University that is developing a programmable AI processor.

A seminal capability

The U.S. government’s Defense Advanced Projects Agency (DARPA) also has supported Flex Logix by taking a license, endorsing an eFPGA capability for defense and aerospace ICs used by the U.S. military.

With security being such a concern for the Internet of Things edge devices market, Wawrzyniak said eFPGA gates could be used to secure IoT devices against hackers, a potentially large market.

“The major use is in apps and instances where people need some programmability. This is a seminal, basic capability. How many times have you heard someone say, ‘I wish I could put a little bit of programmability into my SoC.’ People are going to take this and run with it in ways we can’t imagine,” he said.

Bob Wheeler, networking analyst at The Linley Group, said the intellectual property (IP) model makes sense for startups. Achronix, during the dozen years it developed and then fielded its standalone FPGAs, “was on a very ambitious road, competing with Altera and Xilinx. Achronix went down the road of developing parts, and that is a tall order.”

While the cost of running an IP company is less than fielding stand-alone parts, Wheeler said “People don’t appreciate the cost of developing the software tools, to program the FPGA and configure the IP.” The compiler, in particular, is a key challenge facing any FPGA vendor.

Wheeler said Achronix https://www.achronix.com/ , has gained credibility for its tools, including its compiler, after fielding its high-performance discrete FPGAs in 2016, made on Intel’s 22nm process.

And Wheeler cautioned that IP companies face the business challenge of getting a fair return on their development efforts, especially for low-cost IoT solutions where companies maintain tight budgets for the IP that they license.

Achronix earlier this year announced that its 2017 revenues will exceed $100 million, based on a seven-times increase in sales of its Speedster 22i FPGA family, as well as licensing of its Speedcore embedded IP products, targeted to TSMC’s leading-edge 16 nm node, with 7nm process technology for design starts beginning in the second half of this year. Achronix revenues “began to significantly ramp in 2016 and the company reached profitability in Q1 2017,” said CEO Robert Blake.

Escalating mask costs

Geoff Tate, now the CEO of Flex Logix Technologies, earlier headed up Rambus for 15 years. Tate said Flex Logix (www.flex-logix.com uses a hierarchical interconnect, developed by co-founder Cheng Wang and others while he earned his doctorate at UCLA. The innovative interconnect approach garnered the Lewis Outstanding Paper award for Wang and three co-authors at the 2014 International Solid-State Circuits Conference (ISSCC), and attracted attention from venture capitalists at Lux Ventures and Eclipse Ventures.

Tate said one of those VCs came to him one day and asked for an evaluation of Wang & Co.’s technology. Tate met with Wang, a native of Shanghai, and found him to be anything but a prima donna with a great idea. “He seemed very motivated, not just an R&D guy.”

While most FPGAs use a mesh interconnect in an X-Y grid of wires, Wang had come up with a hierarchical interconnect that provided high density without sacrificing performance, and proved its potential with prototype chips at UCLA.

“Chips need to be more flexible and adaptable. FPGAs give you another level of programmability,” Tate noted.

Meanwhile, potential customers in networking, data centers, and other markets were looking for ways to make their designs more flexible. An embedded FPGA block could help customers adapt a design to new wireless and networking protocols. Since mask costs were escalating, to an estimated $5 million for 16nm designs and more than double that for 7nm SoCs, customers had another reason to risk working with a startup.

TSMC has supported Flex Logix, in mid-September awarding the company the TSMC Open Innovation Platform’s Partner of the Year Award for 2017 in the category of New IP.

“Our lead customer has a working chip, with embedded FPGA on it. They are in the process of debugging rest of their chip. Overall, we are still in the early stages of market development,” Tate said, explaining that semiconductor companies are understandably risk-averse when it comes to their IP choices.

Asked about the status of its 16nm test chip, Tate said “the silicon is out of the fab. The next step is packaging, then evaluation board assembly.  We should be doing validation testing starting in late September.”

Potential customers are in the process of sending engineers to Flex Logix to look at metrics of the largest 16nm arrays, such as IR drop, vest vectors, switching simulations, and the like. “They making sure we are testing in a thorough fashion. If we screw them over, they’ll tell everybody, so we have got to get it right the first time,” Tate said.

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $107.9 billion for the third quarter of 2017, marking the industry’s highest-ever quarterly sales and an increase of 10.2 percent compared to the previous quarter. Sales for the month of September 2017 were $36.0 billion, an increase of 22.2 percent over the September 2016 total of $29.4 billion and 2.8 percent more than the previous month’s total of $35.0 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

highest ever sales

“Global semiconductor sales increased sharply year-to-year in September, and year-to-date sales through September are more than 20 percent higher than at the same point last year,” said John Neuffer, SIA president and CEO. “The industry posted its highest-ever quarterly sales in Q3, and the global market is poised to reach its highest-ever annual revenue in 2017.”

Regionally, year-to-year and month-to-month sales increased in September across all markets: the Americas (40.7 percent year-to-year/5.9 percent month-to-month), China (19.9 percent/2.5 percent), Europe (19.0 percent/1.8 percent), Asia Pacific/All Other (16.8 percent/1.9 percent), and Japan (11.9 percent/0.5 percent).

“The Americas market continued to stand out, notching its largest year-to-year sales increase in more than seven years,” Neuffer said. “Standouts among semiconductor product categories included memory products like DRAM and NAND flash, both of which posted major year-to-year growth in September, as well as Logic products, which enjoyed double-digit growth year-to-year.”