Yearly Archives: 2017

NXP Semiconductors N.V. (NASDAQ:NXPI) today debuted two significant technology breakthroughs at the largest fintech innovation event, Money 20/20, October 22-25, 2017, in Las Vegas. The company will showcase its new contactless fingerprint-on-card solution while also demonstrating a new world benchmark for payment card transactions speeds.

Fingerprint sensors on payment cards

The fingerprint-on-card solution gives payment network operators and banks a secure, convenient and fast payment card option to consumers. Coupling dual interface cards with an integrated fingerprint sensor enables faster transactions without the need for end-users to enter a PIN number.

“The result provides a secure and dramatically more convenient way for consumers to make payments. The convenience provided by mobile payment in today’s NFC-based mobile wallets can now be replicated with cards. It is also ideal for use in other form factors and applications such as electronic passports,” said Rafael Sotomayor, senior vice president and general manager of secure transactions and identification business. “The breakthrough reinforces NXP’s commitment to the payment and secure identification space by helping our customers deliver next-generation applications and solutions to the market.”

To ensure a lower barrier of entry for card makers, the company’s secure fingerprint authentication solution on cards does not require a battery and easily fits into standard card maker equipment as part of the broader payment ecosystem. Cards with fingerprint authentication are fully compliant with existing EMVCo point-of-sales (POS) systems.

New Benchmark for Blazing Transaction Speeds

Demonstrating seamless, fast, and smart card transaction experiences, the NXP high-performance platform makes it possible to achieve M/Chip transactions speeds of <200 ms, surpassing the industry requirement of 300 ms.

“This increased level of performance offers flexibility to add new features or higher crypto countermeasures and still meet current industry transaction requirement,” said Sotomayor. “The requirement for faster payment transaction will continue, and NXP is committed to providing the performance to meet these needs and make contactless transactions faster and flawless.”

NXP Demonstrations at Money 20/20 Las Vegas 2017

NXP will demonstrate these technology breakthroughs at its exclusive reception on October 24, 2017, in The Venetian.

Microsemi Corporation (Nasdaq: MSCC), a provider of semiconductor solutions differentiated by power, security, reliability and performance, and Knowles Corporation (NYSE: KN), jointly announced today that Microsemi has entered into a definitive agreement to acquire the high performance timing business of Vectron International, a Knowles company, for $130 million.

Vectron is a world leader in the design, manufacture and marketing of frequency control, sensor and hybrid solutions using the very latest techniques in both bulk acoustic wave (BAW) and surface acoustic wave (SAW)-based designs from DC to microwave frequencies. Products include crystals and crystal oscillators; frequency translators; clock and data recovery products; SAW filters; SAW oscillators; crystal filters; SAW and BAW based sensors and components used in telecommunications, data communications, frequency synthesizers, timing, navigation, military, aerospace, medical and instrumentation systems.

“Microsemi is focused on building the industry’s most comprehensive portfolio of high value timing solutions,” said James J. Peterson, Microsemi’s chairman and CEO. “Vectron’s highly complementary technology suite expands our product offering with differentiated technology and allows Microsemi to sell more to its tier one customers in the aerospace and defense, communications and industrial markets while improving upon the operating performance of the combined model as we execute on significant synergy opportunities.”

Microsemi expects the acquisition to be immediately accretive once closed.  The transaction is subject to customary closing conditions and is currently expected to close in Microsemi’s fiscal first quarter ending December 2017.

As of this date, Microsemi remains comfortable with its July 28, 2017 non-GAAP guidance for its fourth fiscal quarter of 2017 ended Oct. 1, 2017. Microsemi currently intends to announce its fourth fiscal quarter results on Nov. 9, 2017.

As organic light-emitting diode (OLED) displays are used in more smartphones and high-end flat panel TVs, panel makers have boosted their investments in new OLED display fab construction. As a result, the global production capacity of AMOLED panels — including both red-green-blue (RGB) OLED and white OLED (WOLED) — is forecast to surge 320 percent from 11.9 million square meters in 2017 to 50.1 million square meters in 2022, according to new analysis from IHS Markit (Nasdaq: INFO).

