Yearly Archives: 2017

Display shipments for notebook PCs are forecast to increase by 5 percent in 2017 to 177 million units compared to the previous year, while notebook PC unit shipments are expected to remain flat during the same period. Being worried about slower shipments next year due to higher inventory, panel makers are focusing on expanding high-end displays, such as in-plane switching (IPS) technology and low-power consuming displays.

According to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions, IPS displays with wide-view angle and high color accuracy are expected to make up 37 percent of total notebook PC panel shipments in 2017, up from 27 percent in 2016. The share will continue to grow in 2018 to 42 percent.

“Production of IPS panels could bring economic benefits to panel makers, such as higher price and larger capacity consumption,” said Jason Hsu, senior principal analyst at IHS Markit.

The price of a typical IPS panel is about 30 percent higher than a conventional twisted nematic (TN) panel of the same size, while a premium IPS panel can cost double or higher. Moreover, producing one IPS panel will consume capacity more than 20 percent compared to producing a TN panel since it requires more photo masks, resulting in a longer take-time in the production line.

Lenovo, the largest IPS panel buyer, is estimated to purchase more than 12 million units of IPS panels in 2017. Dell has been focusing on the mid- and hi-end segments, applying more IPS panels to its products than its competitors. HP is also expanding IPS panel adoption, contributing to the IPS panel shipment growth in 2018.

Another feature display makers are focusing on is displays that consume lower power. As slim notebook PCs become the design trend, low-power consumption display is a critical need as the battery capacity is limited due to very compact chassis. With the advanced substrate technology such as oxide and low-temperature polycrystalline silicon (LTPS), the power consumption of LCD panel can be managed at a lower level.

According to IHS Markit, adoption of oxide and LTPS panels in the notebook PC market is expected to grow from 3 percent in 2016 to 10 percent in 2017 and to 13 percent in 2018. In the past, these advanced panel technologies were mostly used for premium panels like ultra-high definition (UHD)/wide quad HD (WQHD) resolution displays, but the application will expand to full HD resolution displays, driving the market demand.

In 2018, panel suppliers may have more pressure to maintain panel prices as panel oversupply is expected to continue. “But if the display evolution continues, raising the average selling price, panel makers will not necessarily struggle,” Hsu said.

The average selling price of a notebook PC panel is expected to increase to $46.68 in 2017 and to $47.96 in 2018, from $42.15 in 2016. “Although shipments in unit might decline next year, there are still opportunities for panel makers to increase revenues.”

 

notebook display forecast

 

notebook display forecast 2

Scientists at the U.S. Department of Energy’s National Renewable Energy Laboratory (NREL) reported significant advances in the thermoelectric performance of organic semiconductors based on carbon nanotube thin films that could be integrated into fabrics to convert waste heat into electricity or serve as a small power source.

The research demonstrates significant potential for semiconducting single-walled carbon nanotubes (SWCNTs) as the primary material for efficient thermoelectric generators, rather than being used as a component in a “composite” thermoelectric material containing, for example, carbon nanotubes and a polymer. The discovery is outlined in the new Energy & Environmental Science paper, Large n- and p-type thermoelectric power factors from doped semiconducting single-walled carbon nanotube thin films.

“There are some inherent advantages to doing things this way,” said Jeffrey Blackburn, a senior scientist in NREL’s Chemical and Materials Science and Technology center and co-lead author of the paper with Andrew Ferguson. These advantages include the promise of solution-processed semiconductors that are lightweight and flexible and inexpensive to manufacture. Other NREL authors are Bradley MacLeod, Rachelle Ihly, Zbyslaw Owczarczyk, and Katherine Hurst. The NREL authors also teamed with collaborators from the University of Denver and partners at International Thermodyne, Inc., based in Charlotte, N.C.

Ferguson, also a senior scientist in the Chemical and Materials Science and Technology center, said the introduction of SWCNT into fabrics could serve an important function for “wearable” personal electronics. By capturing body heat and converting it into electricity, the semiconductor could power portable electronics or sensors embedded in clothing.

