Category Archives: 3D Integration

BY GUIDO GROESENEKEN, imec fellow

To be able to guarantee the reliability of transistors, we have been conducting research for some years now at imec to see what happens when transistors operate properly and when they fail. We’ve been doing this in terms of circuits, devices and materials – and sometimes right down to the level of atoms. The insights that we gather from this work help us to provide the right feedback to the process technol- ogists, who in turn are able to make the transistors more reliable. It is particularly interesting to note that in recent years the knowledge we have gained about these failure mechanisms can also be applied to other areas. These insights no longer only serve to solve problems, but are the basis for innovative and surprising solutions in very diverse domains.
Last year, imec spent a lot of time working on self- learning chips, data security codes, FinFET biosensors and computer systems that can correct themselves. These are innovations that draw on the knowledge present in imec’s reliability group.

Self-learning chips

For example, take the self-learning or neuromorphic chip that gave imec such extensive coverage in the media in 2017. The development of this chip is based, among other things, on our knowledge of “resistive RAM” or RRAM memories, which use the breakdown of an oxide to switch a memory bit on or off (0 or 1). This oxide breakdown – which was previously (and still is) a reliability problem – occurs because a conductive path is created through the oxide, known as a filament. However, the work conducted by imec’s reliability group has demonstrated that not only can you create a filament or make it disappear, but that there are intermediate levels as well, which means that the strength of the filament can be controlled. And that is precisely what happens in our brains: the connec- tions between neurons can become stronger or weaker according to the occurrence they are processing or the learning process they use, etc. This means that these RRAM filaments can be used in chips that work like our brains. It was this insight that provided us with the foundation for the development of imec’s neuromorphic chip, which – as has been demonstrated – can even compose music.

Data security

Since recently we are also working closely with COSIC, an imec research group at KU Leuven that specializes in computer security and cryptography. Also here we can draw on our knowledge of transistor breakdown mechanisms. These can be used to create and read out a fingerprint that is unique for each chip and that cannot be predicted, hence the name ‘physically unclonable functions’ (or PUFs). This unique fingerprint makes it possible to ascertain the identity of chips in data exchanges and thus to prevent hacking by means of rogue chips.

The phenomenon of ‘Random Telegraph Noise’, which has long been known in the area of transistor reliability, could also be used as a security fingerprint. Random telegraph noise is a name for sudden jumps in voltage or current levels as the result of the random trapping of charges in traps within the gate insulation of a transistor. This phenomenon is unpredictable and random, and hence it could also be perfectly usable as PUF. What was once a problem for us – the breakdown of oxides or the existence of random telegraph noise – is now at the base of major new solutions for computer security.

Biosensors

A third example of discipline-overlapping innovation brings us to the world of life sciences. FinFET transistors are essential for the current and future generations of computer chips. As a result of the research carried out in our group, we have now found out a great deal about the way the work, including their failure mechanisms, etc. So much so that we can now explore the possibility to use them as biosensors. What happens is that biomolecules have a certain charge and when that charge comes into the vicinity of a FinFET, the current in the FinFET will be influ- enced. As a result, there is the potential that the presence of a single biomolecule can be detected by such a FinFET.

Self-healing chips

And, finally, we are also working with system architects to produce reliable chips, even with transistors that are no longer reliable. Extremely small transistors with dimen- sions smaller than 5 nanometers can be very variable and the way they behave is unpredictable. For that reason we are working with system architects on solutions such as self- healing chips, based among other things on the existing models of the failure mechanisms that we provide them with. These self-healing chips will contain monitors that detect local errors. A smart controller then interprets this information and decides how to solve the problem, after which actuators are directed by the controller to carry out the task required.

What about scaling?

Numerous methods are currently being investigated to ensure that transistors can still be miniaturized and improved for as long as possible, as propounded in Moore’s Law. To do so, the classic transistor architecture has already been replaced by a FinFET architecture and in the future this will evolve even to nanosheets or nanowires. Materials other than silicon, with greater mobility, are also being looked at, such as III-V materials (germanium for pMOS and InGaAs for nMOS).

In the choice made for these future architecture, it is extremely important to also look right from the start to the failure mechanisms and reliability of the new solutions.

