Category Archives: Applications

By Paula Doe, SEMI

For medtech applications to flourish, sensors need a supporting infrastructure that translates the data they harvest into actionable insights, says Qualcomm Life director of business development Gene Dantsker, who will speak about the future of digital healthcare in the Medtech program at SEMICON West. “Rarely can one device give a complete diagnosis,” he notes. “What’s missing is the integration of all the sensor data into prescriptive information.”

The maturing medtech sector has developed to the point where sensors can now capture massive amounts of data, conveniently collected from people via mobile devices. The sector now has higher compute capacity to process the data, and improving software can produce actionable insight from the information. The next challenge is to seamlessly integrate these components into legacy medical systems without disrupting existing workflow. “Doctors and nurses don’t have time for disruptive technology – a new system has to be invisible and frictionless to use, with one or fewer buttons, no training and truly automatic Bluetooth-like pairing,” he says. “So device makers need to pack all system intelligence into the circuits and software.”

Getting actionable healthcare information from sensors requires integration into the existing medical infrastructure. Source: Qualcomm Life

One interesting example is United Healthcare’s use of the Qualcomm Life infrastructure to collect data from the fitness trackers of 350,000 patients. The insurance company then pays users $4 a day, or ~$1500 a year, for standing, walking six times a day and other behaviors that clinical evidence shows will both improve patient health and reduce healthcare costs. “It’s a perfect storm of motivations for all stakeholders,” he says.

Next hot MEMS topics: Piezoelectric devices, environmental sensors, near-zero power standby

With sensor technology continuing to evolve, look for coming innovations in MEMS in piezoelectric devices, environmental sensors and near zero-power standby devices, says Alissa Fitzgerald, Founder and Managing Member of A.M. Fitzgerald and Associates, who will provide an update on emerging sensor technologies in the MEMS program at SEMICON West.

Piezoelectric devices can potentially be more stable and perhaps even easier to ramp to volume than capacitive ones, with AlN devices for microphones and ultrasonic sensors finding quick success. Now the maturing infrastructure for lead zirconate titantate (PZT) is enabling the scaling of production of higher performing piezo material with thin film deposition equipment from suppliers like Ulvac Technologies and Solmates and in foundry processes at Silex and STMicroelectronics, she notes.

In academic research, where most new MEMS emerge, market interest is driving development of environmental sensors and zero-power standby devices. With demand for environmental monitoring growing, much work is focusing on technologies that improve the sensitivity, selectivity and time of response of gas and particulate sensors. Research and funding is also focusing on zero or near-zero power standby sensors, using open circuits that draw no power until a physical stimulus such as vibration or heat wakes them up.

MEMS, however, likely won’t find as much of a market in autonomous vehicles as once thought. “While the automotive sensor market will need many optical sensors, MEMS players are competing with other optical and mechanical solutions,” says Fitzgerald. “And here the usual MEMS advantage of small size may not matter much, and the devices will have to meet the challenging automotive requirements for extreme ruggedness.”

By Paula Doe, SEMI

With artificial intelligence (AI) rapidly evolving, look for applications like voice recognition and image recognition to get more efficient, more affordable, and far more common in a variety of products over the next few years. This growth in applications will drive demand for new architectures that deliver the higher performance and lower power consumption required for widespread AI adoption.

“The challenge for AI at the edge is to optimize the whole system-on-a-chip architecture and its components, all the way to semiconductor technology IP blocks, to process complex AI workloads quickly and at low power,” says Qualcomm Technologies Senior Director of Engineering Evgeni Gousev, who will provide an update on the progress of AI at the edge in a Data and AI program at SEMICON West, July 10-12 in San Francisco.

Qualcomm Snapdragon 845 uses heterogeneous computing across the CPU, GPU, and DSP for power-efficient processing for constantly evolving AI models. Source: Qualcomm

A system approach that optimizes across hardware, software, and algorithms is necessary to deliver the ultra-low power – to a sub 1-milliwatt level, low enough to enable always-on machine vision processing – for the usually energy-intensive AI computing. From the chip architecture perspective, processing AI workloads with the most appropriate engine, such as the CPU, GPU, and DSP with dedicated hardware acceleration, provides the best power efficiency – and flexibility for dealing with rapidly changing AI models and growing diversity of applications.