Blackburn and Ferguson published two papers last year on SWCNTs, and the new research builds on their earlier work. The first paper, in Nature Energy, showed the potential that SWCNTs have for thermoelectric applications, but the films prepared in this study retained a large amount of insulating polymer. The second paper, in ACS Energy Letters, demonstrated that removing this “sorting” polymer from an exemplary SWNCT thin film improved thermoelectric properties.

The newest paper revealed that removing polymers from all SWCNT starting materials served to boost the thermoelectric performance and lead to improvements in how charge carriers move through the semiconductor. The paper also demonstrated that the same SWCNT thin film achieved identical performance when doped with either positive or negative charge carriers. These two types of material–called the p-type and the n-type legs, respectively–are needed to generate sufficient power in a thermoelectric device. Semiconducting polymers, another heavily studied organic thermoelectric material, typically produce n-type materials that perform much worse than their p-type counterparts. The fact that SWCNT thin films can make p-type and n-type legs out of the same material with identical performance means that the electrical current in each leg is inherently balanced, which should simplify the fabrication of a device. The highest performing materials had performance metrics that exceed current state-of-the-art solution-processed semiconducting polymer organic thermoelectrics materials.

“We could actually fabricate the device from a single material,” Ferguson said. “In traditional thermoelectric materials you have to take one piece that’s p-type and one piece that’s n-type and then assemble those into a device.”

For the first time, researchers have used a single-step, laser-based method to produce small, precise hybrid microstructures of silver and flexible silicone. This innovative laser processing technology could one day enable smart factories that use one production line to mass-produce customized devices combining soft materials such as engineered tissue with hard materials that add functions such as glucose sensing.

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. Credit: Mitsuhiro Terakawa, Keio University

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. Credit: Mitsuhiro Terakawa, Keio University

The metal component of the microstructures renders them electrically conductive while the elastic silicone contributes flexibility. This unique combination of properties makes the structures sensitive to mechanical force and could be useful for making new types of optical and electrical devices.

“These types of microstructures could possibly be used to measure very small movements or changes, such as a slight movement from an insect’s body or the subtle expression produced by a human facial muscle,” said research team leader Mitsuhiro Terakawa from Keio University, Japan. “This information could be used to create perfect computer-generated versions of these movements.”

As detailed in the journal Optical Materials Express, from The Optical Society (OSA), the researchers produced wire-like structures of silver surrounded by a type of silicone known as polydimethylsiloxane (PDMS). The researchers used PDMS because it is flexible and biocompatible, meaning that it is safer to use on or in the body.

They fabricated the structures, which measure as little as 25 microns wide, by irradiating a mixture of PDMS and silver ions with extremely short laser pulses that last just femtoseconds. In one femtosecond, light travels only 300 nanometers, which is just slightly larger than the smallest bacteria.

“We believe we are the first group to use femtosecond laser pulses to create a hybrid material containing PDMS, which is very useful because of its elasticity,” said Terakawa. “The work represents a step towards using a single, precision laser processing technology to fabricate biocompatible devices that combine hard and soft materials.”

Turning two laser processes into one

The one-step fabrication method used to make the hybrid microstructures combines the light-based chemical reactions known as photopolymerization and photoreduction, both of which were induced using femtosecond laser pulses. Photopolymerization uses light to harden a polymer, and photoreduction uses light to form microstructures and nanostructures from metal ions.

The fabrication technique resulted from a collaboration between Terakawa’s research group, which been studying two-photon photoreduction using soft materials, and a group at the German research organization Laser Zentrum Hannover, that has been advancing single-photon photopolymerization of PDMS.

To create the wire microstructures, the researchers irradiated the PDMS-silver mixture with light from femtosecond laser emitting at 522-nm, a wavelength that interacts efficiently with the material mixture. They also carefully selected silver ions that would combine well with PDMS.

The researchers found that just one laser scan formed wires that exhibit both the electrical conductivity of metal and the elasticity of a polymer. Additional scans could be used to produce thicker and more uniform structures. They also showed that the wire structures responded to mechanical force by blowing air over the structures to create a pressure of 3 kilopascal.