As an example, last year, our reliability team focused extensively on III-V transistors. Although these transistors score well in terms of mobility, their stability is still one of the main challenges remaining before we are able to take the next step and start manufacturing. The insulation layers in III-V transistors contain a lot of traps that cause this insta- bility in transistor characteristics. Understanding this phenomenon is essential if we are to find a solution for it. So, a breakthrough in this area is needed urgently and our results, which were published in a recent IEDM paper, are certainly a step in the right direction. In the invited paper by Jacopo Franco these instabilities are first analyzed in detail. Then, based on this analysis, practical guidelines are given for the development of III-V gate stacks that offer sufficient reliability.

It’s very difficult to look ahead even further into the future, because as the end of Moore’s Law approaches, increasing numbers of different technologies and concepts are already on the radar (quantum computers, 2D materials, neuro- morphic computers, spinwave logic, etc.). However, none of these concepts has yet made a real breakthrough. But in my view 2017 was the year in which the industry began to take a strong interest in quantum computers, with major investments from important players such as Google and Intel. Imec also plans to play a major role in this field, with the launch of a new program on quantum computing, gathering the extensive expertise available. In the past, quantum computing has been considered more as a purely academic field of research – something of value for physi- cists at universities, but not for engineers and companies. So perhaps the breakthrough of industrial quantum computing will be the next milestone in the history of electronics. Or perhaps this milestone will come from a totally unexpected angle – by combining knowledge and people from entirely different disciplines, creating totally new ideas and concepts. Only the future will tell us!

Research included in the March Update to the 2018 edition of IC Insights’ McClean Report shows that fabless IC suppliers accounted for 27% of the world’s IC sales in 2017—an increase from 18% ten years earlier in 2007.  As the name implies, fabless IC companies do not operate an IC fabrication facility of their own.

Figure 1 shows the 2017 fabless company share of IC sales by company headquarters location.  At 53%, U.S. companies accounted for the greatest share of fabless IC sales last year, although this share was down from 69% in 2010 (due in part to the acquisition of U.S.-based Broadcom by Singapore-based Avago). Broadcom Limited currently describes itself as a “co-headquartered” company with its headquarters in San Jose, California and Singapore, but it is in the process of establishing its headquarters entirely in the U.S. Once this takes place, the U.S. share of the fabless companies IC sales will again be about 69%.

Figure 1

Figure 1

Taiwan captured 16% share of total fabless company IC sales in 2017, about the same percentage that it held in 2010.  MediaTek, Novatek, and Realtek each had more than $1.0 billion in IC sales last year and each was ranked among the top-20 largest fabless IC companies.

China is playing a bigger role in the fabless IC market.  Since 2010, the largest fabless IC marketshare increase has come from the Chinese suppliers, which captured 5% share in 2010 but represented 11% of total fabless IC sales in 2017.  Figure 2 shows that 10 Chinese fabless companies were included in the top-50 fabless IC supplier list in 2017 compared to only one company in 2009. Unigroup was the largest Chinese fabless IC supplier (and ninth-largest global fabless supplier) in 2017 with sales of $2.1 billion. It is worth noting that when excluding the internal transfers of HiSilicon (over 90% of its sales go to its parent company Huawei), ZTE, and Datang, the Chinese share of the fabless market drops to about 6%.

Figure 2

Figure 2

European companies held only 2% of the fabless IC company marketshare in 2017 as compared to 4% in 2010. The loss of share was due to the acquisition of U.K.-based CSR, the second-largest European fabless IC supplier, by U.S.-based Qualcomm in 1Q15 and the purchase of Germany-based Lantiq, the third-largest European fabless IC supplier, by Intel in 2Q15.  These acquisitions left U.K.-based Dialog ($1.4 billion in sales in 2017) and Norway-based Nordic ($236 million in sales in 2017) as the only two European-based fabless IC suppliers to make the list of top-50 fabless IC suppliers last year.

The fabless IC business model is not so prominent in Japan or in South Korea.  Megachips, which saw its 2017 sales jump by 40% to $640 million, was the largest Japan-based fabless IC supplier.  The lone South Korean company among the top-50 largest fabless suppliers was Silicon Works, which had a 15% increase in sales last year to $605 million.

Synopsys, Inc. (Nasdaq: SNPS) today announced it has acquired Silicon and Beyond Private Limited, a provider of high-speed SerDes technology used in data intensive applications such as machine learning, cloud computing, and networking. This acquisition demonstrates Synopsys’ continued focus on next-generation SerDes solutions, addressing the need for greater amounts of reliable data transfer between chips, backplane, and extended range optical interconnects. The acquisition also adds a team of R&D engineers with high-speed SerDes expertise to help designers meet their evolving design requirements.