The production capacity of RGB OLED panels for mobile applications will increase from 8.9 million square meters in 2017 to 31.9 million square meters in 2022, while the OLED capacity for TVs, mainly WOLED but including printing OLED, is set to grow from 3.0 million square meters in 2017 to 18.2 million square meters in 2022, says the latest Display Supply Demand & Equipment Tracker by IHS Markit.

The two market leaders — Samsung Display and LG Display — have taken different paths: Samsung is focusing on RGB OLED panels for mobile devices, and LG on WOLED displays for TVs. To cope with the trend of RGB OLED replacing the liquid crystal display (LCD) in smartphones and other mobile devices, especially for the full-screen and flexible feature of OLED panels, LG Display has started to manufacture RGB OLED panels in 2017. Meanwhile, Chinese panel makers, including BOE, ChinaStar, Tianma, Visionox, EverDisplay, Truly and Royole, are all expanding the production capacity of RGB OLED panels, targeting the mobile market.

OLED_panel_production_capacity_outlook

“It takes more than $11.5 billion to build a Gen 6 flexible OLED factory with a capacity of 90,000 substrate sheets per month, and this is a much larger investment required than building a Gen 10.5 TFT LCD fab with the same capacity,” said David Hsieh, senior director at IHS Markit. “The learning curve costs for the mass production of flexible OLED panels are also high. The financial and technological risks associated with the AMOLED panels have hampered Japanese and Taiwanese makers from entering the market aggressively,” Hsieh said. “In other words, the capacity expansion of AMOLED display, whether it is RGB OLED or WOLED, is only apparent in China and South Korea.”

Samsung Display will remain the dominant supplier of the RGB OLED panels for smartphones. Its RGB OLED panel capacity will grow from 7.7 million square meters in 2017 to 16.6 million square meters in 2022, IHS Markit says. Even though many Chinese panel makers are building RGB OLED fabs, each of their production capacity is much smaller than that of Samsung Display. Due to the gap in their production capacities, they will target different customers: Samsung Display will mainly focus on two major customers — Samsung Electronics (the Galaxy) and Apple (the iPhone), while Chinese makers will be targeting at Chinese smartphone makers at a smaller scale. These include Huawei, Xiaomi, Vivo, Oppo, Meizu, Lenovo and ZTE, and white box makers.

South Korea’s panel makers are estimated to account for 93 percent of the global AMOLED production capacity in 2017, and their share is expected to drop to 71 percent in 2022. Chinese players (BOE, ChinaStar, Tianma, Visionox, EverDisplay and Royole) will account for 26 percent in 2022 from 5 percent in 2017.

“Many interpret the strong expansion of RGB OLED capacity in China as a threat to South Korean makers. It is indeed a threat. However, while South Korean companies have high capacity fabs with high efficiencies, China’s OLED fabs are relatively small and dispersed across multiple regions and companies,” Hsieh said. “Also, while the Chinese makers could expand fabs with government subsidies, the operating performance will completely depend on the panel makers themselves. How long it will take until they could sustain the business, getting over the challenges with learning curve costs, initial low yield rates and capacity utilization, is still an open question.”

 

The number of connected Internet of Things (IoT) devices worldwide will jump 12 percent on average annually, from nearly 27 billion in 2017 to 125 billion in 2030, according to new analysis from IHS Markit (Nasdaq: INFO).

In a new free ebook entitled “The Internet of Things: a movement, not a market,” IHS Markit details how the IoT is revolutionizing the competitive landscape by transforming everyday business practices and opening new windows of opportunity.

According to the ebook, global data transmissions are expected to increase from 20 to 25 percent annually to 50 percent per year, on average, in the next 15 years.

“The emerging IoT movement is impacting virtually all stages of industry and nearly all market areas — from raw materials to production to distribution and even the consumption of final goods,” said Jenalea Howell, research director for IoT connectivity and smart cities at IHS Markit. “This represents a constantly evolving movement of profound change in how humans interact with machines, information and even each other.”

IHS Markit has identified four foundational, interconnected pillars at the core of the IoT movement: connect, collect, compute and create. The entire IoT is built upon these four innovational pillars:

  • New connections of devices and information
  • Enhanced collection of data that grows from the connections of devices and information
  • Advanced computation that transforms collected data into new possibilities
  • Unique creation of new interactions, business models and solutions.