The researchers say that, in addition to making wires structures, the approach could be used to make tiny 3D metal-silicone structures. As a next step, they plan to study whether the fabricated wires maintain their structure and properties over time.

“Our work demonstrates that simultaneously inducing photoreduction and photopolymerization is a promising method for fabricating elastic and electrically conductive microstructures,” said Terakawa. “This is one step toward our long-term goal of developing a smart factory for fabricating many human-compatible devices in one production line, whether the materials are soft or hard.”

Veeco Instruments Inc. (Nasdaq: VECO) announced today the completion of a strategic initiative with ALLOS Semiconductors (ALLOS) to demonstrate 200mm GaN-on-Si wafers for Blue/Green micro-LED production. Veeco teamed up with ALLOS to transfer their proprietary epitaxy technology onto the Propel Single-Wafer MOCVD System to enable micro-LED production on existing silicon production lines.

“With the Propel reactor, we have an MOCVD technology that is capable of high yielding GaN Epitaxy that meets all the requirements for processing micro-LED devices in 200 millimeter silicon production lines,” said Burkhard Slischka, CEO of ALLOS Semiconductors. “Within one month we established our technology on Propel and have achieved crack-free, meltback-free wafers with less than 30 micrometers bow, high crystal quality, superior thickness uniformity and wavelength uniformity of less than one nanometer.  Together with Veeco, ALLOS is looking forward to making this technology more widely available to the micro-LED ecosystem.”

Micro-LED display technology consists of <30×30 square micron red, green, blue (RGB) inorganic LEDs that are transferred to the display backplane to form sub-pixels. Direct emission from these high efficiency LEDs offers lower power consumption compared with OLED and LCD while providing superior brightness and contrast for mobile displays, TV and wearables. The manufacturing of micro-LEDs requires high quality, uniform epitaxial wafers to meet the display yield and cost targets.

“In contrast to competing MOCVD platforms, Propel offers leading-edge uniformity and simultaneously achieves excellent film quality as a result of the wide process window afforded by Veeco’s TurboDisc® technology,” said Peo Hansson, Ph.D., Senior Vice President and General Manager of Veeco MOCVD Operations. “Combining Veeco’s leading MOCVD expertise with ALLOS’ GaN-on-Silicon epi-wafer technology enables our customers to develop micro-LEDs cost effectively for new applications in new markets.”

The ConFab 2018 update


November 1, 2017

BY PETE SINGER, Editor-in-Chief

A new wave of growth is sweeping through the semiconductor industry, propelled by a vast array of new applications, including artificial intelligence, virtual and augmented reality, automotive, 5G, the IoT, cloud computing, healthcare and many others. The big question facing today’s semiconductor manufacturers and their suppliers is how can they best position themselves to take advantage of this tremendous growth.

Finding answers to that question is the goal of The ConFab 2018, to be held May 20-23 at The Cosmopolitan of Las Vegas. Now in its 14th year, The ConFab is a conference and networking event designed to inform and connect leading semiconductor executives from all parts of the supply chain. It is produced by Solid State Technology magazine, the semiconductor industry’s oldest and most respected business publication.

Kicking things off will be IBM’s Rama Divakaruni, who will speak on “How AI is Driving the New Semiconductor Era.” This is hugely important to how semiconductors will be designed and manufactured in the future, because AI — now in its infancy — will demand dramatic enhancement in computa- tional performance and efficiency. Fundamental changes will be required in algorithms, systems and chip design. Devices and materials will also need to change.

Rama is well position to address these changes: As an IBM Distin- guished Engineer, he is responsible for IBM Advanced Process Technology Research (which includes EUV technologies and advanced unit process and Enablement technologies) as well as the main interface between IBM Semiconductor Research and IBM’s Systems Leadership. He is one of IBMs top inventors with over 225+ issued US patents.

We’re also pleased to announce several other speakers at this point. Joining us will be George Gomba, VP of technology research at GlobalFoundries. George has overall responsibility for GlobalFoundries’ semiconductor technology research programs, including global consortia and strategic supplier management (and, like Rama, has a long history at IBM). The focus of George’s talk will be on EUV lithography.

