Category Archives: 3D Integration

Nanofluidic channels are useful for many biological and chemical applications, such as DNA sequencing, drug delivery, blood cell sorting and molecular sensing and detection. But in the effort to build a versatile lab-on-a-chip, it has been challenging to develop a wafer-scale nanochannel fabrication process compatible with CMOS technology.

At the upcoming International Electron Devices Meeting (IEDM), to be held December 9-11 in Washington, D.C., IBM researchers will report on a CMOS-compatible 200 mm wafer-scale sub-20nm nanochannel fabrication method that enables stretching, translocation and real-time fluorescence microscopy imaging of single DNA molecules.

Through the use of sacrificial XeF2 etching and various UV and e-beam lithography methods, sub-20-nm patterns in silicon were converted into macro-scale fluidic ports, micro-scale fluidic feed channels, and nano-scale channels for DNA imaging. Gradient nanopillars were located in the channels to stretch DNA molecules prior to imaging them. Fluid wasn’t pumped through the channels, but instead was transported by the force of gravity. The researchers say their techniques lead to highly manufacturable structures and can produce chips for a variety of biological applications.

A schematic of the nanochannel architecture. Grey represents silicon layers, while blue represents SiO2.  The silicon layers serve as sacrificial material.

A schematic of the nanochannel architecture. Grey represents silicon layers, while blue represents SiO2. The silicon layers serve as sacrificial material.

The etching sequence of the silicon layers is shown: A) silicon-patterning with sub-20 nm features (note the inset SEM electron microscope photo); B) capping-oxide deposition followed by vent-hole patterning: and C) XeF2 gas-phase etching of silicon patterns embedded in SiO2.

The etching sequence of the silicon layers is shown: A) silicon-patterning with sub-20 nm features (note the inset SEM electron microscope photo); B) capping-oxide deposition followed by vent-hole patterning: and C) XeF2 gas-phase etching of silicon patterns embedded in SiO2.

SEM electron microscope photo of silicon nanochannels.

SEM electron microscope photo of silicon nanochannels.

Optical photos showing A,B) nanochannels with vent holes on 1-2 µm SiO2 capping layer, on top of silicon patterns; and C,D) following gas etching and removal of silicon patterns.

Optical photos showing A,B) nanochannels with vent holes on 1-2 µm SiO2 capping layer, on top of silicon patterns; and C,D) following gas etching and removal of silicon patterns.

Wang (14.1) Fig.12 (450x338)

 

Blog Review October 14 2013


October 14, 2013

At the recent imec International Technology Forum Press Gathering in Leuven, Belgium, imec CEO Luc Van den hove provided an update on blood cell sorting technology that combines semiconductor technology with microfluidics, imaging and high speed data processing to detect tumorous cancer cells. Pete Singer reports.

Pete Singer attended imec’s recent International Technology Forum in Leuven, Belgium. There, An Steegan, senior vice president process technology at imec, said FinFETs will likely become the logic technology of choice for the upcoming generations, with high mobility channels coming into play for the 7 and 5nm generation (2017 and 2019). In DRAM, the MIM capacitor will give way to the SST-MRAM. In NAND flash, 3D SONOS is expected to dominate for several generations; the outlook for RRAM remains cloudy.

At Semicon Europa last week, Paul Farrar, general manager of G450C, provided an update on the consortium’s progress in demonstrating 450mm process capability. He said 25 tools will be installed in the Albany cleanroom by the end of 2013, progress has been made on notchless wafers with a 1.5mm edge exclusion zone, they have seen significant progress in wafer quality, and automation and wafer carriers are working.

Phil Garrou reports on developments in 3D integration from Semicon Taiwan. He notes that at the Embedded Technology Forum, Hu of Unimicron looked at panel level embedded technology.

Kathryn Ta of Applied Materials connects how demand for mobile devices is driving materials innovation. She says that about 90 percent of the performance benefits in the smaller (sub 28nm) process nodes come from materials innovation and device architecture. This number is up significantly from the approximate 15 percent contribution in 2000.

Tony Massimini of Semico says the MEMS market is poised for significant growth thanks to major expansion of applications in smart phone and automotive. In 2013, Semico expects a total MEMS market of $16.8 B but by 2017 it will have expanded to $28.5 B, a 70 percent increase in a mere four years time.