“While internet-connected devices hold tremendous potential, many companies are having difficulty identifying a consistent IoT strategy,” Howell said. “The four Cs of IoT — connect, collect, compute, create — offer a pathway to navigate and take advantage of the changes and opportunities brought about by the IoT revolution.”

The phenomenon that forms interference patterns on television displays when a camera focuses on a pattern like a person wearing stripes has inspired a new way to conceptualize electronic devices. Researchers at the University of Illinois are showing how the atomic-scale version of this phenomenon may hold the secrets to help advance electronics design to the limits of size and speed.

In their new study, mechanical science and engineering professor Harley Johnson his co-authors recast a detail previously seen as a defect in nanomaterial design to a concept that could reshape the way engineers design electronics. The team, which also includes mechanical science and engineering graduate student Brian McGuigan and French collaborators Pascal Pochet and Johann Coraux, published its findings in the journal Applied Materials Today.

On display screens, moire patterns occur when the pixelation is at almost the same scale as a photographed pattern, Johnson said, or when two thin layers of a material with a periodic structure, like sheer fabrics and window screens, are placed on top of each other slightly askew.

At the macro scale, moires are optical phenomena that do not form tangible objects. However, when these patterns occur at the atomic level, arrangements of electrons are locked into place by atomic forces to form nanoscale wires capable of transmitting electricity, the researchers said.

“Two-dimensional materials – thin films engineered to be of single-atom thickness – create moire patterns when stacked on top of each other and are skewed, stretched, compressed or twisted,” Johnson said. “The moire emerges as atoms form linear areas of high electron density. The resulting lines create what is essentially an extremely thin wire.”

For decades, physicists observed microscope images of atomic arrangements of 2-D thin films and recognized them as periodic arrays of small defects known as dislocations, but Johnson’s group is the first to note that these are also common moire patterns.

“A moire pattern is simply an array of dislocations, and an array of dislocations is a moire pattern – it goes both ways,” Johnson said. This realization opened the door to what Johnson’s group refers to as moire engineering – what could lead to a new way to manufacture the smallest, lightest and fastest electronics.

By manipulating the orientation of stacked layers of 2-D thin films like graphene, wires of single-atom thickness can be assembled, building the foundation to write nanocircuitry. A wire of single-atom thickness is the limit of thinness. The thinner the wire, the faster electrons can travel, meaning this technology has the potential to produce the quickest transmitting wires and circuits possible, the researchers said.

“There is always the question of how to connect to a circuit that small,” Johnson said. “There is still a lot of work to be done in finding ways to stitch together 2-D materials in a way that could produce a device.”

In the meantime, Johnson’s group is focusing on types of devices that can be made using moire engineering.

“Being able to engineer the moire pattern itself is a path to new lightweight and less-intrusive devices that could have applications in the biomedical and space industries,” he said. “The possibilities are limited only by the imagination of engineers.”

Research by scientists at Swansea University has shown that improvements in nanowire structures will allow for the manufacture of more stable and durable nanotechnology for use in semiconductor devices in the future.

Dr. Alex Lord and Professor Steve Wilks from the Centre for NanoHealth led the collaborative research published in Nano Letters. The research team defined the limits of electrical contact technology to nanowires at atomic scales with world-leading instrumentation and global collaborations that can be used to develop enhanced devices based on the nanomaterials. Well-defined, stable and predictable electrical contacts are essential for any electrical circuit and electronic device because they control the flow of electricity that is fundamental to the operational capability.

Their experiments found for the first time, that atomic changes to the metal catalyst particle edge can entirely alter electrical conduction and most importantly reveal physical evidence of the effects of a long standing problem for electrical contacts known as barrier inhomogeneity. The study revealed the electrical and physical limits of the materials that will allow nanoengineers to select the properties of manufacturable nanowire devices.

One-of-a-kind multi-probe LT Nanoprobe at Swansea University used to obtain the electrical measurements of nanowires that were correlated to atomic resolution imaging. Credit: Swansea University

One-of-a-kind multi-probe LT Nanoprobe at Swansea University used to obtain the electrical measurements of nanowires that were correlated to atomic resolution imaging. Credit: Swansea University

Dr Lord, recently appointed as a Senior Sêr Cymru II Fellow part-funded by the European Regional Development Fund through the Welsh Government, said: “The experiments had a simple premise but were challenging to optimise and allow atomic-scale imaging of the interfaces. However, it was essential to this study and will allow many more materials to be investigated in a similar way.