Dan Armbrust, Founder and Director of Silicon Catalyst, the world’s first incubator focused exclusively on semiconductor solutions startups will also be on the dais. A frequent speaker at The ConFab, Dan has a great background, including President and Chief Executive Officer of SEMATECH, IBM VP, 300mm Semiconductor Operations, and Strategic Client Exec for IBM’s Systems and Technology Group.

Another great speaker is Tom Sonderman, President of SkyWater Technology Foundry. Tom also has a great background including GlobalFoundries’ VP of manufacturing technology, and two decases at AMD, where he had global responsibility for devel- opment, integration, support and scalability of automation and manufacturing systems in the company’s wafer fabrication and assembly operations. Prior to joining SkyWater, Prior to joining SkyWater, Tom was the group vice president and general manager for Rudolph Technologies’ Integrated Solutions Group. In this position, he created a Smart Manufacturing ecosystem based on big data platforms, predictive analytics and IoT.

We’re so excited about the other speakers we tentatively have lined up, our plans for several thought-provoking panels and much more, so stay tuned. You register and keep up-to-date by visiting www.theconfab.com. For sponsorship inquiries, contact Kerry Hoffman at [email protected]. For those interested in attending as a guest or qualifying as a VIP, contact Sally Bixby at [email protected].

In the late 18th century, Ernst Chladni, a scientist and musician, discovered that the vibrations of a rigid plate could be visualized by covering it with a thin layer of sand and drawing a bow across its edge. With the bow movement, the sand bounces and shifts, collecting along the nodal lines of the vibration. Chladni’s discovery of these patterns earned him the nickname, “father of acoustics.” His discovery is still used in the design and construction of acoustic instruments, such as guitars and violins.

Recently, investigators have discovered a similar effect with much smaller vibrating objects excited by light waves. When laser light is used to drive the motion of a thin, rigid membrane, it plays the role of the bow in Chladni’s original experiment and the membrane vibrates in resonance with the light. The resulting patterns can be visualized through an array of quantum dots (QDs), where these tiny structures emit light at a frequency that responds to movement. The advance is reported this week in a cover article of Applied Physics Letters, by AIP Publishing.

Background: Image of a Chladni plate's mode of vibration visualized by grains of sand collected at the nodes. Left-top: Cross-sectional scanning tunneling microscopy image of an indium arsenide quantum dot. Left-bottom: Variation of quantum dot emission line frequencies as a function of time due to vibrations of the photonic crystal membrane. Right: Scanning electron micrograph of a photonic crystal membrane, displaced according to one of the vibrational modes, with red and blue representing positive and negative displacement, respectively. Credit:  Sam Carter and co-authors

Background: Image of a Chladni plate’s mode of vibration visualized by grains of sand collected at the nodes. Left-top: Cross-sectional scanning tunneling microscopy image of an indium arsenide quantum dot. Left-bottom: Variation of quantum dot emission line frequencies as a function of time due to vibrations of the photonic crystal membrane. Right: Scanning electron micrograph of a photonic crystal membrane, displaced according to one of the vibrational modes, with red and blue representing positive and negative displacement, respectively. Credit: Sam Carter and co-authors

In addition to being a modern take on an old phenomenon, the new discovery could lead to the development of sensing devices as well as methods for controlling the emission characteristics of QDs. Since the light frequency emitted by the QDs is correlated with the movement of the underlying membrane, new devices for sensing motion, such as accelerometers, can be envisioned. A reverse application is also possible since the motion of the underlying membrane can be used to control the frequency of light emitted by the QDs.

The tiny devices in the work reported here consist of a 180-nanometer thick slice of semiconductor, suspended like a trampoline above a solid substrate. An array of QDs, analogous to the sand in the acoustic example, are embedded in the slice, whose thickness is less than one-tenth of one percent that of a human hair.

A second probe laser is used to visualize the resulting resonances. The QDs absorb the probe light and emit a second light pulse in response, which is picked up by a detector and routed to a display. The resulting patterns are remarkably like those visualized in Chladni’s original acoustic experiment, even though the new device is driven entirely by light.