Steffen Schulze and Tim Lin of Mentor Graphics look at different options for reducing mask write time. They note that a number of techniques have been developed by EDA suppliers to control mask write time by reducing shot count— from simple techniques to align fragments in the OPC step, to more complex techniques of simplifying the data for individual writing passes in multi-pass writing.

If you want to see SOI in action, look no further than the Samsung Galaxy S4 LTE. Peregrine Semi’s main antenna switch on BSOS substrates from Soitec enables the smartphone to support 14 frequency bands simultaneously, for a three-fold improvement in download times.

Vivek Bakshi notes that a lot of effort goes into enabling EUV sources for EUVL scanners and mask defect metrology tools to ensure they meet the requirements for production level tools. Challenges include modeling of sources, improvement of conversion efficiency, finding ways to increase source brightness, spectral purity filter development and contamination control. These and other issues are among topics that were proposed by a technical working group for the 2013 Source Workshop in Dublin, Ireland.

When you heat a tiny droplet of liquid tin with a laser, plasma forms on the surface of the droplet and produces extreme ultraviolet (EUV) light, which has a higher frequency and greater energy than normal ultraviolet.

Now, for the first time, researchers have mapped this EUV emission and developed a theoretical model that explains how the emission depends on the three-dimensional shape of the plasma. In doing so, they found a previously untapped source of EUV light, which could be useful for various applications including semiconductor lithography, the process used to make integrated circuits.

Plasma generated by blasting droplets with a laser 6,000 times a second is shown.

Plasma generated by blasting droplets with a laser 6,000 times a second is shown.

In the experiments, Andrea Giovannini and Reza Abhari from ETH-Zurich in Switzerland blasted a 30-micron-diameter droplet of tin with a high-powered laser 6,000 times a second. They measured the spatial distribution of the resulting EUV emission and found that 30 percent of it came from behind the region of the droplet that was struck by the laser. According to their model, this unexpected distribution was due to the fact that the plasma partially surrounding the droplet was elongated in the direction of the laser pulse.

Devices that produce narrow beams of EUV for purposes like in semiconductor lithography use mirrors to focus the emission. But, until now, no one knew to collect the EUV light radiating from behind the droplet.

Thanks to this work, Giovannini said, future devices can exploit this previously unknown source of EUV emission. The new experiments can also inform the development of EUV devices by showing where mirrors should be placed around a droplet in order to collect and focus as much EUV light as possible.

An alternative to scaling is to expand vertically, by thinning, stacking and interconnecting ICs, commonly called 3D integration. Chip-to-chip Interconnections are are typically made with through-silicon vias (TSVs), but some TSVs also have major disadvantages, including relatively large dimensions, parasitic capacitances and thermal mismatch issues.

At the upcoming International Electron Devices Meeting (IEDM) in December, researchers from Taiwan’s National Nano Device Laboratories avoided the use of TSVs by fabricating a monolithic sub-50nm 3D chip, which integrates high-speed logic and nonvolatile and SRAM memories. They built it from ultrathin-body MOSFETs isolated by 300-nm-thick interlayer dielectric layers.

To build the device layers, the researchers deposited amorphous silicon and crystallized it with laser pulses. They then used a novel low-temperature chemical mechanical planarization (CMP) technique to thin and planarize the silicon, enabling the fabrication of ultrathin, ultraflat devices. The monolithic 3D architecture demonstrated high performance – 3-ps logic circuits, 1-T 500ns nonvolatile memories and 6T SRAMs with low noise and small footprints, making it potentially suitable for compact, energy-efficient mobile products.

The process flow used to fabricate the 3D IC without TSVs.

The process flow used to fabricate the 3D IC without TSVs.

 A TEM electron microscope view of the 3D chip.

A TEM electron microscope view of the 3D chip.

 

Ultra low power (ULP) RF specialist Nordic Semiconductor ASA today announces the release of its nRF51922 System-on-Chip (SoC), the world’s first multi-protocol SoC solution offering concurrent ANT+ and Bluetooth low energy wireless communication natively in a single chip.