“But we’re going to run out of brute force options, so the future opportunity is more innovations with new architectures, dedicated hardware, new algorithms, and new software.” – Evgeni Gousev, Qualcomm Technologies

“So far it’s been largely a brute force approach using conventional architectures and cloud-based infrastructure,” says Evgeni. “But we’re going to run out of brute force options, so future opportunities lie in developing innovative architectures, dedicated hardware, new algorithms, and new software. Innovation will be especially important for AI at the edge and applications requiring always-on functionality. Training is mostly in the cloud now, but in the near future it will start migrating to the device as the algorithms and hardware improve. AI at the edge will also  remove some privacy concerns,  an increasingly important issue for data collection and management.”

Practical AI applications at the edge where resources are constrained run the gamut, spanning smartphones, drones, autonomous vehicles, virtual reality, augmented reality and smart home solutions such as connected cameras. “More AI on the edge will create a huge opportunity for the whole ecosystem – chip designers, semiconductor and device manufacturers, applications developers, and data and service providers. And it’s going to make a significant impact on the way we work, live, and interact with the world around us,” Evgeni said.

Future generations of chips may need more disruptive systems-level change to handle high data volumes with low power

A next-generation solution for handling the massive proliferation of AI data could be a nanotechnology system, such as the collaborative N3XT (Nano-Engineered Computing Systems Technology) project, led by H.S. Philip Wong and Subhasish Mitra at Stanford. “Even with next-generation scaling of transistors and new memory chips, the bottlenecks in moving data in and out of memory for processing will remain,” says Mitra, another speaker in the SEMICON West program. “The true benefits of nanotechnology will only come from new architectures enabled by nanosystems. One thing we are certain of is that massively more capable and more energy-efficient systems will be necessary for almost any future application, so we will need to think about system-level improvements.”

Major improvement in handling high volumes of data with low high energy use will require system-level improvements, such as monolithic 3D integration of carbon nanotube transistors in the multi-campus N3XT chip research effort. Source: Stanford University

That means carbon nanotube transistors for logic, high density non-volatile MRAM and ReRAM for memory, fine-grained monolithic 3D for integration, new architectures for computation immersed in memory, and new materials for heat removal. “The N3XT approach is key for the 1000X energy efficiency needed,” says Mitra.

“One thing we are certain of is that massively more capable and more energy efficient systems will be necessary for almost any future application, so we will need to think about system-level improvements.” – Subhasish Mitra, Stanford University

Researchers have demonstrated improvements in all these areas, including multiple hardware nanosystem prototypes targeting AI applications. The researchers have transferred multiple layers of as-grown carbon nanotubes to the target wafer to significantly improve CNT density. They have developed a low-power TiN/HfOx/Pt ReRAM whose low-temperature CNT and ReRAM processes enable multiple vertical layers to be grown on top of one another for ultra-dense and fine-grained monolithic 3D integration.

Other speakers at the Data and AI TechXpot include Fram Akiki, VP Electronics, Siemens; Hariharan Ananthanarayanan, motion planning engineer, Osaro; and David Haynes, Sr. director, strategic marketing, Lam Research.  See SEMICONWest.org.

Optimum Semiconductor Technologies, Inc., a fabless semiconductor company providing highly-integrated Systems on Chips (SoCs) for China’s thriving electronics markets, announced the GP8300 SoC. The GP8300 dramatically reduces chip cost, area, and power consumption for image recognition and object detection in a broad range of products such as self-driving cars, autonomous vehicles, smart cameras and other IoT edge devices.

Created in 28nm technology, the GP8300 includes four 2GHz ‘Unity’ CPU cores from General Processor Technologies (GPT) interconnected with a cache coherent memory supporting Heterogeneous Systems Architecture (HSA) processing for a common programming framework. The GP8300 also integrates four of GPT’s new 2GHz Variable Length Vector DSP (VLVm1) cores for signal processing applications. Within the chip, the out-of-order CPUs execute control code while very long vectors process data. In addition to these generalized compute units, the chip also integrates two 1GHz AI accelerators from GPT.

