Yearly Archives: 2017

Texas Instruments (TI) (NASDAQ: TXN) today introduced the first 3-channel high-side linear automotive light-emitting diode (LED) controller without internal MOSFETs which gives designers greater flexibility for their lighting designs. The TPS92830-Q1’s novel architecture enables higher power and better thermal dissipation than conventional LED controllers, and are particularly beneficial for automotive LED lighting applications that require high performance and reliability.

Conventional LED drivers integrate the MOSFET, which limits designers’ ability to customize features. With that type of driver, designers often must make significant design modifications to achieve the desired system performance. The TPS92830-Q1 LED controller’s flexible on-board features give designers the freedom to select the best MOSFET for their system requirements. With this new approach, designers can more quickly and efficiently optimize their lighting power designs for automotive system requirements and desired dimming features.

Key features and benefits

  • Flexibility: The on-chip pulse-width modulation (PWM) generator or PWM input enables flexible dimming. Designers can use either the analog control or PWM to manage an output current of more than 150 mA per channel, to power automotive rear combination lamps and daytime running lights.
  • Improved thermal dissipation: By pairing the LED controller with an external MOSFET, the designer can achieve the required high power output while distributing the power across the controller and MOSFET to avoid system overheating. By retaining linear architecture, the TPS92830-Q1 provides improved electromagnetic interference (EMI) and electromagnetic compatibility (EMC) performance.
  • Greater system reliability: Advanced protection and built-in open and short detection features help designers meet original equipment manufacturer (OEM) system reliability requirements. The output current derating feature protects the external MOSFET under high voltage conditions to ensure system reliability.

The TPS92830-Q1 expands TI’s extensive portfolio of LED drivers, design tools and technical resources that help designers implement innovative automotive lighting features.

Smartphones and computers wouldn’t be nearly as useful without room for lots of apps, music and videos.

Devices tend to store that information in two ways: through electric fields (think of a flash drive) or through magnetic fields (like a computer’s spinning hard disk). Each method has advantages and disadvantages. However, in the future, our electronics could benefit from the best of each.

“There’s an interesting concept,” says Chang-Beom Eom, the Theodore H. Geballe Professor and Harvey D. Spangler Distinguished Professor of Materials Science and Engineering at the University of Wisconsin-Madison. “Can you cross-couple these two different ways to store information? Could we use an electric field to change the magnetic properties? Then you can have a low-power, multifunctional device. We call this a ‘magnetoelectric’ device.”

In research published recently in the journal Nature Communications, Eom and his collaborators describe not only their unique process for making a high-quality magnetoelectric material, but exactly how and why it works.

Physics graduate student Julian Irwin checks equipment in the lab of materials science and engineering Professor Chang-Beom Eom, where researchers have produced a material that could exhibit the best qualities of both solid-state and spinning disk digital storage. Credit: Sarah Page/UW-Madison College of Engineering

Physics graduate student Julian Irwin checks equipment in the lab of materials science and engineering Professor Chang-Beom Eom, where researchers have produced a material that could exhibit the best qualities of both solid-state and spinning disk digital storage. Credit: Sarah Page/UW-Madison College of Engineering

Magnetoelectric materials — which have both magnetic and electrical functionalities, or “orders” — already exist. Switching one functionality induces a change in the other.

“It’s called cross-coupling,” says Eom. “Yet, how they cross-couple is not clearly understood.”

Gaining that understanding, he says, requires studying how the magnetic properties change when an electric field is applied. Up to now, this has been difficult due to the complicated structure of most magnetoelectric materials.

In the past, says Eom, people studied magnetoelectric properties using very “complex” materials, or those that lack uniformity. In his approach, Eom simplified not only the research, but the material itself.

Drawing on his expertise in material growth, he developed a unique process, using atomic “steps,” to guide the growth of a homogenous, single-crystal thin film of bismuth ferrite. Atop that, he added cobalt, which is magnetic; on the bottom, he placed an electrode made of strontium ruthenate.