Nordic Semiconductor Launches World's First Concurrent ANT+ and Bluetooth Low Energy Combo Chip

By bringing together the two most popular wireless technologies in the ULP wireless industry today, the nRF51922 System-on-Chip will allow the development of multiprotocol products that natively support both ANT+ and Bluetooth low energy wireless technology. This will mean product developers and end users in markets like sport, wellness, healthcare, and smartphone appcessories, will no longer be forced to choose between these two previously incompatible wireless technologies and associated ecosystems.

The nRF51922 is drop-in compatible with existing nRF51 series devices, but features Nordic’s brand new ‘S310’ SoftDevice that combines the ANT+ and Bluetooth low energy stacks in a single software framework. The S310 offers the same fully autonomous, secure, and event-driven application interface as existing Nordic SoftDevices, which includes a clean separation of protocol stacks and application firmware to greatly simplify firmware development and testing, and maximize operational reliability.

Pin-compatible hardware and a familiar interface on the S310 for existing Nordic S110 (Bluetooth low energy) and S210 (ANT+) SoftDevice users means Nordic customers that already have an nRF51 Series ANT+ or Bluetooth low energy product will be able to keep existing hardware design and firmware unchanged, and only add needed firmware support for the new protocol stack when adopting the nRF51922.

“Millions of consumers rely on ANT+ enabled devices and this multi-protocol SoC will expand their opportunities to connect with additional smartphones, such as the iPhone,” states Rod Morris, VP at ANT Wireless. “Apps and cloud-based services provide new ways for device manufacturers to engage their customers and enhance the user experience. This solution is an enabling piece to make that happen.”

“The nRF51922 is exactly what the ULP wireless industry needs,” comments Geir Langeland, Nordic Semiconductor’s Director of Sales & Marketing. “It will mean product developers will no longer need to develop separate ANT+ and Bluetooth low energy product offerings, could encourage even more smartphone manufacturers to offer native ANT+ and Bluetooth low energy support, and ultimately give end users even greater choice when selecting wireless accessories and appcessories with fewer compatibility headaches.”

GE acquires Imbera


September 26, 2013

GE Healthcare Finland Oy, in partnership with GE Idea Works, announced today that it has completed the acquisition of Imbera Electronics Oy, a pioneering Finnish company that has spent over 10 years developing advanced embedded electronics packaging technology and manufacturing solutions.  Financial terms of the transaction were not disclosed.

Embedded electronic packaging technologies can reduce the size and cost of components used in digital electronics by over 50 percent, enabling much higher integration for increasingly feature-rich consumer products such as smartphones and tablets.  This embedded packaging is also used in advanced avionics, power distribution and a variety of other applications.

“We are extremely pleased to add the cutting edge technology and intellectual property of Imbera Electronics Oy as a component of GE’s existing electronics packaging portfolio,” said Larry Davis, vice president and microelectronics packaging program director at GE Idea Works.

Risto Tuominen, CEO and founder of Imbera Electronics Oy, commented that “Combining the high volume-focused and cost effective embedded technology from Imbera with the advanced thermal and power handling capability of GE creates the most compelling technology platform for advanced high density electronics packaging.”

This acquisition expands and extends GE’s position in advanced electronics and electronics packaging and creates one of the most extensive intellectual property and technology portfolios for embedded electronic packaging in the world, covering applications from low-power consumer products to high-power industrial electronics. GE plans to continue developing and licensing the Imbera Electronics Oy intellectual property and technology portfolio in combination with its established power overlay portfolio.

3D-IC: Two for one


September 25, 2013

Zvi Or-Bach, President & CEO of MonolithIC 3D Inc. blogs about upcoming events related to 3D ICs.

This coming October there are two IEEE Conferences discussing 3D IC, both are within an easy drive from Silicon Valley.

The first one is the IEEE International Conference on 3D System Integration (3D IC), October 2-4, 2013 in San Francisco, and just following in the second week of October is the S3S Conference on October 7-10 in Monterey. The IEEE S3S Conference was enhanced this year to include the 3D IC track and accordingly got the new name S3S (SOI-3D-Subthreshold). It does indicate the growing importance and interest in 3D IC technology.