“The GP8300 brings together several of GPT’s innovative IP cores with underlying embedded artificial intelligence (eAI) algorithms in a highly-integrated design targeting a wide range of exciting applications,” said Gary Nacer, President and COO of Optimum. “The new SoC is one of the first CNN accelerators in China, and it provides the right combination of high performance, low power consumption, and the cost efficiency that our customers need as they create innovative new products.”

Building on the success of OST’s innovative SB3500 multithreaded heterogeneous computing platform for low-power software defined radio (SDR), the GP8300 represents a new architecture that achieves deep integration of eAI, edge computing, and communications on a single chip. OST provides support for CaffeNet-based training and tools for automatic fixed-point conversion and compression for inference.

A team headed by the TUM physicists Alexander Holleitner and Reinhard Kienberger has succeeded for the first time in generating ultrashort electric pulses on a chip using metal antennas only a few nanometers in size, then running the signals a few millimeters above the surface and reading them in again a controlled manner.

Classical electronics allows frequencies up to around 100 gigahertz. Optoelectronics uses electromagnetic phenomena starting at 10 terahertz. This range in between is referred to as the terahertz gap, since components for signal generation, conversion and detection have been extremely difficult to implement.

The TUM physicists Alexander Holleitner and Reinhard Kienberger succeeded in generating electric pulses in the frequency range up to 10 terahertz using tiny, so-called plasmonic antennas and run them over a chip. Researchers call antennas plasmonic if, because of their shape, they amplify the light intensity at the metal surfaces.

Asymmetric antennas

The shape of the antennas is important. They are asymmetrical: One side of the nanometer-sized metal structures is more pointed than the other. When a lens-focused laser pulse excites the antennas, they emit more electrons on their pointed side than on the opposite flat ones. An electric current flows between the contacts – but only as long as the antennas are excited with the laser light.

“In photoemission, the light pulse causes electrons to be emitted from the metal into the vacuum,” explains Christoph Karnetzky, lead author of the Nature work. “All the lighting effects are stronger on the sharp side, including the photoemission that we use to generate a small amount of current.”

Ultrashort terahertz signals

The light pulses lasted only a few femtoseconds. Correspondingly short were the electrical pulses in the antennas. Technically, the structure is particularly interesting because the nano-antennas can be integrated into terahertz circuits a mere several millimeters across.

In this way, a femtosecond laser pulse with a frequency of 200 terahertz could generate an ultra-short terahertz signal with a frequency of up to 10 terahertz in the circuits on the chip, according to Karnetzky.

The researchers used sapphire as the chip material because it cannot be stimulated optically and, thus, causes no interference. With an eye on future applications, they used 1.5-micron wavelength lasers deployed in traditional internet fiber-optic cables.

An amazing discovery

Holleitner and his colleagues made yet another amazing discovery: Both the electrical and the terahertz pulses were non-linearly dependent on the excitation power of the laser used. This indicates that the photoemission in the antennas is triggered by the absorption of multiple photons per light pulse.

“Such fast, nonlinear on-chip pulses did not exist hitherto,” says Alexander Holleitner. Utilizing this effect he hopes to discover even faster tunnel emission effects in the antennas and to use them for chip applications.

Leti, a research institute of CEA Tech, today announced that field trials of its new Low Power Wide Area (LPWA) technology, a waveform tailored for Internet of Things (IoT) applications, showed significant performance gains in coverage, data-rate flexibility and power consumption compared to leading LPWA technologies.

Leti’s LPWA approach includes its patented Turbo-FSK waveform, a flexible approach to the physical layer. It also relies on channel bonding, the ability to aggregate non-contiguous communication channels to increase coverage and data rates. The field trials confirmed the benefits of Leti’s LPWA approach in comparison to LoRaTM and NB-IoT, two leading LPWA technologies that enable wide-area communications at low cost and long battery life.

The results indicate the new technology is especially suitable for long-range massive machine-type communication (mMTC) systems. These systems, in which tens of billions of machine-type terminals communicate wirelessly, are expected to proliferate after 5G networks are deployed, beginning in 2020. Cellular systems designed for humans do not adequately transmit the very short data packets that define mMTC systems.