One possible application of this discovery, according to Sam Carter of the Naval Research Lab who is one of the paper’s authors, is to sense subtle forces produced by nearby dense objects. “Concealed nuclear materials could be detectable,” he said, “since dense materials like lead are used to shield the devices.”

The highly dense shielding needed for nuclear materials causes small gravitational anomalies and tiny movements that might be detectable by a device based on the principle discovered here. The investigators plan to continue their work by looking at electronic spin. It is hoped that techniques to measure the effect on spin will increase the sensitivity of the devices.

FlexTech, a SEMI Strategic Association Partner announced a new development project with PARC, a Xerox company, to develop a hybrid, highly bendable, paper-like smart tag, incorporating a thin audio speaker. The product is aimed at applications in packaging, wearables prosthetics, soft robotics, smart tags, and smart cities and homes.

PARC will use ink jet printing to build prototypes of the paper-like smart tags capable of producing audio signals, on a silver-printed polyethylene naphthalene (PEN) or polyimide (PI) substrate. They will develop and demonstrate a process for bonding chips, and printing active and passive components, as well as interconnects on the flexible substrate, essential in meeting the project goals for ruggedness and form factor. PARC will also focus on printing actuators to create thin film audio speakers. The technology will enable custom systems to be built on demand.

“Over the last 15 years PARC has been a pioneer in the exciting field of printed electronics.  We are pleased to continue our collaboration with SEMI-FlexTech in a project which takes advantage of the wide range of expertise on the PARC staff,” said Bob Street, project technical lead at PARC. “This new project is technically challenging because it combines a number of novel technologies needed to achieve stringent requirements, including the capability for a thin, paper-like film to produce clear speech audio.  We are looking forward to the challenge and implications for commercial products.”

In 2014, FlexTech awarded PARC with a project grant to develop printed sensors. Partly because of this work, it is now possible to print transistor circuits in a fully additive fashion, and to combine these with sensors, actuators and other electronic components.

“We have had a long, fruitful relationship with PARC and look forward to excellent results from this project which clearly advances innovation in flexible, printable electronics, enabling solutions that lead to safer, healthier lives,” said Melissa Grupen-Shemansky, CTO at SEMI-FlexTech. “In addition to pushing the boundaries in electronics, PARC pays attention to manufacturability and affordability, ensuring developments are scalable from R&D to production.”

PARC and SEMI-FlexTech staff envisage additive manufacturing delivering intelligence into electronics fabricated on demand, including smart packaging and wearable devices in conformal shapes. At the heart of this development are material science, novel printing technologies as well as process driven design that will deliver libraries of smart components and systems. The constituent “inks” of this technology are nanomaterials, molecular semiconductors, inorganic composites and silicon chiplets that together form circuits, sensors, light emitters, batteries, and more, integrated directly into products of all shapes, sizes and textures.

FlexTech’s R&D program is supported by the U.S. Army Research Laboratory (ARL), based in Adelphi, MD.

TowerJazz, the global specialty foundry, announced today a partnership with Changchun Changguang Yuanchen Microelectronics Technology Inc. (YCM), a BSI process manufacturer for backside illumination (BSI) manufacturing in Changchun, China to provide the BSI process segment for CMOS image sensor (CIS) wafers manufactured by TowerJazz. This partnership will allow TowerJazz to serve its worldwide customers with advanced BSI technology in mass production, at competitive prices, starting in the middle of 2018.

The new BSI technology will be utilized for high-end photography, automotive, and AR/VR, among other growing CIS markets. This is the first time BSI will be offered by a foundry to the high-end photography market, including large formats requiring stitching.

BSI and stacked wafers are the state of the art CIS technology for higher pixel sensitivity, allowing a boost in the number of photons captured by the pixels for better picture quality in low light conditions, as well as providing higher dynamic range and higher frame rates (faster sensors).

TowerJazz and its leading customers view BSI technology as playing an important future role in the growing high-end CIS market, including DSLR high end photography, cinematography cameras, and automotive, among others. TowerJazz’s BSI offering is unique in the sense that it is focused on high-end large format, including stitched sensors. It also provides the roadmap for wafer stacking, including pixel level wafer stacking.