“This research now gives us an understanding of these new effects and will allow engineers in the future to reliably produce electrical contacts to these nanomaterials which is essential for the materials to be used in the technologies of tomorrow.

“The new concepts shown here provide interesting possibilities for bridged nanowire devices such as transient electronics and reactive circuit breakers that respond to changes in electrical signals or environmental factors and provide instantaneous reactions to electrical overload.”

The Swansea research team used specialist experimental equipment at the Centre for NanoHealth and collaborated with Professor Quentin Ramasse of the SuperSTEM Laboratory, Science and Facilities Technology Council1-3 and Dr Frances Ross of the IBM Thomas J. Watson Research Center, USA.3 The scientists were able to physically interact with the nanostructures and measure how atomic changes in the materials affected the electrical performance.

Dr. Frances Ross, IBM, USA, added: “”This research shows the importance of global collaboration, particularly in allowing unique instrumentation to be used to obtain fundamental results that allow nanoscience to deliver the next generation of technologies.”

Nanotechnology is the scaling down of everyday materials by scientists to the size of nanometres (one million times smaller than a millimetre on a standard ruler) and is seen as the future of electronic devices. Progressions in scientific and engineering advances are resulting in new technologies such as computer components for smart devices and sensors to monitor our health and the surrounding environment.

Nanotechnology is having a major influence on the Internet of Things which connects everything from our homes to our cars into a web of communication. All of these new technologies require similar advances in electrical circuits and especially electrical contacts that allow the devices to work correctly with electricity.

Silicon has provided enormous benefits to the power electronics industry. But performance of silicon-based power electronics is nearing maximum capacity.

Enter wide bandgap (WBG) semiconductors. Seen as significantly more energy-efficient, they have emerged as leading contenders in developing field-effect transistors (FETs) for next-generation power electronics. Such FET technology would benefit everything from power-grid distribution of renewable-energy sources to car and train engines.

Diamond is largely recognized as the most ideal material in WBG development, owing to its superior physical properties, which allow devices to operate at much higher temperatures, voltages and frequencies, with reduced semiconductor losses.

A main challenge, however, in realizing the full potential of diamond in an important type of FET — namely, metal-oxide-semiconductor field-effect transistors (MOSFETs) — is the ability to increase the hole channel carrier mobility. This mobility, related to the ease with which current flows, is essential for the on-state current of MOSFETs.

Researchers from France, the United Kingdom and Japan incorporate a new approach to solve this problem by using the deep-depletion regime of bulk-boron-doped diamond MOSFETs. The new proof of concept enables the production of simple diamond MOSFET structures from single boron-doped epilayer stacks. This new method, specific to WBG semiconductors, increases the mobility by an order of magnitude. The results are published this week in Applied Physics Letters, from AIP Publishing.

Left: Optical microscope image of the MOSCAPs and diamond deep depletion MOSFETs (D2MOSFETs) of this work. Top right: Scanning electron microscope image of a diamond D2MOSFET under electrical investigation. S: Source, G: Gate, D: Drain. Bottom right: D2MOSFET concept. The on-state of the transistor is ensured thanks to the accumulation or flat band regime. The high mobility channel is the boron-doped diamond epilayer. The off-state is achieved thanks to the deep depletion regime, which is stable only for wide bandgap semiconductors. For a gate voltage larger than a given threshold, the channel is closed because of the deeply and fully depleted layer under the gate. Credit: Institut NÉEL

Left: Optical microscope image of the MOSCAPs and diamond deep depletion MOSFETs (D2MOSFETs) of this work. Top right: Scanning electron microscope image of a diamond D2MOSFET under electrical investigation. S: Source, G: Gate, D: Drain. Bottom right: D2MOSFET concept. The on-state of the transistor is ensured thanks to the accumulation or flat band regime. The high mobility channel is the boron-doped diamond epilayer. The off-state is achieved thanks to the deep depletion regime, which is stable only for wide bandgap semiconductors. For a gate voltage larger than a given threshold, the channel is closed because of the deeply and fully depleted layer under the gate. Credit: Institut NÉEL