The bismuth ferrite material was important because it made it much easier for Eom to study the fundamental magnetoelectric cross-coupling.

“We found that in our work, because of our single domain, we could actually see what was going on using multiple probing, or imaging, techniques,” he says. “The mechanism is intrinsic. It’s reproducible — and that means you can make a device without any degradation, in a predictable way.”

To image the changing electric and magnetic properties switching in real time, Eom and his colleagues used the powerful synchrotron light sources at Argonne National Laboratory outside Chicago, and in Switzerland and the United Kingdom.

“When you switch it, the electrical field switches the electric polarization. If it’s ‘downward,’ it switches ‘upward,'” he says. “The coupling to the magnetic layer then changes its properties: a magnetoelectric storage device.”

That change in direction enables researchers to take the next steps needed to add programmable integrated circuits — the building blocks that are the foundation of our electronics — to the material.

While the homogenous material enabled Eom to answer important scientific questions about how magnetoelectric cross-coupling happens, it also could enable manufacturers to improve their electronics.

“Now we can design a much more effective, efficient and low-power device,” he says.

The ConFab 2018, to be held at The Cosmopolitan of Las Vegas on May 21-23, is thrilled to announce the newest opening day Keynote speaker, Professor John M. Martinis. John is a Research Scientist who heads up Google’s Quantum AI Lab. He also holds the Worster Chair of Experimental Physics at the University of California, Santa Barbara. The lab is particularly interested in applying quantum computing to artificial intelligence and machine learning, and as one of Google’s quantum computing gurus, John shared the company’s “stretch goal”. That is to build and test a 49-qubit (“quantum bit”) quantum computer by the end of this year. The test will be a milestone in quantum computer technology.

The conference team is also very excited to have IBM distinguished Engineer, Rama Divakaruni – who is responsible for IBM Advanced Process Technology Research – present his Keynote Address: How Artificial Intelligence is driving the “New” Semiconductor Era. Both Keynotes, set for May 21, promise to be outstanding presentations.

Additional outstanding speakers at The ConFab 2018 include:

  • Dan Armbrust, CEO and Co-founder of Silicon Catalyst will present: “Enabling a Startup Ecosystem for Semiconductors” describing the current environment for semiconductor startups.
  • George Gomba, GLOBALFOUNDRIES VP of Technology Research will discuss the EUV lithography project with SUNY Polytechnic Institute now finding its way into advanced semiconductor manufacturing.
  • John Hu, Director of Advanced Technology for Nvidia – John heads up R&D of Advanced IC Process Technologies and programs, Design For Manufacturing, Testchips, and New technology/ IC product.
  • Tom Sonderman, President of Sky Water Technology Foundry will focus on smart manufacturing ecosystems based on big data platform, predictive analytics and IoT.
  • Kou Kuo Suu of ULVAC Japan will delve into manufacturing various types of NVM memory chips, including Phase-Change memory (PCRAM).

More industry experts adding to the conference will be announced soon.  Further event details are available at: www.theconfab.com.

The semiconductor industry continued its upward trend in the third quarter of 2017, notching 12 percent sequential growth with strength across all application markets, according to IHS Markit (Nasdaq: INFO). Global revenue totaled $113.9 billion, up from $101.7 billion in the second quarter of 2017.

As memory prices remain high and the wireless market continues to see strong demand through the fourth quarter, 2017 is shaping up to be a record-breaking year for the semiconductor industry. IHS Markit projects that semiconductor revenue will reach a record-high $428.9 billion in 2017, representing a year-over-year growth rate of 21 percent.

Key growth drivers

All application end markets posted sequential growth over the prior quarter, with wireless communications and data processing categories leading the pack.