“TowerJazz is recognized worldwide as the leader of CMOS image sensor manufacturing platforms for high-end applications,” said Dabing Li, YCM Chief Executive Officer. “The collaboration with TowerJazz will certainly allow us to bring unique and high value technology to the market quickly and in high volume, especially to the growing Chinese market where TowerJazz already plays a significant role.”

“I am thrilled with the capabilities we developed with YCM, supporting our continued leadership in many different high-end growing markets. In addition, the excellent collaboration with YCM enables us further penetration into this very fast growing high-end CMOS camera market in China,” said Dr. Avi Strum, Senior Vice President and General Manager, CMOS Image Sensor Business Unit.  “I have very high confidence in the technical capabilities of this partnership.”

According to Yole Développement (Yole), the MEMS packaging market will grow from US$2.56 billion in 2016 to US$6.46 billion in 2022, showing a 16.7% CAGR over this period. The MEMS packaging market’s value is growing faster than the MEMS device market’s value: respectively, a 16.7% CAGR for packaging versus 14.1% for devices, during the period 2016 – 2022.

Under this dynamic context, Yole Group of Companies including Yole and its sister company System Plus Consulting proposes today a comprehensive review of the technology evolution, market trends and competitive landscape, with two reports, MEMS Packaging and MEMS Packaging: Reverse Technology Review.

The MEMS packaging report offers a deep understanding of the packaging over the years, detailed roadmap for future solutions, related market metrics and detailed analysis of the supply chain. In parallel, the MEMS Packaging: Reverse Technology Review details a comparative technology review and discloses insights into the packaging structure and technology of 80+ consumer and 20+ automotive MEMS devices developed by leading players: Robert Bosch, Texas Instruments, Broadcom, STMicroelectronics, Knowles…

The MEMS packaging market is becoming more and more attractive, offering important business opportunities for advanced packaging companies. What are the market needs? What are the conditions to penetrate this market? Are the technologies “ready to use”? Through its analyses, Yole Group believes that companies which will be successful, are the ones that will adapt their technologies portfolio to match with the market evolution and ensure their market shares. Yole and System Plus Consulting’s analysts put a spotlight today on MEMS packaging.

MEMS devices are characterized by a wide range of different designs and manufacturing technologies, with no standardized processes. As a consequence, many technical challenges are in place and create a strong competition between packaging companies.

“Players have to take into account specifies of each component as well as many application constraints, from the need to low cost packaging for consumer applications to the ability to withstand high temperature and harsh environment for automotive and aeronautics packaging,” explained Dr. Eric Mounier, Senior Technology & Market Analylst at Yole.

MEMS application scope is broad, very fragmented and diversified. Therefore, under its annual report, Status of the MEMS Industry, Yole’s MEMS & Sensors team analyzed more than 200+ applications. Thus, MEMS packaging must always cope with different end-application requirements. It includes for example, protection in different media, hermeticity, interconnection type, and thermal management. This context creates many issues within the packaging industry, which faces different package configurations (open/ closed package).

Under System Plus Consulting’s report, MEMS Packaging: Reverse Technology Review, the company analyzed more than 100 MEMS components developed by the major manufacturers. This review is a relevant comparison between the main existing packaging solutions. It includes the encapsulation processes, the preferred interconnection methods as well as the latest innovations. System Plus Consulting also evaluated the components in term of integration and functionalities.

“No tremendous changes in packaging platforms are expected,” commented Audrey Lahrach, in charge of costing analyses at System Plus Consulting.“But we rather see a change in the complexity of existing platforms to respond to the growing needs of sensor fusions.” Therefore, combining inertial and pressure sensors is now a reality. For example TDK/InvenSense released this month a high-performance “7-Axis” motion tracking device targeting drone applications and based on an exclusive assembly step stacking the 3-axis gyroscope, the 3-axis accelerometer and a barometric pressure sensor (1).