This year is special in that both of these conferences will contain presentations on the two aspects of 3D IC technologies. The first one is 3D IC by the use of Through -Silicon-Via which some call -“parallel” 3D and the second one is the monolithic 3D-IC which some call “sequential.”

This is very important progress for the second type of 3D IC technology. I clearly remember back in early 2010 attending another local IEEE 3D IC Conference: 3D Interconnect: Shaping Future Technology. An IBM technologist started his presentation titled “Through Silicon Via (TSV) for 3D integration” with an apology for the redundancy in his presentation title, stating that if it 3D integration it must be TSV!

 Yes, we have made quite a lot of progress since then. This year one of the major semiconductor research organization – CEA Leti – has placed monolithic 3D on its near term road-map, and was followed shortly after by a Samsung announcement of mass production of monolithic 3D non volatile memories – 3D NAND.

We are now learning to accept that 3D IC has two sides, which in fact complement each other. In hoping not to over-simplify- I would say that main function of the TSV type of 3D ICs is to overcome the limitation of PCB interconnect as well being manifest by the well known Hybrid Memory Cube consortium, bridging the gap between DRAM memories being built by the memory vendors and the processors being build by the processor vendors. At the recent VLSI Conference Dr. Jack Sun, CTO of TSMC present the 1000x gap which is been open between  on chip interconnect and the off chip interconnect. This clearly explain why TSMC is putting so much effort on TSV technology – see following figure:

System level interconnect gaps

System level interconnect gaps

On the other hand, monolithic 3D’s function is to enable the continuation of Moore’s Law and to overcome the escalating on-chip interconnect gap. Quoting Robert Gilmore, Qualcomm VP of Engineering, from his invited paper at the recent VLSI conference: As performance mismatch between devices and interconnects increases, designs have become interconnect limited. Monolithic 3D (M3D) is an emerging integration technology that is poised to reduce the gap significantly between device and interconnect delays to extend the semiconductor roadmap beyond the 2D scaling trajectory predicted by Moore’s Law…” In IITC11 (IEEE Interconnect Conference 2011) Dr. Kim presented a detailed work on the effect of the TSV size for 3D IC of 4 layers vs. 2D. The result showed that for TSV of 0.1µm – which is the case in monolithic 3D – the 3D device wire length (power and performance) were equivalent of scaling by two process nodes! The work also showed that for TSV of 5.0µm – resulted with no improvement at all (today conventional TSV are striving to reach the 5.0µm size) – see the following chart:

Cross comparison of various 2D and 3D technologies. Dashed lines are wirelengths of 2D ICs. #dies: 4.

Cross comparison of various 2D and 3D technologies. Dashed lines are wirelengths of 2D ICs. #dies: 4.

So as monolithic 3D is becoming an important part of the 3D IC space, we are most honored to have a role in these coming IEEE conferences. It will start on October 2nd in SF when we will present a Tutorial that is open for all conference attendees. In this Monolithic 3DIC Tutorial we plan to present more than 10 powerful advantages being opened up by the new dimension for integrated circuits. Some of those are well known and some probably were not presented before. These new capabilities that are about to open up would very important in various market and applications.

In the following S3S conference we are scheduled on October 8, to provide the 3D Plenary Talk for the 3D IC track of the S3S conference. The Plenary Talk will present three independent paths for monolithic 3D using the same materials, fab equipment and well established semiconductor processes for monolithic 3D IC. These three paths could be used independently or be mixed providing multiple options for tailoring differently by different entities.

Clearly 3D IC technologies are growing in importance and this coming October brings golden opportunities to get a ‘two for one’ and catch up and learn the latest and greatest in TSV and monolithic 3D technologies — looking forward to see you there.

MICRON DRAMMicron Technology, Inc. announced today that it is shipping 2GB Hybrid Memory Cube (HMC) engineering samples. HMC represents a dramatic step forward in memory technology, and these engineering samples are the world’s first HMC devices to be shared broadly with lead customers. HMC is designed for applications requiring high-bandwidth access to memory, including data packet processing, data packet buffering or storage, and computing applications such as processor accelerators. Micron expects future generations of HMC to migrate to consumer applications within three to five years.