In a typical MOSFET structure, an oxide layer and then a metal gate are formed on top of a semiconductor, which in this case is diamond. By applying a voltage to the metal gate, the carrier density, and hence the conductivity, of the diamond region just under the gate, the channel, can be changed dramatically. The ability to use this electric “field-effect” to control the channel conductivity and switch MOSFETS from conducting (on-state) to highly insulating (off-state) drives their use in power control applications. Many of the diamond MOSFETs demonstrated to date rely on a hydrogen-terminated diamond surface to transfer positively charged carriers, known as holes, into the channel. More recently, operation of oxygen terminated diamond MOS structures in an inversion regime, similar to the common mode of operation of silicon MOSFETS, has been demonstrated. The on-state current of a MOSFET is strongly dependent on the channel mobility and in many of these MOSFET designs, the mobility is sensitive to roughness and defect states at the oxide diamond interface where unwanted carrier scattering occurs.

To address this issue, the researchers explored a different mode of operation, the deep-depletion concept. To build their MOSFET, the researchers deposited a layer of aluminum oxide (Al2O3) at 380 degrees Celsius over an oxygen-terminated thick diamond epitaxial layer. They created holes in the diamond layer by incorporating boron atoms into the layer. Boron has one less valence electron than carbon, so including it leaves a missing electron which acts like the addition of a positive charge, or hole. The bulk epilayer functioned as a thick conducting hole channel. The transistor was switched from the on-state to the off-state by application of a voltage which repelled and depleted the holes — the deep depletion region. In silicon-based transistors, this voltage would have also resulted in formation of an inversion layer and the transistor would not have turned off. The authors were able to demonstrate that the unique properties of diamond, and in particular the large band gap, suppressed formation of the inversion layer allowing operation in the deep depletion regime.

“We fabricated a transistor in which the on-state is ensured by the bulk channel conduction through the boron-doped diamond epilayer,” said Julien Pernot, a researcher at the NEEL Institute in France and an author of the paper. “The off-state is ensured by the thick insulating layer induced by the deep-depletion regime. Our proof of concept paves the way in fully exploiting the potential of diamond for MOSFET applications.” The researchers plan to produce these structures through their new startup called DiamFab.

Pernot observed that similar principles of this work could apply to other WBG semiconductors. “Boron is the doping solution for diamond,” Pernot said, “but other dopant impurities would likely be suitable to enable other wide bandgap semiconductors to reach a stable deep-depletion regime.”

The process of extracting natural gas from the earth or transporting it through pipelines can release methane into the atmosphere. Methane, the primary component of natural gas, is a greenhouse gas with a warming potential approximately 25 times larger than carbon dioxide, making it very efficient at trapping atmospheric heat energy. A new chip-based methane spectrometer, that is smaller than a dime, could one day make it easier to monitor for efficiency and leaks over large areas.

Scientists from IBM Thomas J. Watson Research Center in Yorktown Heights, NY, developed the new methane spectrometer, which is smaller than today’s standard spectrometers and more economical to manufacture. In Optica, The Optical Society’s journal for high impact research, the researchers detail the new spectrometer and show that it can detect methane in concentrations as low as 100 parts-per-million.

Low maintenance, high impact

The spectrometer is based on silicon photonics technology, which means it is an optical device made of silicon, the material used to make computer chips. Because the same high-volume manufacturing methods used for computer chips can be applied to make the chip-based methane spectrometer, the spectrometer along with a housing and a battery or solar power source might cost as little as a few hundred dollars if produced in large quantities.

“Compared with a cost of tens of thousands of dollars for today’s commercially available methane-detecting optical sensors, volume-manufacturing would translate to a significant value proposition for the chip spectrometer,” said William Green, leader of the IBM Research team. “Moreover, with no moving parts and no fundamental requirement for precise temperature control, this type of sensor could operate for years with almost no maintenance.”

Such low-cost, robust spectrometers could lead to exciting new applications. For example, the IBM team is working with partners in the oil and gas industry on a project that would use the spectrometers to detect methane leaks, saving companies the time and money involved in trying to find and fix leaks using in-person inspection of thousands of sites.

