Deca tips new M-Series chip-scale packaging offering

November 7, 2012 – Deca Technologies has introduced a new chip-scale packaging (CSP) product line offering a rugged, fully molded packaging technology in ball-grid array (BGA) style formats that eliminate the need for laminate substrates.

A year ago Deca launched its inaugural wafer-level chip-scale packaging (WLCSP) technology "derivatives," developed with help from solar tech firm SunPower, promising a combination of speed, low cost, and flexibility. Much of the technology behind its work, though, was customized and deeply proprietary, with few details made available.

Nonetheless, industry response to the WLCSP offering "has been very strong," with multiple customers now in production and many more undergoing qualification, claims Tim Olson, Deca president/CEO.

The company’s new M-Series CSP line, geared for applications where the WLCSP option isn’t a good fit, features an "Adaptive Patterning" design/patterning process that allows features such as vias and redistribution traces to dynamically align to shifting die within an embedded device structure — creating a unique design for each device during the manufacturing process. The company says the methodology integrates a fixed design pattern with an adaptive region to resemble classic wirebond, but realized through a wafer-level build-up flow. With an additional "dimensional inspection" step and processing through an automated design software, a unique design is created for every device within a molded panel, removing the barrier of a cost-effective embedded flow, the company claims.

The M-Series CSP is now sampling "to a limited set of customers," with broader availability planned for 2013, the company says.

Dr. Phil Garrou, SST‘s resident expert and blogger about all things advanced packaging, is digging into the details of Deca’s new CSP and "adaptive patterning" offering — look to his Insights from the Leading Edge (IFTLE) blog for an analysis in the coming days.

POST A COMMENT

Easily post a comment below using your Linkedin, Twitter, Google or Facebook account. Comments won't automatically be posted to your social media accounts unless you select to share.