Read more: Inside the Hybrid Memory Cube

HMC uses advanced through-silicon vias (TSVs)–vertical conduits that electrically connect a stack of individual chips–to combine high-performance logic with Micron’s DRAM. Micron’s HMC features a 2GB memory cube that is composed of a stack of four 4Gb DRAM die. The solution provides an unprecedented 160 GB/s of memory bandwidth while using up to 70 percent less energy per bit than existing technologies, which dramatically lowers customers’ total cost of ownership (TCO).

“The Hybrid Memory Cube is a smart fix that breaks with the industry’s past approaches and opens up new possibilities,” said Jim Handy, a memory analyst at Objective Analysis. “Although DRAM internal bandwidth has been increasing exponentially, along with logic’s thirst for data, current options offer limited processor-to-memory bandwidth and consume significant power. HMC is an exciting alternative.”

HMC’s abstracted memory enables designers to devote more time to leveraging HMC’s revolutionary features and performance and less time to navigating the multitude of memory parameters required to implement basic functions. It also manages error correction, resiliency, refresh, and other parameters exacerbated by memory process variation.

“System designers are looking for new memory system designs to support increased demand for bandwidth, density, and power efficiency,” said Brian Shirley, vice president of Micron’s DRAM Solutions Group. “HMC represents the new standard in memory performance.”

Read more: After 43 years, DRAM market finally reaches maturity

HMC has been recognized by industry leaders and influencers as the long-awaited answer to the growing gap between the performance improvement rate of DRAM and processor data consumption rates.

Micron expects 4GB HMC engineering samples to be available in early 2014 with volume production of both the 2GB and 4GB HMC devices beginning later in 2014.

Next-generation integrated devices for matching, filtering and protection help shrink circuit size and boost end-product performance. STMicroelectronics is revealing new families of these dimension-shrinking devices.

The latest advanced devices joining ST’s micro-package families include the world’s smallest single-line Transient-Voltage Suppressor, the ESDAVLC6-1BV2, in a 01005 surface-mount package to protect sensitive circuitry against hazardous voltage surges. ST is also introducing the first five members of its new ECMF family of common-mode filters embedding ESD protection. These are built using advanced silicon technology and are offered in ultra-thin packages only 0.55mm high.

Another new member of ST’s IPD (Integrated Passive Device) family, the BAL-NRF01D3 ultra-miniature wireless balun, has already enabled ST’s customers to boost the performance of their low-power wireless solutions and save up to 90 percent of the pc-board space occupied by discrete antenna-matching and harmonic-filtering components.

ST said in its official release that its technologies leverage advanced component-fabrication technologies to combine into a single device multiple circuit elements including resistors, capacitors, inductors and ESD diodes that are otherwise typically implemented as individual components on the pc-board. In this way, ST’s integrated devices eliminate multiple components and the interconnections between them, resulting in a large net saving in pc-board area. Designers can use them to create smaller end-products, increase functionality by designing-in extra ICs, simplify PCB layout and shorten time-to-market for new products.

Additionally, ST’s integrated devices deliver better performance than equivalent discrete devices, as they are produced using semiconductor processes that display greater quality, reliability and process control. Component values have closer tolerances and reduced variation over time compared with conventional devices such as Metal-Oxide Varistors (MOVs), Low-Temperature Co-fired Ceramic (LTCC) devices and general-purpose passive components. These advantages allow customers to improve the quality of their products and the perception of their brand.

The BAL-NRF01D3 is in mass production in a 5-bump flip-chip package, priced from $0.18 for orders over 5,000 units. The ECMF common-mode filters are also in mass production, priced from $0.16 (ECMF02-2BF3) for orders over 1,000 units. The ESDAVLC6-1BV2 Transient-Voltage Suppressor is priced from $0.10 for orders over 1,000 units.

A wide array of package level integration technologies now available to chip and system designers are reviewed.

As technical challenges to shrink transistors per Moore’s Law become increasingly harder and costlier to overcome, fewer semiconductor manufacturers are able to upgrade to the next lower process nodes (e.g., 20nm). Therefore various alternative schemes to cram more transistors within a given footprint without having to shrink individual devices are being pursued actively. Many of these involve 3D stacking to reduce both footprint and the length of interconnect between the devices.