Revenue from wireless applications grew faster sequentially in the third quarter of 2017 than any of the other high-level application markets. Semiconductor revenue from wireless applications was a record high $34.8 billion in the third quarter, representing nearly 31 percent of the total semiconductor market. IHS Markit anticipates an even bigger fourth quarter for wireless applications, projecting $37.5 billion in revenue — and more than $131 billion for the full-year 2017.

As the wireless market evolves, this growth can be attributed to a number of factors. ”More complex and comprehensive smartphone systems on a chip are supporting applications such as augmented reality and computational photography,” said Brad Shaffer, senior analyst for wireless semiconductors and applications at IHS Markit. “Premium smartphones have increasing amounts of memory and storage. The radio frequency content in these smartphones has also grown considerably over the past few product generations, with many high-end smartphones now supporting gigabit LTE mobile broadband speeds.”

The memory markets proved once again to be the driving force and highest-growing segment for semiconductors in the third quarter of 2017. “The DRAM industry had another record quarter with $19.8 billion in revenue, exceeding the prior record by more than $3 billion,” said Mike Howard, director for DRAM memory and storage research at IHS Markit. “Prices and shipments were up during the quarter as strong demand for mobile and server DRAM continued to propel the market.”

Top_5_memory

The NAND industry had another record quarter as well, growing 12.9 percent in the third quarter of 2017, with total revenue reaching $14.2 billion. “Pricing was flat in the quarter, as seasonally strong demand driven by the mobile and solid-state drive segments was able to offset moderate shipment growth,” said Walter Coon, director for NAND flash technology research at IHS Markit. “The market is expected to soften exiting 2017 and into early next year, as the industry transition to 3D NAND technology continues to progress and the market enters a traditionally slower demand period.”

Manufacturer moves

Samsung officially passed Intel to become the number-one semiconductor supplier in the world in the third quarter of 2017, growing 14.9 percent sequentially. Intel now comes in at number two, with SK Hynix securing the third rank in terms of semiconductor revenue for the third quarter.

top_5_semiconductor

Among the top 20 semiconductor suppliers, Apple and Advanced Micro Devices (AMD) achieved the highest revenue growth quarter over quarter by 46.6 percent and 34.3 percent, respectively.

There was a good deal of market share movement within the top 10 suppliers throughout the third quarter as well. In terms of semiconductor revenue, Qualcomm surpassed Broadcom Limited to secure the number-five spot, while nVidia made its way into the top 10 ranking for the first time ever. At this time last year, the top five semiconductor companies controlled 40 percent market share of the entire industry. The top five gained 4.2 percent more market share this year over last year, while comprising three memory companies instead of the previous two.

More information on this topic can be found in the latest release of the Semiconductor Competitive Landscaping Tool (CLT) from the IHS Markit Semiconductor Competitive Landscape CLT Intelligence Service.

Researchers at the University of Liverpool have made a discovery that could improve the conductivity of a type of glass coating which is used on items such as touch screens, solar cells and energy efficient windows.

Coatings are applied to the glass of these items to make them electrically conductive whilst also allowing light through. Fluorine doped tin dioxide is one of the materials used in commercial low cost glass coatings as it is able to simultaneously allow light through and conduct electrical charge but it turns out that tin dioxide has as yet untapped potential for improved performance.

Compensating acceptor fluorine interstitials (light green) dramatically reduce electronic performance of tin dioxide transparent conducting glass coatings doped with fluorine atoms (dark green). Credit: University of Liverpool

Compensating acceptor fluorine interstitials (light green) dramatically reduce electronic performance of tin dioxide transparent conducting glass coatings doped with fluorine atoms (dark green). Credit: University of Liverpool

In a paper published in the journal Advanced Functional Materials, physicists identify the factor that has been limiting the conductivity of fluorine doped tin dioxide, which should be highly conductive because fluorine atoms substituted on oxygen lattice sites are each expected to give an additional free electron for conduction.