Figure 1: Performance chart comparison

Designed to demonstrate the performance and flexibility of the new waveform, the field-trial results stem primarily from the system’s flexible approach of the physical layer. The flexibility allows data-rate scaling from 3Mbit/s down to 4kbit/s, when transmission conditions are not particularly favorable and/or a long transmission range is required.

Under favorable transmission conditions, e.g. a shorter range and line of sight, the Leti system can select high data rates using widely deployed single-carrier frequency-division multiplexing (SC-FDM) physical layers to take advantage of the low power consumption of the transmission mode. Under more severe transmission conditions, the system switches to more resilient high-performance orthogonal frequency division multiplexing (OFDM). When both very long-range transmission and power efficiency are required, the system selects Turbo-FSK, which combines an orthogonal modulation with a parallel concatenation of convolutional codes and makes the waveform suitable to turbo processing. The selection is made automatically via a medium access control (MAC) approach optimized for IoT applications.

“Leti’s Turbo-FSK receiver performs close to the Shannon limit, which is the maximum rate that data can be transmitted over a given noisy channel without error, and is geared for low spectral efficiency,” said Vincent Berg, head of Leti’s Smart Object Communication Laboratory. “Moreover, the waveform exhibits a constant envelope, i.e. it has a peak-to-average-power ratio (PAPR) equal to 0dB, which is especially beneficial for power consumption. Turbo-FSK is therefore well adapted to future LPWA systems, especially in 5G cellular systems.”

In the new system, the MAC layer exploits the advantages of the different waveforms and is designed to self-adapt to context, i.e. the usage scenario and application. It optimally selects the most appropriate configuration according to the application requirements, such as device mobility, high data rate, energy efficiency or when the network becomes crowded, and is coupled with a decision module that adapts the communication depending on the radio environment. The optimization of the application transmission requirements is realized by the dynamic adaptation of the MAC protocol, and the decision module controls link quality.

IC Insights recently released its Update to its 2018 IC Market Drivers Report.  The Update includes IC Insights’ latest outlooks on the smartphone, automotive, PC/tablet and Internet of Things (IoT) markets.

The Update shows a final 2017 ranking of the top smartphone leaders in terms of unit shipments.  As shown in Figure 1, 9 of the top 12 smartphone suppliers were headquartered in China.  Two South Korean companies (Samsung and LG) and one U.S. supplier (Apple) were the other leaders.

Figure 1

Samsung and Apple dominated the smartphone market from 2015 through 2017.  In total, these two companies shipped 526 million smartphones and held a combined 35% share of the total smartphone market in 2016. Moreover, these two companies shipped over one-half billion smartphones (533 million) in 2017 with their combined smartphone unit marketshare increasing one point to 36%.

Samsung’s total smartphone unit sales were up by 2% in 2017 to 317 million units, slightly outpacing the total smartphone market that grew by 1%.  Meanwhile, orders for new Apple iPhones fell 7% in 2016, much worse than the 4% growth rate exhibited for the worldwide smartphone market.  However, Apple rebounded somewhat in 2017 with its total smartphone unit shipments being flat last year.

It appears that the up-and-coming Chinese producers like Huawei, OPPO, Vivo, and Xiaomi are giving a serious challenge to Samsung and Apple for smartphone marketshare.  It should be noted, however, that Samsung and Apple still hold a commanding share of the high-end smartphone segment—that is, smartphones priced more than $200.

The number four and five ranked smartphone suppliers on the list are owned by the same China-based parent company—BBK Electronics.  Combined handset unit shipments from these two companies were 213.1 million in 2017, just 2.7 million less than second-ranked Apple.

Overall, there was very little middle ground with regard to smartphone shipment growth rates among the top 12 suppliers in 2017.  As shown, four of the top 12 companies registered double-digit unit growth while the other eight companies logged 2% or less increases and four of those displayed a double-digit decline.  Three Chinese smartphone suppliers (Xiaomi, OPPO, and Vivo) saw their shipments surge at least 24% in 2017.  Xiaomi displayed the highest growth rate of any of the top-12 smartphone suppliers (73%). Meanwhile, another three Chinese suppliers (LeEco/Coolpad, ZTE, and TCL) saw their smartphone shipments fall by more than 20% last year.