A leading memory manufacturer has just announced 3D NAND products where circuitry are fabricated one over the other on the same wafer resulting in higher device density on an area basis without having to develop smaller transistors. However such integration may not be readily feasible when irregular non-memory structures, such as sensors and CPUs, are to be integrated in 3D. Similar limits would also apply for 3D integration of devices that require very different process flows, such as analog with digital processor and memory.

For applications where integration of chips with such heterogeneous designs and processes are required, integration at the package level becomes a viable alternative. For package level integration, 3D stacking of individual chips is the ultimate configuration in terms of reducing footprint and improving performance by shrinking interconnect length between individual chips in the stack. Such packages are already in mass production for camera modules that require tight coupling of the image sensor to a signal processor. Other applications, such as 3D stacks of DRAM chips and CPU/memory stacks, are under development. For these applications 3D modules have been chosen so as to reduce not just the form factor but also the length of interconnects between individual chips.

integration_fig1
Figure 1: Equivalent circuit for interconnect between DRAM and SoC chips in a PoP package.

Interconnects a necessary evil

To a chip or system designer the interconnect between transistors or the wiring between chips is a necessary evil. They introduce parasitic R, L and C into the signal path. For die level interconnects this problem became recognized at least two decades ago as RC delay in such interconnects for CPUs became a roadblock to operation over 2GHz. This prompted major changes in materials for wafer level interconnects. For the conductors, the shift was from aluminum to lower resistance copper which enabled a shrink in geometries. For the surrounding interlayer dielectric that affect the parasitic capacitance, silicon dioxide was replaced by various low and even ultra low k ( dielectric constant ) materials, in spite of their poorer mechanical properties. Similar changes were made even earlier in the chip packaging arena when ceramic substrates were replaced by lower– k organic substrates that also reduced costs. Interconnects in packages and PCBs too introduce parasitic capacitance that contributes to signal distortion and may limit the maximum bandwidth possible. Power lost to parasitic capacitance of interconnects while transmitting digital signals through them depend linearly on the capacitance as well as the bandwidth. With the rise in bandwidth even in battery driven consumer electronics, such as smart phones, power loss in the package or PCBs becomes ever more significant (30%) as losses in chips themselves are reduced through better design (e.g., ESD structures with lower capacitance ).

Improving the performance of package level interconnects

Over a decade ago the chip packaging world went through a round of reducing the interconnect length and increasing interconnect density when for high performance chips such as CPUs, traditional peripheral wirebond technology was replaced by solder-bumped area-array flip chip technology. The interconnect length was reduced by at least an order of magnitude with a corresponding reduction in the parasitics and rise in the bandwidth for data transfer to adjacent chips, such as the DRAM cache. However, this improvement in electrical performance came at the expense of mechanical complications as the tighter coupling of the silicon chip to a substrate with a much larger coefficient of thermal expansion (6-10X of Si ) exposed the solder bump interconnects between them to cyclic stress and transmitted some stress to the chip itself. The resulting Chip Package Interaction (CPI) gets worse with larger chips and weaker low-k dielectrics on the chip.

The latest innovation in chip packaging technology is 3D stacking with through silicon vias (TSVs) where numerous vias (5µm in diameter and getting smaller) are etched in the silicon wafer and filled with a conductive metal, such as Cu or W. The wafers or singulated chips are then stacked vertically and bonded to one another. 3D stacking with TSVs provides the shortest interconnect length between chips in the stack, with improvements in bandwidth, efficiency of power required to transmit data, and footprint. However, as we shall see later, the 3D TSV technology is delayed not only because of complex logistics issues that are often discussed, but actual technical issues rooted in choices made for the most common variant: TSVs filled by Cu, with parallel wafer thinning.

integration_fig2
Figure 2: Breakdown of capacitance contributions from various elements of intra-package interconnect in a PoP. The total may exceed 2 pF.

Equivalent circuit for packages

PoP (package-on-package) is a pseudo-3D package using current non-TSV technologies and are ubiquitous in SmartPhones. In a PoP, two packages (DRAM and SoC) are stacked over one another and connected vertically by peripheral solder balls or columns. The PoP package is often talked about as a target for replacement by TSV-based 3D stacks. The SoC to DRAM interconnect in the PoP has 4 separate elements (wirebond in DRAM package, vertical interconnect between the top and bottom packages, substrate trace and flip chip in bottom package for SoC) in series. The equivalent circuit for package level interconnect in a typical PoP is shown in FIGURE 1.