The scientists report, using a combination of experimental and theoretical data, that for every two fluorine atoms that give an additional free electron, another one occupies a normally unoccupied lattice position in the tin dioxide crystal structure.

Each so-called “interstitial” fluorine atom captures one of the free electrons and thereby becomes negatively charged. This reduces the electron density by half and also results in increased scattering of the remaining free electrons. These combine to limit the conductivity of fluorine doped tin dioxide compared with what would otherwise be possible.

PhD student Jack Swallow, from the University’s Department of Physics and the Stephenson Institute for Renewable Energy, said: “Identifying the factor that has been limiting the conductivity of fluorine doped tin dioxide is an important discovery and could lead to coatings with improved transparency and up to five times higher conductivity, reducing cost and enhancing performance in a myriad of applications from touch screens, LEDs, photovoltaic cells and energy efficient windows.”

The researchers now intend to address the challenge of finding alternative novel dopants that avoid these inherent drawbacks.

Soitec, a designer and manufacturer of semiconductor materials for the electronics industry, today announced the latest generation of silicon-on-insulator (SOI) substrates in its Imager-SOI product line designed specifically for fabricating front-side imagers for near-infrared (NIR) applications including advanced 3D image sensors. The new SOI wafers from Soitec are now available in large volumes with high maturity to meet the needs of customers in the growing market for 3D cameras used in augmented reality (AR) and virtual reality (VR), facial-recognition security systems, advanced human/machine interfaces and other emerging applications.

“Our newest Imager-SOI substrates represent a major achievement for our company and a smart way to increase performance in NIR spectrum domain, accelerating new applications in the growing 3D imaging and sensing markets,” said Christophe Maleville, executive vice president of the Digital Electronics Business Unit at Soitec. “Innovative sensor design on SOI is achieved by leveraging our advanced know-how in ultrathin material layer transfer and our extensive manufacturing experience.”

The new SOI substrate makes it possible to simply extend the operating range of high resolution silicon based CMOS image sensors into the NIR spectrum. This optimized version of SOI substrate greatly improves the signal to noise ratio in the NIR spectrum.

The market for 3D imaging and sensing devices is forecast to grow at a CAGR of 37.7 percent over the next five years and reach US$9 billion in sales by 2022, according to Yole Développement. The market research and consulting firm predicts that 2018 will likely see a massive influx of products, with the first applications in mobile electronics and computing.*

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the nanoelectronics of the future: While graphene – a one atom thin, honeycomb-shaped carbon layer – is a conductive material, it can become a semiconductor in the form of nanoribbons. This means that it has a sufficiently large energy or band gap in which no electron states can exist: it can be turned on and off – and thus may become a key component of nanotransistors.

The microscopic ribbons lie criss-crossed on the gold substrate. Credit: EMPA

The microscopic ribbons lie criss-crossed on the gold substrate. Credit: EMPA

The smallest details in the atomic structure of these graphene bands, however, have massive effects on the size of the energy gap and thus on how well-suited nanoribbons are as components of transistors. On the one hand, the gap depends on the width of the graphene ribbons, while on the other hand it depends on the structure of the edges. Since graphene consists of equilateral carbon hexagons, the border may have a zigzag or a so-called armchair shape, depending on the orientation of the ribbons. While bands with a zigzag edge behave like metals, i.e. they are conductive, they become semiconductors with the armchair edge.

This poses a major challenge for the production of nanoribbons: If the ribbons are cut from a layer of graphene or made by cutting carbon nanotubes, the edges may be irregular and thus the graphene ribbons may not exhibit the desired electrical properties.

Creating a semiconductor with nine atoms

Empa researchers in collaboration with the Max Planck Institute for Polymer Research in Mainz and the University of California at Berkeley have now succeeded in growing ribbons exactly nine atoms wide with a regular armchair edge from precursor molecules. The specially prepared molecules are evaporated in an ultra-high vacuum for this purpose. After several process steps, they are combined like puzzle pieces on a gold base to form the desired nanoribbons of about one nanometer in width and up to 50 nanometers in length.