The terms of the deal, which is not material to Synopsys financials, are not being disclosed.

“Silicon and Beyond’s high-speed SerDes technology enables designers to implement reliable, high-speed connectivity across long-reach channels in high-end computing applications,” said Joachim Kunkel, general manager of the Solutions Group at Synopsys. “This acquisition underscores Synopsys’ commitment to expanding our DesignWare IP portfolio to help designers meet the challenging bandwidth and power requirements of advanced data-intensive SoCs.”

Synopsys is a provider of high-quality, silicon-proven IP solutions for SoC designs. The broad DesignWare IP portfolio includes logic libraries, embedded memories, embedded test, analog IP, wired and wireless interface IP, security IP, embedded processors and subsystems.

 

Bringing together a technical program that encompasses ‘big integration’ of a number of critical industry trends – machine learning, IoT, artificial intelligence, wearable/implantable biomedical applications, big data, and cloud computing – the 2018 Symposia on VLSI Technology & Circuits will showcase a convergence of technologies needed for ‘smart living.’ As the microelectronics industry’s premiere international conference covering technology, circuits, and systems, the Symposia continues to define the evolution of innovations that will shape the future of our increasingly connected world.

The Symposia theme of “Technology, Circuits & Systems for Smart Living” connects the related plenary presentations, panel discussions, focus sessions, short courses, along with a new Friday Forum on machine learning to provide a unique synergy between advanced technology developments, innovative circuit design, and the applications that they enable – as part of our global society’s transition to a new frontier of smart, connected devices and systems that change the way humans interact with technology – and with each other.

“This year’s Technology program is focused on the critical building blocks needed to realize a truly integrated IoT,” said Mukesh Khare, Symposium on VLSI Technology general chair. “Advanced memory technologies for AI and machine learning, the next wave of advanced computing (supercomputing/cloud/neuromorphic), the cutting edge of CMOS scaling (beyond 5nm/nanowire devices), and the advanced low-power sensors needed to connect them all are just some of the highlights of the Technology program.”

“The Circuits program will examine how the next wave of computing systems need to be designed to realize the potential of AI, machine learning, SOC technology, wearable/implantable biomedical systems, and the IoT,” explained Gunther Lehmann, Symposium on VLSI Circuits general chair. “A demonstration session that showcases real-life applications is designed to enable conference participants to see these innovations first hand.”

The Symposia will also include a series of joint focus sessions that include invited and contributed papers on topics of mutual interest to both technology and circuit attendees. As part of the unique Symposia program, these joint Technology & Circuits focus sessions enable participants to engage in meaningful interaction with their colleagues in different disciplines. In addition, there will be a joint evening panel session by leading industry experts to address critical issues surrounding major industry developments.

Capping off the joint Symposia program will be a series of nine presentations comprising the Friday Forum on machine learning, a subject area that continues to evolve as an impactful driver of the integrated systems that are part of the Symposia’s “Smart Living” theme.

The annual Symposium on VLSI Technology & Circuits will be held at the Hilton Hawaiian Village in Honolulu, Hawaii from June 19-21, 2018, with Short Courses held on June 18 and a special Friday Forum dedicated to machine learning/AI topics on June 22. The two conferences have been held together since 1987, providing an opportunity for the world’s top device technologists, circuit and system designers to exchange leading edge research on microelectronics technology, with alternating venues between Hawaii and Japan. A single registration enables participants to attend both Symposia.

The Symposium on VLSI Technology is sponsored by the IEEE Electron Devices Society and the Japan Society of Applied Physics, in cooperation with the IEEE Solid State Circuits Society.

The Symposium on VLSI Circuits is sponsored by the IEEE Solid State Circuits Society and the Japan Society of Applied Physics, in cooperation with the Institute of Electronics, Information and Communication Engineers.

By Ando Yoichiro, SEMI Japan

In Tokyo, Shanghai, Moscow, London, Paris or New York – wherever you are in the world –Japanese vehicles passing by on the roadways are a common sight. Three big reasons are their high quality, reliability and engineering. But Japan’s automakers are also legendary for their industry breakthroughs. A few highlights:

  • In 1981, Honda introduced the first commercially available map-based car navigation system. The carmaker’s Electro Gyro-Cator used a gyroscope to detect rotation and other movements of the car.
  • In 1990, Mazda equipped its COSMO Eunos with the world’s first built-in GPS-navigation system.
  • In 1997, Toyota launched the world’s first mass-produced hybrid car — Prius.
  • In 1997, Toyota unveiled the world’s first production laser adaptive cruise control on its Celsior.
  • In 2009, Mitsubishi rolled out the world’s first mass-produced electric car – i-MiEV.