From FIGURE 2 it is seen that interconnect capacitance in a PoP package is dominated by not just wire bonds (DRAM) but the lateral traces in the substrate of the flip chip package (SoC) as well. Both of these large contributions are eliminated in a TSV based 3D stack.

In a 3D package using TSVs the elimination of substrate traces and wire bonds between the CPU and DRAM leads to a 75% reduction in interconnect capacitance (FIGURE 3) with consequent improvement in maximum bandwidth and power efficiency.

Effect of parasitics

Not only do interconnect parasitics cause power loss during data transmission but they also affect the waveform of the digital signal. For chips with a given input/output buffer characteristics, higher capacitance slows down the rise and falling edges [1,2]. Inductance causes more noise and constricts the eye diagram. So higher interconnect parasitics limit the maximum bandwidth for error free data transmission through a package or PCB.

TSV-based 3D stacking

As has been previously stated, a major reason for developing TSV technology is to use it to improve data transmission – measured by bandwidth and power efficiency — between chips and go beyond bandwidth limits imposed by conventional interconnect. Recently a national Lab in western Europe has reported results [3] of stacking a single DRAM chip to a purpose-designed SoC with TSVs in a 4 x 128 bit wide I/O format and at a clock rate of just 200MHz. They were able to demonstrate a bandwidth of 12.8 MB/sec (2X that in a PoP with LP DDR3 running at 800MHz). Not surprisingly the power efficiency for data transfer reported (0.9 pJ/bit) was only a quarter of that for the PoP case.

Despite a string of encouraging results over the last three years from several such test vehicles, TSV-based 3D stacking technology is not yet mature for volume production. This is true for the TSV and manufacturing technology chosen by a majority of developers, namely filling the TSVs with copper and thinning the wafers in parallel but separately which requires bonding/debonding to carrier wafers. The problems with filling the TSVs with copper have been apparent for several years and affect electrical design [4]. The problem arises from the large thermal expansion mismatch between copper and silicon and the stress caused by it in the area surrounding copper-filled TSVs, which alters electron mobility and circuit performance. The immediate solution is to maintain keep-out zones around the TSVs, however this affects routing and the length of on-die interconnect. Since the stress field around copper-filled TSVs depend on the square of the via diameter, smaller diameter TSVs are now being developed to shrink the keep out zone.

Only now the problems of debonding thinned wafers with TSVs, such as fracturing, and subsequent handling are being addressed by development of new adhesive materials that can be depolymerized by laser and thinned wafers removed from the back-up without stress.

The above problems were studied and avoided by the pioneering manufacturer of 3D memory stacks. They changed via fill material from copper to tungsten, which has a small CTE mismatch with copper, and opted for a sequential bond/thin process for stacked wafers thereby totally avoiding any issues from bond/debond or thin wafer handling.

It is baffling why such alternative materials and process flows for TSVs are not being pursued even by U.S. based foundries that seem to take their technical cues instead from a national laboratory in a small European nation with no commercial production of semiconductors!

integration_fig3
Figure 3: When TSVs (labeled VI) replace the conventional interconnect in a PoP package, the parasitic capacitance of interconnect between chips, such as SoC and DRAM, is reduced by 75%.

Options for CPU to memory integration

Given the delay in getting 3D TSV technology ready at foundries, it is normal that alternatives like 2.5D, such as planar MCMs on high density silicon substrates with TSVs, have garnered a lot of attention. However the additional cost of the silicon substrate in 2.5D must be justified from a performance and/or foot-print standpoint. Interconnect parasitics due to wiring between two adjacent chips in a 2.5D module are significantly smaller than that in a system built on PCBs with packaged chips. But they are orders of magnitude larger than what is possible in a true 3D stack with TSVs. Therefore building a 2.5D module of CPU and an adjacent stack of memory chips with TSVs would reduce the size and cost of the silicon substrate but won’t deliver performance anywhere near an all TSV 3D stack of CPU and memory.