These structures, which can only be seen with a scanning tunneling microscope, now have a relatively large and, above all, precisely defined energy gap. This enabled the researchers to go one step further and integrate the graphene ribbons into nanotransistors. Initially, however, the first attempts were not very successful: Measurements showed that the difference in the current flow between the “ON” state (i.e. with applied voltage) and the “OFF” state (without applied voltage) was far too small. The problem was the dielectric layer of silicon oxide, which connects the semiconducting layers to the electrical switch contact. In order to have the desired properties, it needed to be 50 nanometers thick, which in turn influenced the behavior of the electrons.

However, the researchers subsequently succeeded in massively reducing this layer by using hafnium oxide(HfO2) instead of silicon oxide as the dielectric material. The layer is therefore now only 1.5 nanometers thin and the “on”-current is orders of magnitudes higher.

Another problem was the incorporation of graphene ribbons into the transistor. In the future, the ribbons should no longer be located criss-cross on the transistor substrate, but rather aligned exactly along the transistor channel. This would significantly reduce the currently high level of non-functioning nanotransistors.

Micron Technology Inc. (Nasdaq:MU) today announced that the company has appointed Derek Dicker as vice president and general manager of the Storage Business Unit.

In this role, Dicker will be responsible for leading and expanding Micron’s solid-state storage business. This includes building world-class storage solutions to address the growing opportunity in large market segments like cloud, enterprise and client computing. He will report to Sumit Sadana, Micron’s executive vice president and chief business officer.

Dicker has 20 years of experience in the semiconductor industry, including sales, marketing and executive roles at Intel, IDT, PMC-Sierra and Microsemi Corporation. Most recently, he served as vice president and business unit manager of performance storage at Microsemi, where he led a global organization and drove all general management functions.

“Derek’s deep technical expertise and experience in the storage industry make him the ideal choice to lead our storage business,” Sadana said. “His strategic mindset, coupled with his outstanding track record of business leadership, will help us fully capitalize on our leading-edge NAND technologies and solutions.”

Dicker holds a bachelor’s degree in computer science and engineering from the University of California, Los Angeles.

 

High-power white LEDs face the same problem that Michigan Stadium faces on game day — too many people in too small of a space. Of course, there are no people inside of an LED. But there are many electrons that need to avoid each other and minimize their collisions to keep the LED efficiency high. Using predictive atomistic calculations and high-performance supercomputers at the NERSC computing facility, researchers Logan Williams and Emmanouil Kioupakis at the University of Michigan found that incorporating the element boron into the widely used InGaN (indium-gallium nitride) material can keep electrons from becoming too crowded in LEDs, making the material more efficient at producing light.

This is the crystal structure of a BInGaN alloy. Using atomistic calculations and high-performance supercomputers at the NERSC facility, Logan Williams and Emmanouil Kioupakis at the University of Michigan predicted that incorporating boron into the InGaN active region of nitride LEDs reduces or even eliminates the lattice mismatch with the underlying GaN layers while keeping the emission wavelength approximately the same. The lattice matching enables the growth of thicker active regions and increases the efficiency of LEDs at high power. Credit: Michael Waters and Logan Williams

This is the crystal structure of a BInGaN alloy. Using atomistic calculations and high-performance supercomputers at the NERSC facility, Logan Williams and Emmanouil Kioupakis at the University of Michigan predicted that incorporating boron into the InGaN active region of nitride LEDs reduces or even eliminates the lattice mismatch with the underlying GaN layers while keeping the emission wavelength approximately the same. The lattice matching enables the growth of thicker active regions and increases the efficiency of LEDs at high power. Credit: Michael Waters and Logan Williams

Modern LEDs are made of layers of different semiconductor materials grown on top of one another. The simplest LED has three such layers. One layer is made with extra electrons put into the material. Another layer is made with too few electrons, the empty spaces where electrons would be are called holes. Then there is a thin middle layer sandwiched between the other two that determines what wavelength of light is emitted by the LED. When an electrical current is applied, the electrons and holes move into the middle layer where they can combine together to produce light. But if we squeeze too many electrons in the middle layer to increase the amount of light coming out of the LED, then the electrons may collide with each other rather than combine with holes to produce light. These collisions convert the electron energy to heat in a process called Auger recombination and lower the efficiency of the LED.