Combined, the nine leading smartphone suppliers based in China shipped 626 million smartphones in 2017, an 11% increase from 565 million smartphones that these nine companies shipped in 2016. The top nine Chinese smartphone suppliers together held a 42% share of the worldwide smartphone market in 2017, up four points from the 38% share these companies held in 2016 and eight points better than the 34% combined share these companies held in 2015.

IC Insights projects smartphone shipments in 2018 will rise 2%, to 1.53 billion units.  Moreover, smartphone unit shipments are forecast to grow at low single-digit annual rates through 2021.

IBM’s announcement that they had produced the world’s smallest computer back in March raised a few eyebrows at the University of Michigan, home of the previous champion of tiny computing.

Now, the Michigan team has gone even smaller, with a device that measures just 0.3 mm to a side—dwarfed by a grain of rice.

The reason for the curiosity is that IBM’s claim calls for a re-examination of what constitutes a computer. Previous systems, including the 2x2x4mm Michigan Micro Mote, retain their programming and data even when they are not externally powered.

Unplug a desktop computer, and its program and data are still there when it boots itself up once the power is back. These new microdevices, from IBM and now Michigan, lose all prior programming and data as soon as they lose power.

“We are not sure if they should be called computers or not. It’s more of a matter of opinion whether they have the minimum functionality required,” said David Blaauw, a professor of electrical and computer engineering, who led the development of the new system together with Dennis Sylvester, also a professor of ECE, and Jamie Phillips, an Arthur F. Thurnau Professor and professor of ECE.

In addition to the RAM and photovoltaics, the new computing devices have processors and wireless transmitters and receivers. Because they are too small to have conventional radio antennae, they receive and transmit data with visible light. A base station provides light for power and programming, and it receives the data.

One of the big challenges in making a computer about 1/10th the size of IBM’s was how to run at very low power when the system packaging had to be transparent. The light from the base station—and from the device’s own transmission LED—can induce currents in its tiny circuits.

“We basically had to invent new ways of approaching circuit design that would be equally low power but could also tolerate light,” Blaauw said.

For example, that meant exchanging diodes, which can act like tiny solar cells, for switched capacitors.

Another challenge was achieving high accuracy while running on low power, which makes many of the usual electrical signals (like charge, current and voltage) noisier.

Designed as a precision temperature sensor, the new device converts temperatures into time intervals, defined with electronic pulses. The intervals are measured on-chip against a steady time interval sent by the base station and then converted into a temperature. As a result, the computer can report temperatures in minuscule regions—such as a cluster of cells—with an error of about 0.1 degrees Celsius.

The system is very flexible and could be reimagined for a variety of purposes, but the team chose precision temperature measurements because of a need in oncology. Their longstanding collaborator, Gary Luker, a professor of radiology and biomedical engineering, wants to answer questions about temperature in tumors.

Some studies suggest that tumors run hotter than normal tissue, but the data isn’t solid enough for confidence on the issue. Temperature may also help in evaluating cancer treatments.

“Since the temperature sensor is small and biocompatible, we can implant it into a mouse and cancer cells grow around it,” Luker said. “We are using this temperature sensor to investigate variations in temperature within a tumor versus normal tissue and if we can use changes in temperature to determine success or failure of therapy.”

Even as Luker’s experiments run, Blaauw, Sylvester and Phillips look forward to what purposes others will find for their latest microcomputing device.

“When we first made our millimeter system, we actually didn’t know exactly all the things it would be useful for. But once we published it, we started receiving dozens and dozens and dozens of inquiries,” Blaauw said.

And that device, the Michigan Micro Mote, may turn out to be the world’s smallest computer even still—depending on what the community decides are a computer’s minimum requirements.

What good is a tiny computer? Applications of the Michigan Micro Mote:

  • Pressure sensing inside the eye for glaucoma diagnosis
  • Cancer studies
  • Oil reservoir monitoring
  • Biochemical process monitoring
  • Surveillance: audio and visual
  • Tiny snail studies

The study was presented June 21 at the 2018 Symposia on VLSI Technology and Circuits. The paper is titled “A 0.04mm3 16nW Wireless and Batteryless Sensor System with Integrated Cortex-M0+ Processor and Optical Communication for Cellular Temperature Measurement.”