“During natural gas extraction and distribution, methane can leak into the air when equipment on the well malfunctions, valves get stuck, or there’s a crack in the pipeline,” said Green. “We’re developing a way to use this spectrometer-on-a-chip to create a network of sensors that could be distributed over a well pad, for example. Data from these sensors would be processed with IBM’s physical analytics software to automatically pinpoint the location of a leak as well as quantify the leak magnitude.”

Methane is a trace gas, the classification given to gases that make up less than 1 percent of the volume of Earth’s atmosphere. Although the researchers demonstrated methane detection, the same approach could be used for sensing the presence of other individual trace gases. It could also be used to detect multiple gases simultaneously.

“Our long-term vision is to incorporate these types of sensors into the home and things people use every day such as their cell phones or vehicles. They could be useful for detecting pollution, dangerous carbon monoxide levels or other molecules of interest,” said Eric Zhang, a member of the research team. “Because this spectrometer offers a platform for multispecies detection, it could also one day be used for health monitoring through breath analysis.”

Shrinking the spectrometer

The new device uses an approach known as absorption spectroscopy, which requires laser light at the wavelength uniquely absorbed by the molecule being measured. In a traditional absorption spectroscopy setup, the laser travels through the air, or free-space, until it reaches a detector. Measuring the light that reaches the detector reveals how much light was absorbed by the molecules of interest in the air and can be used to calculate the concentration of them present.

The new system uses a similar approach, but instead of a free-space setup, the laser travels through a narrow silicon waveguide that follows a 10-centimeter-long serpentine pattern on top of a chip measuring 16 square millimeters. Some of the light is trapped inside the waveguide while about 25 percent of the light extends outside of the silicon into the ambient air, where it can interact with trace gas molecules passing nearby the sensor waveguide. The researchers used near infrared laser light (1650 nanometer wavelength) for methane detection.

To increase the sensitivity of the device, the investigators carefully measured and controlled factors that contribute to noise and false absorption signals, fine-tuned the spectrometer’s design and determined the waveguide geometrical parameters that would produce favorable results.

Side-by-side comparison

To compare the new spectrometer’s performance with that of a standard free-space spectrometer, they placed the devices into an environmental chamber and released controlled concentrations of methane. The researchers found that the chip-based spectrometer provided accuracy on-par with the free-space sensor despite having 75 percent less light interacting with the air compared to the free-space design. Furthermore, the fundamental sensitivity of the chip sensor was quantified by measuring the smallest discernable change in methane concentration, showing performance comparable to free-space spectrometers developed in other laboratories.

“Although silicon photonics systems — especially those that use refractive index changes for sensing — have been explored previously, the innovative part of our work was to use this type of system to detect very weak absorption signals from small concentrations of methane, and our comprehensive analysis of the noise and minimum detection limits of our sensor chip,” said Zhang.

The current version of the spectrometer requires light to enter and exit the chip via optical fibers. However, the researchers are working to incorporate the light source and detectors onto the chip, which would create an essentially electrical device with no fiber connections required. Unlike current free-space sensors, the chip then does not require special sample or optical preparation. Next year, they plan to start field testing the spectrometers by placing them into a larger network that includes other off-the-shelf sensors.

“Our work shows that all of the knowledge behind silicon photonics manufacturing, packaging, and component design can be brought into the optical sensor space, to build high-volume manufactured and, in principle, low cost sensors, ultimately enabling an entirely new set of applications for this technology,” said Green.

On October 26, China’s first Gen6 flexible AMOLED line – BOE Chengdu Gen6 flexible AMOLED production line has put into mass production in advance. The production line is built by BOE Technology Group Co., Ltd, a developer in semiconductor display industry as well as an IoT technologies, products and services supplier. The production line’s mass production and products delivery indicate that Chinese enterprises begin to lead the development of the global AMOLED industry in the new display era.

BOE flexible AMOLED display panel

BOE flexible AMOLED display panel

In recent years, Chinese enterprises are accelerating their layouts in new display areas, becoming a crucial base of the global semiconductor display industry. BOE built ChengduGen6 flexible AMOLED production line, which is China’s first full flexible AMOLED line, as well as the world’s second Gen6 flexible AMOLED line that has put into mass production. The line adopts the world’s most advanced evaporation technology and thin film encapsulation technology, making it possible for the display panels to be curved, bendable and foldable.