A way around this problem is to make more room in the middle layer for electrons (and holes) to move around. A thicker layer spreads out the electrons over a wider space, making it easier for them to avoid each other and reduce the energy lost to their collisions. But making this middle LED layer thicker isn’t as simple as it sounds.

Because LED semiconductor materials are crystals, the atoms that make them up must be arranged in specific regular distances apart from each other. That regular spacing of atoms in crystals is called the lattice parameter. When crystalline materials are grown in layers on top of one another, their lattice parameters must be similar so that the regular arrangements of atoms match where the materials are joined. Otherwise the material gets deformed to match the layer underneath it. Small deformations aren’t a problem, but if the top material is grown too thick and the deformation becomes too strong then atoms become misaligned so much that they reduce the LED efficiency. The most popular materials for blue and white LEDs today are InGaN surrounded by layers of GaN. Unfortunately, the lattice parameter of InGaN does not match GaN. This makes growing thicker InGaN layers to reduce electron collisions challenging.

Williams and Kioupakis found that by including boron in this middle InGaN layer, its lattice parameter becomes much more similar to GaN, even becoming exactly the same for some concentrations of boron. In addition, even though an entirely new element is included in the material, the wavelength of light emitted by the BInGaN material is very close to that of InGaN and can be tuned to different colors throughout the visible spectrum. This makes BInGaN suitable to be grown in thicker layers, reducing electron collisions and increasing the efficiency of the visible LEDs.

Although this material is promising to produce more efficient LEDs, it is important that it can be realized in the laboratory. Williams and Kioupakis have also shown that BInGaN could be grown on GaN using the existing growth techniques for InGaN, allowing quick testing and use of this material for LEDs. Still, the primary challenge of applying this work will be to fine tune how best to get boron incorporated into InGaN at sufficiently high amounts. But this research provides an exciting avenue for experimentalists to explore making new LEDs that are powerful, efficient, and affordable at the same time.

Transphorm Inc., a designer and manufacturer of highest reliability (JEDEC and AEC-Q101 qualified) 650V gallium nitride (GaN) semiconductors, announced it received a $15 million investment from Yaskawa Electric Corporation. This news comes only a few weeks after Yaskawa revealed its integrated Σ-7 F servo motor relies on Transphorm’s high-voltage (HV) GaN to deliver unprecedented performance and power density. Transphorm intends to allocate the funds to various areas of its GaN product development.

“We’ve seen the benefits of working with gallium nitride from the R&D phases through to the application development phases of our products, such as photovoltaic converters and the integrated Σ-7 F servo motor,” said Yukio Tsutsui, General Manager of Corporate R&D Center from Yaskawa. “We look ahead to further developments from Transphorm and its cutting-edge technology.”

The integrated Σ-7 F products resulting from the companies’ co-development serves one of the core target markets that can benefit most from HV GaN: servo motors. The technology is also an optimal solution for automotive systems, data center and industrial power supplies, renewable energy and other broad industrial applications.

“Transphorm has consistently prioritized the quality and reliability of our GaN platform,” said Dr. Umesh Mishra, Chairman, CTO and co-founder of Transphorm. “That focus leads to strong customer relationships with visionaries such as Yaskawa and companies that not only innovate, but also influence market growth by demonstrating GaN’s real-world impact. Receiving Yaskawa’s recent support illustrates the rising confidence in GaN while underscoring its reliability.”