Off the roadways and often unheralded, it is supply chain companies including Japanese semiconductor makers that were a key engine of these innovations as they continue their rich history of driving automotive advances. Here’s a closer look at some of the key players and why they matter.

Who Makes Automotive Semiconductors?

Unlike other semiconductors, automotive chips are manufactured not only by integrated device manufacturers (IDMs) but also by captive fabs and automotive components makers such as Toyota and Denso.

Denso, headquartered in Aichi prefecture, started in 1949 as a spin-off of Toyota’s electric components unit. Since 2009, the company has been the world’s largest automotive components supplier. Because Denso’s chips are mostly consumed internally, the company’s manufacturing revenue is not publicly available, but analysts estimate Denso’s chip business exceeds 200 billion JPY or USD $1.9 billion.

Denso fab (source: Denso)

Denso fab (source: Denso)

Denso manufactures semiconductor components at two locations. Its Kota plant in Aichi prefecture manufactures power and logic chips, and the company’s Iwate (Iwate prefecture) facility, acquired from Fujitsu in 2012, produces semiconductor wafers and sensors.

Denso is developing SiC wafers for its power chips and plans to manufacture SiC inverters by 2020. Recently, the company announced joint research on Ga2O3 for power devices with FLOSFIA, a tech startup spun off from Kyoto University. In 2017, Denso established a semiconductor IP design company, NSITEXE, in Tokyo to design semiconductor IP cores – the semiconductor components that are key to autonomous driving.

Toyota has been manufacturing semiconductor chips at its Hirose Plant since 1989. The semiconductor fab design and manufacturing technologies originated at Toshiba and moved to Toyota under a technology transfer agreement signed in 1987. In the power semiconductor arena, Toyota is jointly developing SiC devices with Denso and Toyota Central Research and Development Labs.

Other car and component makers like Honda, Nissan, Hitachi Automotive Systems, Aishin Seiki and Calsonic Kansei are also developing and designing semiconductor chips.

Microcontroller Units                                     

Microcontrollers (MCUs) were first employed in automobiles in the late 1970s to electronically control engines for higher fuel efficiency. Today, up to 80 MCUs are typically used in a car for powertrain controls (engine, fuel management and fuel injection), body controls (seat, door, window, air conditioning and lighting), safety controls (brake, EPS, suspensions, air bags and anti-collision) and infotainment.

In December 2015, the microcontroller unit (MCU) supply chain experienced a major consolidation with the nearly $12 billion acquisition of Freescale Semiconductor by NXP Semiconductors, catapulting NXP to the top of the MCU market. NXP and Freescale were ranked second and third in global market share, after Renesas Electronics, at the time.

Renesas held 40 percent global market share before its Ibaraki fab suffered severe earthquake damage in 2011 and hemorrhaged share after the loss of production capacity.  Renasas continues to recapture market share at a rapid clip, with a growth rate of 5.2 percent and 24.6 percent, respectively, in the first two quarters of 2017, and claims it still leads the global MCU market for automotive applications with 30 percent share (source: Diamond Online, August 2017).

Renesas was established as a joint venture of Hitachi and Mitsubishi and later merged with NEC Electronics. Consequently, Resesas’s MCUs, designed with Hitachi’s SH MCU cores, recently began a gradual shift to Arm cores. Renasas MCUs designed at 40nm or less nodes have been manufactured at TSMC, a Taiwan foundry, since 2012.

Renesas’s microcontrollers in a car (source: EE News Europe Automotive)

Renesas’s microcontrollers in a car
(source: EE News Europe Automotive)

CMOS Image Sensors

CMOS image sensors serve as eyes of cars, performing camera functions on-chip. Today, automobiles typically are fitted with about 10 CMOS image sensors, a number forecast to grow to almost 20 by 2020 (source: Monoist, 2016). The sensor was originally used as a backup monitor but deployments grew with the advent of Advanced Driver-Assistance Systems (ADAS). The CMOS image sensor market is estimated to reach $2.3 billion USD by 2021, according to IC Insights. Sony is the global CMOS image sensor market leader, and ON Semiconductor and OmniVision Technology are big players in this growing segment.

