By Pete Singer
Speaking at imec’s International Technology Forum USA yesterday afternoon at the Marriott Marquis, Luc Van den Hove, president and CEO of imec, provided a glimpse of society’s future and explained how semiconductor technology will play a key role. From everything the IoT to early diagnosis of cancer through cell sorters, liquid biopsies and high-performance sequencing, technology will enable “endless complexity increase,” he said.
Other developments, almost all of which are being worked on at imec, include self-learning neuromorphic chips, brain implants, artificial intelligence, 5G, IoT and sensors, augmented and virtual reality, high resolution (5000 ppi) OLED displays, EOG based eye tracking and haptic feedback devices. He also acknowledged the critical importance of security issues, but suggested a solution. He noted that each chip has its own fingerprint due to nanoscale variability. That’s been a problem for the industry but we could “turn this limitation into an advantage,” he said, with an approach called PUFs — Physical Unclonable Functions (Figure 1).
At the forum, imec also announced that its researchers, in collaboration with scientists from KU Leuven in Belgium and Pisa University in Italy, have performed the first material-device-circuit level co-optimization of field-effect transistors (FETs) based on 2D materials for high-performance logic applications scaled beyond the 10nm technology node. Imec also presented novel designs that would allow using mono-layer 2D materials to enable Moore’s law even below 5nm gate length. Additionally, imec announced that it demonstrated an electrically functional 5nm solution for Back-End-of-Line interconnects.
FETs based on 2D materials
2D materials, a family of materials that form two-dimensional crystals, may be used to create the ultimate transistor with a channel thickness down to the level of single atoms and gate length of few nanometers. A key driver that allowed the industry to follow Moore’s Law and continue producing ever more powerful chips was the continued scaling of the gate length. To counter the resulting negative short-channel effects, chip manufacturers have already moved from planar transistors to FinFETs. They are now introducing other transistor architectures such as nanowire FETs. The work reported by imec looks further, replacing the transistor channel material, with 2D materials as some of the prime candidates.
In a paper published in Scientific Reports, the imec scientists and their colleagues presented guidelines on how to choose materials, design the devices and optimize performance to arrive at circuits that meet the requirements for sub-10nm high-performance logic chips. Their findings demonstrate the need to use 2D materials with anisotropicity and a smaller effective mass in the transport direction. Using one such material, monolayer black-phosphorus, the researchers presented novel device designs that pave the way to even further extend Moore’s law into the sub-5nm gate length. These designs reveal that for sub-5nm gate lengths, 2D electrostatics arising from gate stack design become more of a challenge than direct source-to-drain tunneling. These results are very encouraging, because in the case of 3D semiconductors, such as Si, scaling gate length so aggressively is practically impossible.
“2D materials, with the atomically-precise dimension control they enable, promise to become key materials for future innovations. With advancing R&D, we see opportunities emerging in domains such as photonics, optoelectronics, (bio)sensing, energy storage, photovoltaics, and also transistor scaling. Many of these concepts have already been demonstrated in the labs,” says Iuliana Radu, distinguished member of technical staff at imec. “Our latest results presented in Scientific Reports, show how 2D materials could be used to scale FETs for very advanced technology nodes.”
5nm Solution for BEOL
The announced electrically functional solution for 5nm back-end-of-line (BEOL) is a full dual-damascene module in combination with multi-patterning and multi-blocking. Scaling boosters and aggressive design rules pave the way to even smaller dimensions.
As R&D progresses towards the 5nm technology node, the tiny Cu wiring schemes in the chips’ BEOL are becoming more complex and compact. Shrinking the dimensions also reduces the wires cross-sectional area, driving up the resistance-capacitance product (RC) of the interconnect systems and thus increasing signal delay. To overcome the RC delay challenge and enable further improvements in interconnect performance, imec explores new materials, process modules and design solutions for future chip generations.
One viable option is to extend the Cu-based dual-damascene technology – the current workhorse process flow for interconnects – into the next technology nodes. Imec has demonstrated that the 5nm BEOL can be realized with a full dual-damascene module using multi-patterning solutions. With this flow, trenches are created with critical dimensions of 12nm at 16nm. Metal-cuts (or blocks) perpendicular to the trenches are added in order to create electrically functional lines and then the trenches are filled with metal. Area scaling is further pushed through the introduction of fully self-aligned vias. Moreover, aggressive design rules are explored to better control the variability of the metal tip-to-tips (T2Ts).
Beyond 5nm, imec is exploring alternative metals that can potentially replace Cu as a conductor. Among the candidates identified, low-resistive Ruthenium (Ru) demonstrated great promise. The imec team has realized Ru nanowires in scaled dimensions, with 58nm2 cross-sectional area, exhibiting a low resistivity, robust wafer-level reliability, and oxidation resistance – eliminating the need for a diffusion barrier.
“The emergence of RC delay issues started several technology nodes ago, and has become increasingly more challenging at each node. Through innovations in materials and process schemes, new BEOL architectures and system/technology co-optimization, we can overcome this challenge as far as the 5nm node”, said Zsolt Tokei, imec’s director of the nano-interconnect program. “Imec and its partners have shown attainable options for high density area scaled logic blocks for future nodes, which will drive the supplier community for future needs.”
For the longer term, imec is investigating different options including but not limited to alternative metals, insertion of self-assembled monolayers or alternative signaling techniques such as low-energy spin-wave propagation in magnetic waveguides, exploiting the electron’s spin to transport the signal. For example, the researchers have experimentally shown that spin waves can travel over several micrometers, the distance required by short and medium interconnects in equivalent spintronic circuits.
Headlines such as “endless…” never fail to irritate. In this case we have “endless complecity increase”. This merely means that we will never actually reach the practical limit (whatever that might be). Realistic road-plans with estimates beyond are far more illuminating.