The work was done in collaboration with Mie Fujitsu Semiconductor Ltd. Japan and Fujitsu Electronics America Inc.

Microelectrodes can be used for direct measurement of electrical signals in the brain or heart. These applications require soft materials, however. With existing methods, attaching electrodes to such materials poses significant challenges. A team at the Technical University of Munich (TUM) has now succeeded in printing electrodes directly onto several soft substrates.

Researchers from TUM and Forschungszentrum Jülich have successfully teamed up to perform inkjet printing onto a gummy bear. This might initially sound like scientists at play – but it may in fact point the way forward to major changes in medical diagnostics. For one thing, it was not an image or logo that Prof. Bernhard Wolfrum’s team deposited on the chewy candy, but rather a microelectrode array. These components, comprised of a large number of electrodes, can detect voltage changes resulting from activity in neurons or muscle cells, for example.

Researchers from the Technical University of Munich (TUM) have succeeded in printing microelectrode arrays directly onto several soft substrates. Soft materials are better suited for devices that directly measure electrical signals from organs like the brain or heart. Credit: N. Adly / TUM

Second, gummy bears have a property that is important when using microelectrode arrays in living cells: they are soft. Microelectrode arrays have been around for a long time. In their original form, they consist of hard materials such as silicon. This results in several disadvantages when they come into contact with living cells. In the laboratory, their hardness affects the shape and organization of the cells, for example. And inside the body, the hard materials can trigger inflammation or the loss of organ functionalities.

Rapid prototyping with inkjet printers

When electrode arrays are placed on soft materials, these problems are avoided. This has sparked intensive research into these solutions. Until now, most initiatives have used traditional methods, which are time-consuming and require access to expensive specialized laboratories. “If you instead print the electrodes, you can produce a prototype relatively quickly and cheaply. The same applies if you need to rework it,” says Bernhard Wolfrum, Professor of Neuroelectronics at TUM. “Rapid prototyping of this kind enables us to work in entirely new ways.”

Wolfrum and his team work with a high-tech version of an inkjet printer. The electrodes themselves are printed with carbon-based ink. To prevent the sensors from picking up stray signals, a neutral protective layer is then added to the carbon paths.

Materials for various applications

The researchers tested the process on various substrates, including PDMS (polydimethylsiloxane) – a soft form of silicon – agarose – a substance commonly used in biology experiments – and finally various forms of gelatin, including a gummy bear that was first melted and then allowed to harden. Each of these materials has properties suitable for certain applications. For example, gelatin-coated implants can reduce unwanted reactions in living tissue.

Through experiments with cell cultures, the team was able to confirm that the sensors provide reliable measurements. With an average width of 30 micrometers, they also permit measurements on a single cell or just a few cells. This is difficult to achieve with established printing methods.

“The difficulty is in fine-tuning all of the components – both the technical set-up of the printer and the composition of the ink,” says Nouran Adly, the first author of the study. “In the case of PDMS, for example, we had to use a pre-treatment we developed just to get the ink to adhere to the surface.”

Wide range of potential applications

Printed microelectrode arrays on soft materials could be used in many different areas. They are suitable not only for rapid prototyping in research, but could also change the way patients are treated. “In the future, similar soft structures could be used to monitor nerve or heart functions in the body, for example, or even serve as a pacemaker,” says Prof. Wolfrum. At present he is working with his team to print more complex three-dimensional microelectrode arrays. They are also studying printable sensors that react selectively to chemical substances, and not only to voltage fluctuations.

STMicroelectronics CEO Jean-Marc Chery and SEMI President and CEO Ajit Manocha will kick off the co-located SEMIMEMS & Sensors Industry Group’s (SEMI-MSIG’s) European MEMS & Sensors Summit 2018 and European Imaging & Sensors Summit (September 19-21 in Grenoble, France). Global technology leaders will examine the influence of megatrends, such as artificial and autonomous intelligence, hyperscale data centers, cybersecurity, authentication, human-machine interface, and virtual reality/augmented reality (VR/AR) on MEMS, sensors and imaging. Speakers will also explore new platforms, models and materials that support the performance and volume requirements of tomorrow’s MEMS, sensors and imaging devices.