In 2016, Denso started using Sony’s CMOS image sensors to detect pedestrians during night driving. Sony manufactures CMOS sensors at Kumamoto TEC and Nagasaki TEC on Kyusyu Island. In 2017, Sony acquired Toshiba’s Oita plant to increase the capacity to respond to the growing demand for backside illumination CMOS image sensors for higher resolution images at a low-light environments.

Sony’s 7.42 megapixel CMOS image sensor for automotive cameras (source: Sony Corporation)

Sony’s 7.42 megapixel CMOS image sensor for automotive cameras
(source: Sony Corporation)

Power Devices

Power semiconductors provide electrical control functions such as rectification, voltage regulation (boost/step-down), and DA/AD conversion. The automotive industry’s migration from fossil fuel vehicles to hybrid and electric vehicles is driving strong demand for power devices. The leading power device makers are competing to develop higher performance devices on new materials such as SiC and GaN.

For the past five years, the Japan government has funded SiC power device research and development (R&D) projects and, in 2016, the National Institute of Advanced Industrial Science and Technology (AIST) and Sumitomo Electric Industries built a 150mm SiC wafer line at AIST’s Super Clean Room Facility in Tsukuba, Ibaraki. The facility supports volume manufacturing, reliability testing and quality assurance.

Rohm is driving the Japan SiC power device industry. Rohm manufactures SiC power devices on 75mm, 100mm and 150mm wafers. In 2009, Rohm acquired a German SiC wafer maker, SiCrystal, which started supplying 150mm wafers to Rohm in 2013. Rohm also acquired Renesas Electronics’s Shiga plant (200mm line) in 2016 to manufacture SiC power and other discrete devices.

Fuji Electric manufactures various power products including SiC power devices. Fully 30 percent of its products ship to the automotive industry. In 2013, the company built a new SiC line in its Matsumoto plant that includes both wafer process and packaging facilities. Fuji Electric now develops high-performance SiC devices on the latest 150mm SiC wafer technology.

Toyota and Denso round out the Japan SiC power device industry. Denso markets its 150mm SiC technology under the “REVOSIC” brand. In 2013, Toyota built a SiC R&D facility at its Hirose plant for future SiC captive manufacturing.

SiC power semiconductors to improve vehicle’s fuel efficiency by 10 percent (target) (source: Toyota Motor Corp.)

SiC power semiconductors to improve vehicle’s fuel efficiency by 10 percent (target)
(source: Toyota Motor Corp.)

SEMICON will Update You on Automotive Semiconductor Market

Heavy investments in the development of autonomous vehicles and the continuing expansion of the electric car market promise to bolster the automotive semiconductor market in the coming years and beyond. In light of Japan’s leading automotive chip manufacturing industry, SEMICON Japan and all other SEMICON shows in 2018 will spotlight this important segment.

Originally published on the SEMI blog.

By Jay Chittooran, SEMI Public Policy

Following through on his 2016 campaign promise, President Trump is implementing trade policies that buck conventional wisdom in Washington, D.C. and among U.S. businesses. Stiff tariffs and the dismantling of longstanding trade agreements – cornerstones of these new actions – will ripple through the semiconductor industry with particularly damaging effect. China, a chief target of criticism from President Trump, has again found itself in the crosshairs of the administration, with trade tensions rising to a fever pitch.

The Trump Administration has long criticized China for what it considers unfair trade practices, often zeroing in on intellectual property. In August 2017, the Office of the U.S. Trade Representative (USTR), charged with developing and recommending U.S trade policy to the president, launched a Section 301 investigation into whether China’s practice of forced technology transfer has discriminated against U.S. firms. As the probe continues, it is becoming increasingly clear that the United States will impose tariffs on China based on its current findings. Reports suggest that the tariffs could come soon, hitting a range of products from consumer electronics to toys. Other measures could include tightening restrictions on the trade of dual-use goods – those with both commercial and military applications – curbing Chinese investment in the United States, and imposing strict limits on the number of visas issued to Chinese citizens.

With China a major and intensifying force in the semiconductor supply chain, raising tariffs hangs like the Sword of Damocles over the U.S. and global economies. A tariff-ignited trade war with China could stifle innovation, undermine the long-term health of the semiconductor industry, and lead to unintended consequences such as higher consumer prices, lower productivity, job losses and, on a global scale, a brake on economic growth.