Driven by the complexity associated with the move to 5G and therefore the increasing demand for RF filters in 4G/5G, the largest MEMS growth will be for RF MEMS, especially BAW filters (2).
“The real opportunity of MEMS packaging is carried by RF MEMS devices as the number of units could be multiplied by five by 2022,” confirmed Dr. Mounier from Yole. Optical MEMS including micro mirrors and micro bolometers are second with a 28.5% CAGR, driven by consumer, automotive, and security applications.

Acoustic and ultrasonic sensors including microphones are third. Demand for audio processing is particularly strong, with high unit growth for MEMS microphones targeted at increasingly sophisticated applications that use the microphone to continuously sense what is happening around it.

But why is the MEMS packaging industry becoming so attractive? Yole identified several reasons:
“OSATs already have very low package margins due to fierce competition” asserted Emilie Jolivet, Technology & Market Analyst at Yole. And she added: “And it will be difficult for such companies to lower the cost further.”

The second factor is related to the importance of testing steps. Because every MEMS is different, testing strategies defined by MEMS devices manufacturers are usually dedicated to one device type and account for a significant fraction of the final cost.

The third reason is focused on the packaging’s material cost that is playing a key role within the attractiveness of the MEMS packaging business.

At the end, the strong CAGR of certain devices such as RF MEMS devices, also directly impacts the MEMS packaging industry with numerous opportunities to ensure larger volumes and better margins.

More than a dozen product categories in optoelectronics, sensors and actuators, and discretes semiconductors (O-S-D) are on track to set record-high annual sales this year, according to a new update of IC Insights’ 2017 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discrete Semiconductors.  Driven by the expansion of the Internet of Things (IoT), increasing levels of intelligent embedded controls, and some inventory replenishment in commodity discretes, the diverse O-S-D marketplace is having a banner year with combined sales across all three semiconductor segments expected to grow 10.5% in 2017 to a record-high $75.0 billion, says the O-S-D Report update.

In 2017, above average sales growth rates are being achieved in all but one major O-S-D product category—lamp devices, which are now expected to be flat in 2017 because of continued price erosion in light-emitting diodes (LEDs) for solid-state lighting applications.  Figure 1 compares annual growth rates in five major O-S-D product categories, based on the updated 2017 sales projection.

Figure 1

Figure 1

For the first time since 2014, all three O-S-D market segments are on pace to see sales growth in 2017. Moreover, 2017 is expected to be the first year since 2011 when all three O-S-D market segments set record-high annual sales volumes, according to IC Insights’ update.

The 2017 double-digit percent increase will be the highest growth rate for combined O-S-D sales since the strong 2010 recovery from the 2009 semiconductor downturn that coincided with the 2008-2009 financial crisis and global economic recession.  Total O-S-D revenues are now forecast to reach a ninth consecutive annual record high level of $80.5 billion in 2018, which will be a 7.4% increase from 2017 sales, says the O-S-D Report update.

After a rare decline of 3.6% in 2016, optoelectronics is recovering this year with sales now projected to grow 8.1% in 2017 to an all-time high of $36.7 billion, thanks to strong double-digit sales increases in CMOS image sensors (+22%), light sensors (+19%), optical-network laser transmitters (+15%), and infrared devices (+14%).

Meanwhile, record-high revenues for sensors and actuators are being fueled by the expansion of IoT and new automated controls in a wide range of systems—including more self-driving features in cars. Sensors/actuator sales are now expected to climb 17.5% in 2017 to $13.9 billion, marking the strongest growth year for this market segment since 2010.  Sales of sensors and actuators made with microelectromechanical systems (MEMS) technology are forecast to rise by 18.5% in 2017 to a record-high $11.6 billion.  The O-S-D Report update shows all-time high sales being reached in 2017 with strong double-digit growth in actuators (+20%), pressure sensor, including MEMS microphone chips (+18%), and acceleration/yaw sensors (+17%).

Even the commodity-filled discretes market is thriving in 2017 with worldwide sales projected to rise 10.3% to $24.1 billion, which will finally surpass the current peak of $23.4 billion set in 2011.  Sales of power transistors, which account for more than half of the discretes market segment, are forecast to grow 9.0% in 2017 to a record-high $14.0 billion, according to the new O-S-D Report update.