integration_table

Alternatives to TSVs for package level integration

Integrating a non-custom CPU to memory chips in a 3D stack would require the addition of redistribution layers with consequent increase in interconnection length and degradation of performance. In such cases it may be preferable to avoid adding TSVs to the CPU chips altogether and integrate the CPU to a 3D memory stack via a substrate in a double-sided package configuration. The substrate used is silicon with TSVs and high-density interconnects. Test vehicles for such an integration scheme have been built and electrical parameters evaluated [5,6]. For cost driven applications e,g. Smart Phones the cost of large silicon substrates used above may be prohibitive and the conventional PoP package may need to be upgraded. One approach to do so is to shrink the pitch of the vertical interconnects between the top and bottom packages and quadruple the number of these interconnects and the width of the memory bus [7,8]. While this mechanical approach would allow an increase in the bandwidth, unlike TSV based solutions they would not reduce the I/O power consumption as nothing is done to reduce the parasitic capacitance of the interconnect previously discussed (FIGURE 3).

A novel concept of “Active Interconnects” has been proposed and developed at APSTL. This concept employs a more electrical approach to equal the performance of TSVs [1] and replace these mechanically complex intrusions into live silicon chips. Compensation circuits on additional ICs are inserted into the interconnect path of a conventional PoP package for a Smart Phone (FIGURE 4) to create the SuperPoP package with Bandwidth and Power efficiency to approach that of TSV-based 3D stacks without having to insert any troublesome TSVs into the active chips themselves.

integration_fig4
Figure 4: Cross-section of a APSTL Super POP package under development to equal performance of TSV based 3D stacks. Integrated circuit with compensation circuits for ea. interconnect is inserted between the two layers of a PoP for SmartPhones. This chip contains through vias and avoids insertion of TSVs in high value dice for SoC or DRAM.

Conclusion
A wide array of package level integration technologies now available to chip and system designers have been discussed. The performance of package level interconnect has become ever more important for system performance in terms of bandwidth and power efficiency. The traditional approach of improving package electrical performance by shrinking interconnect length and increasing their density continues with the latest iteration, namely TSVs. Like previous innovations, TSVs too suffer from mechanical complications, only now more magnified due to stress effects of TSVs on device performance. Further development of TSV technology must not only solve all remaining problems of the current mainstream technology – including Cu-filled vias and parallel thinning of wafers — but also simplify the process where possible. This includes adopting more successful material (Cu-capped W vias) and process choices (sequential wafer bond and thin) already in production. In the meantime innovative concepts like Active Interconnect that altogether avoids using TSVs and APSTL SuperPoP using this concept show promise for cost-driven power-sensitive applications like smart phones. •

References
Gupta, D., “A novel non-TSV approach to enhancing the bandwidth in 3D packages for processor- memory modules “, IEEE ECTC 2013, pp 124 – 128.

Karim, M. et al , “Power Comparison of 2D, 3D and 2.5D Interconnect Solutions and Power Optimization of Interposer Interconnects,” IEEE ECTC 2013, pp 860 – 866.

Dutoit, D. et al, “A 0.9 pJ/bit, 12.8 GByte/s WideIO Memory Interface in a 3D-IC NoC-based MPSoC,” 2013 Symposium on VLSI Circuits Digest of Technical Papers.

Yang, J-S et al, “TSV Stress Aware Timing Analysis with Applications to 3D-IC Layout Optimization,” Design Automation Conference (DAC), 2010 47th ACM/IEEE , June 2010.

Tzeng, P-J. et al, “Process Integration of 3D Si Interposer with Double-Sided Active Chip Attachments,” IEEE ECTC 2013, pp 86 – 93.

Beyene, W. et al, “Signal and Power Integrity Analysis of a 256-GB/s Double-Sided IC Package with a Memory Controller and 3D Stacked DRAM,” IEEE ECTC 2013, pp 13 – 21.

Mohammed, I. et al, “Package-on-Package with Very Fine Pitch Interconnects for High Bandwidth,” IEEE ECTC 2013, pp 923 – 928

Hu, D.C., “A PoP Structure to Support I/O over 1000,” ECTC IEEE 2013, pp 412 – 416


DEV GUPTA is the CTO of APSTL, Scottsdale, AZ ([email protected]).