It is said that BOE Chengdu Gen6 flexible AMOLED production line mainly produces display panels used in mobile terminal products, smart wearable devices and other display products. On the mass production ceremony, BOE delivers its flexible AMOLED display panels to more than ten customers including Huawei, OPPO, vivo, Xiaomi, ZTE and Nubia, enabling more possibilities for future application innovation.

In the flexible AMOLED field, in addition to BOE Chengdu Gen6 flexible AMOLED line that has put into mass production, BOE’s other Gen6 flexible AMOLED line in Mianyang will be put into operation in 2019.

BOE Chief Executive Officer Chen Yanshun said: “BOE has always been providing customers with more innovative, competitive products and solutions. The smooth mass production of Chengdu Gen6 flexible AMOLED line will greatly enhance the company’s comprehensive competitiveness in high-performance mobile phones, mobile displays and other products, so as to meet the market’s growing demands for small and medium-sized high-performance display products, which is of epoch-making significance for accelerating development of Chinese OLED industry and global flexible display industry.”

NVIDIA today announced that it is collaborating with Taiwan’s Ministry of Science and Technology (MOST) to accelerate the development of artificial intelligence across Taiwan’s commercial sector in support of its recently announced AI Grand Plan to help foster domestic AI-related industries.

The collaboration — kicked off with a jointly hosted AI Symposium during NVIDIA’s GPU Technology Conference in Taiwan, which is being attended by more than 1,400 scientists, developers and entrepreneurs — calls for NVIDIA to help MOST promote AI across Taiwan through five initiatives.

“Taiwan has been the epicenter of the PC revolution, and it will serve as a key center for the next industry revolution focused on AI,” said NVIDIA founder and CEO Jensen Huang. “We are delighted to be working closely with MOST to ensure that Taiwan fully harnesses the power of this technological wave.”

“AI is the key to igniting Taiwan’s next industrial revolution, building on the long-established strength of our IT manufacturing capabilities,” said Dr. Liang-Gee Chen, Minister of Science and Technology. “Our focus is on drawing academics, industry and young talent into our AI Grand Plan to create an ecosystem based on AI innovation.”

Under the agreement, the National Center for High-Performance Computing will build Taiwan’s first AI-focused supercomputer powered by NVIDIA® DGX™ AI computing platforms and Volta architecture-based GPUs. Its target is to create a platform for accelerating advanced research and industry applications that next year reaches 4 petaflops of performance – placing it in the top 25 fastest supercomputers in the Top500 list – and 10 petaflops within four years.

In other steps:

  • MOST and NVIDIA’s Deep Learning Institute will train 3,000 developers over the next four years on the use of deep learning in smart manufacturing, the Internet of Things, smart cities and healthcare. Launched last year, the Deep Learning Institute provides hands-on training for developers, data scientists and researchers through self-paced online labs and instructor-led workshops that use open-source frameworks, as well as NVIDIA’s GPU-accelerated deep learning platforms.
  • NVIDIA is rolling out domestically its Inception program to help MOST establish its “Youth Technology Innovation and Entrepreneurship Base” for local AI startups. NVIDIA’s Inception program is a virtual incubator for startups focused on AI and deep learning, providing young companies with hardware grants, marketing support and access to NVIDIA’s larger deep-learning ecosystem. Just last week, it added its 2,000th member company.
  • NVIDIA will support MOST’s overseas talent training program for post-doctorates by offering high-level internship programs.
  • NVIDIA will provide NVIDIA Deep Learning Accelerator (NVDLA) technology for IoT and SoC devices, plus technical support, to MOST’s Project Moon Shot, AI Edge – its NT$4 billion, four-year program to use AI to increase the competitiveness of the domestic semiconductor industry by focusing on memory, sensors and edge products.

And in a related effort, MOST will provide domestic robotics experts with access to NVIDIA DGX Station™ AI deskside supercomputers and NVIDIA Jetson™ TX2 AI modules through the Central and Southern Taiwan Science Parks. NVIDIA is making available DGX-1 systems for MOST’s Formosa Speech Grand Challenge, in which 150 teams from local universities and high schools will compete at the end of October on creating networks capable of Chinese speech recognition. Taiwan’s AI Grand Plan, which was announced in August, aims to create a strong environment for fostering AI innovations and connect with industrial leadership from around the world.