Other recently announced U.S. trade actions could also cloud the future for semiconductor companies. The Trump administration, based on two separate Section 232 investigations claiming that overproduction of both steel and aluminum are a threat to U.S. national security, recently levied a series of tariffs and quotas on every country except Canada and Mexico. While these tariffs have yet to take effect, the mere prospect has angered U.S. trading partners – most notably Korea, the European Union and China. Several countries have threatened retaliatory action and others have taken their case to the World Trade Organization.

Trade is oxygen to the semiconductor industry, which grew by nearly 30 percent last year and is expected to be valued at an estimated $1 trillion by 2030. Make no mistake: SEMI fully supports efforts to buttress intellectual property protections. However, the Trump administration’s unfolding trade policy could antagonize U.S. trade partners.

For its part, SEMI is weighing in with USTR on these issues, underscoring the critical importance of trade to the semiconductor industry as we educate policymakers on trade barriers to industry growth and encourage unobstructed cross-border commerce to advance semiconductors and the emerging technologies they enable. On behalf of our members, we continue our work to increase global market access and lessen the regulatory burden on global trade. If you are interested in more information on trade, or how to be involved in SEMI’s public policy program, please contact Jay Chittooran, Public Policy Manager, at [email protected].

Originally published on the SEMI blog.

SEMICON West, the flagship U.S. event for connecting the electronics manufacturing supply chain, has opened registration for the July 10-12, 2018, exposition at the Moscone Center in San Francisco, California. Building on a year of record-breaking industry growth, SEMICON West 2018 will highlight the engines of future industry expansion including smart transportation, smart manufacturing, smart medtech, smart data, big data, artificial intelligence, blockchain and the Internet of Things (IoT). Click here to register.

Themed BEYOND SMART, SEMICON West 2018 sets it sights on the growing impact of cognitive learning technologies and other industry disruptors with programs and new Smart Pavilions including Smart Manufacturing and Smart Transportation to showcase interactive technologies for immersive, virtual experiences. Each Pavilion will feature a Meet the Experts Theater with an intimate setting for attendees to engage informally with industry thought leaders.

Smart Workforce Pavilion: Connecting Next-Generation Talent with the Microelectronics Industry

The SEMI Smart Workforce Pavilion at SEMICON West 2018 leverages the largest microelectronic manufacturing event in North America to draw the next generation of innovators. Reliant on a highly skilled workforce, the industry today is saddled with thousands of job openings and fierce competition for workers, bringing renewed focus to strengthening its talent pipeline. Educational and engaging, the Pavilion connects the microelectronics industry with college students and entry-level professionals interested in career opportunities.

In the Workforce Pavilion “Meet the Experts” Theater, industry engineers will share insights and inspiration about their personal working experiences and career advisors will offer best practices. Recruiters from top companies will be available for on-the-spot interviews, while career coaches offer mentoring, tips on cover letter and resume writing, job-search guidance, and more. Visitors will learn more about the industry’s vital role in technological innovation in today’s connected world.

This year, SEMI will also host High Tech U (HTU) in conjunction with the SEMICON West Smart Workforce Pavilion. The highly-interactive program supported by Advantest, Edwards, KLA-Tencor and TEL exposes high school students to STEM education pathways and stimulates excitement about careers in the industry.

Free registration with three-day access and shuttle service to SEMICON West are available to all college students. Students are encouraged to register for the mentor program, attend keynotes and tour the exposition hall to see everything the industry has to offer.  To learn more, visit Smart Workforce Pavilion and College Track to preview how students can enter to win a $500 hiring bonus!

Three Ways to Experience the Expo

Attendees can tailor their SEMICON West experience to meet their specific interests. The All-In pass covers every program and event, while the Thought-Leadership and Expo-Only packages offer scaled pricing and program options. Attendees can also purchase select events and programs à la carte, including exclusive IEEE-sponsored sessions, the SEMI Market Symposium, and the STEM Rocks After-hours Party, a fundraising event to support the SEMI Foundation.

Everspin Technologies, Inc. (NASDAQ: MRAM), a developer and manufacturer of discrete and embedded magnetoresistive random access memory (MRAM), today announced it has entered into a multi-year worldwide licensing agreement with Alps Electric Co., LTD (Alps), a manufacturer of 3D magnetic sensors. Under the agreement, Alps and Everspin will mutually grant licenses to magnetoresistive-based 3D sensor patent portfolios for magnetoresistive sensor products. The terms of the agreement include an up-front license fee to Everspin as well as future royalties. Specific financial terms of the agreement are not being disclosed.

With an extensive portfolio of over 500 worldwide patents and applications covering its magnetoresistive technology, this agreement expands Everspin’s existing group of memory and sensor licensees. Everspin was recognized by IEEE in its Patent Power 2017 report as having one of the world’s top 20 most valuable patent portfolios for semiconductor manufacturing.

Kevin Conley, President and CEO of Everspin, stated, “Everspin’s magnetoresistive patent portfolio is valuable to a number of significant market applications beyond our core focus in magnetoresistive memory. This agreement demonstrates that value as well as our ability to monetize these assets and generate an additional revenue stream for Everspin.”

The ConFab — an executive invitation-only conference now in its 14th year — brings together influential decision-makers from all parts of the semiconductor supply chain for three days of thought-provoking talks and panel discussions, networking events and select, pre-arranged breakout business meetings.

In the 2018 program, we will take a close look at the new applications driving the semiconductor industry, the technology that will be required at the device and process level to meet new demands, and the kind of strategic collaboration that will be required. It is this combination of business, technology and social interactions that make the conference so unique and so valuable. Browse this slideshow for a look at this year’s speakers, keynotes, panel discussions, and special guests.

Visit The ConFab’s website for a look at the full, three-day agenda for this year’s event.

KEYNOTE: How AI is Driving the New Semiconductor Era

Rama Divakaruni_June_2014presented by Rama Divakaruni, Advanced Process Technology Research Lead, IBM

The exciting results of AI have been fueled by the exponential growth in data, the widespread availability of increased compute power, and advances in algorithms. Continued progress in AI – now in its infancy – will require major innovation across the computing stack, dramatically affecting logic, memory, storage, and communication. Already the influence of AI is apparent at the system-level by trends such as heterogeneous processing with GPUs and accelerators, and memories with very high bandwidth connectivity to the processor. The next stages will involve elements which exploit characteristics that benefit AI workloads, such as reduced precision and in-memory computation. Further in time, analog devices that can combine memory and computation, and thus minimize the latency and energy expenditure of data movement, offer the promise of orders of magnitude power-performance improvements for AI workloads. Thus, the future of AI will depend instrumentally on advances in devices and packaging, which in turn will rely fundamentally on materials innovations.

IC Insights’ latest market, unit, and average selling price forecasts for 33 major IC product segments for 2018 through 2022 is included in the March Update to the 2018 McClean Report (MR18).  The Update also includes an analysis of the major semiconductor suppliers’ capital spending plans for this year.

The biggest adjustments to the original MR18 IC market forecasts were to the memory market; specifically the DRAM and NAND flash segments.  The DRAM and NAND flash memory market growth forecasts for 2018 have been adjusted upward to 37% for DRAM (13% shown in MR18) and 17% for NAND flash (10% shown in MR18).

The big increase in the DRAM market forecast for 2018 is primarily due to a much stronger ASP expected for this year than was originally forecast.  IC Insights now forecasts that the DRAM ASP will register a 36% jump in 2018 as compared to 2017, when the DRAM ASP surged by an amazing 81%.  Moreover, the NAND flash ASP is forecast to increase 10% this year, after jumping by 45% in 2017.  In contrast to strong DRAM and NAND flash ASP increases, 2018 unit volume growth for these product segments is expected to be up only 1% and 6%, respectively.

At $99.6 billion, the DRAM market is forecast to be by far the largest single product category in the IC industry in 2018, exceeding the expected NAND flash market ($62.1 billion) by $37.5 billion.  Figure 1 shows that the DRAM market has provided a significant tailwind or headwind for total worldwide IC market growth in four out of the last five years.

The DRAM market dropped by 8% in 2016, spurred by a 12% decline in ASP, and the DRAM segment became a headwind to worldwide IC market growth that year instead of the tailwind it had been in 2013 and 2014.  As shown, the DRAM market shaved two percentage points off of total IC industry growth in 2016.  In contrast, the DRAM segment boosted total IC market growth last year by nine percentage points. For 2018, the expected five point positive impact of the DRAM market on total IC market growth is forecast to be much less significant than it was in 2017.

Figure 1

Figure 1