In his executive keynote, NXP Semiconductors SVP/CTO Lars Reger will discuss the powerful decentralized ways that sensors allow cars to perform more human-like decision-making in autonomous driving. Mr. Reger will highlight a complex automotive ecosystem that requires both MEMS and non-MEMS sensors — as well as other electronic measurement and control systems — to advance the autonomous vehicles of today and tomorrow. CEA Leti CEO Emmanuel Sabonnadière will present on how innovation is feeding technology, providing an overview on operational excellence, innovations in technology, talent management and leadership. An additional executive keynote speaker from Renault will be announced soon.

“Our European Summits offer influential stakeholders a unique forum to explore the technological developments — and manufacturing and materials advancements — that will dramatically improve MEMS, sensors and imaging technologies — and the markets in which they play,” said Laith Altimime, president, SEMI Europe. “Whether partners, competitors, suppliers or end-customers, attendees will also benefit from mutual engagement during the exhibition and networking events that make our European Summits so unique.”

Other Highlights

  • Feature Presentations

o   Megatrends impacts on the MEMS business — Eric Mounier, Yole Développement

o   Future trends and drivers for sensors markets — Dr. Michael Alexander, Roland Berger

o   Disruption in the authentication sensor market — Manuel Tagliavini, IHS Markit

o   Image sensors technology innovations enabling market megatrends — Roberto Bez, LFoundry

o   Embracing design for manufacturing in MEMS – success and disappointment — Ian Roane, Micralyne

o   Advanced substrates for MEMS and photonic applications — Vesa-Pekka Lempinen, Okmetic Oy

o   Sensors enabling smart HMI — Christian Mandl, Infineon Technologies

o   Image and vision sensors, systems and applications for smart cities — Thierry Ligozat, Teledyne e2v

o   Trends and recent developments in 3D microscopy for biomedical applications — Michael Kempe, Carl Zeiss AG

o   AI-enabled imaging at the edge — Petronel Bigiogi, XPERI

  • MEMS and Imaging Technology Showcase — several strictly vetted companies will perform live demos of their MEMS-, imaging- or sensors-based products as they compete for audience votes.
  • Joint Show-Floor Exhibition
  • Networking events such as the welcome reception and a gala dinner held for both MEMS and Sensors and Imaging & Sensors Summit attendees
  • MEMS & Sensors Summit: stay in touch via Twitter at www.twitter.com (use #MEMSEU).
  • Imaging & Sensors Summit: stay in touch via Twitter at www.twitter.com (use #imagingEU).
  • Registration: registration is open now, with early-bird pricing available until August 17, 2018. Visit: http://www.semi.org/eu/mems-and-sensors-2018-registration

 

SEMI-MSIG’s Summits will be held at the WTC in Grenoble, France, in the heart of the French Silicon Valley (5-7 Place Robert Schuman, 38000 Grenoble, France). Premier sponsors of the Summits include: Gold Sponsors ASE Group, Presto Engineering, Inc. and SUSS MicroTec Group; Silver Sponsors Applied Materials, EV Group, LFoundry, and SPTS Technologies. Event sponsors include: JSR Micro N.V., Materion, Okmetic, and Trymax.

FlexTech, a SEMI Strategic Association Partner, is now soliciting proposals for projects that advance flexible hybrid electronics (FHE) for sensors, power and other key electronic components. SEMI-FlexTech plans to announce multiple awards to teams or organizations with research and development capability in the U.S. White paper proposals are due July 9, 2018, at 5:00 PM PDT. Review the full Request for Proposal (RFP) for more information about the submission process here.

In partnership with the U.S Army Research Laboratories (ARL), SEMI-FlexTech is seeking proposals for projects that advance heterogeneous packaging for FHE including integrated systems, system architecture and design, and integrated power management components such as batteries, supercapacitors, and energy harvesting.

SEMI-FlexTech’s Technical Council will evaluate and rank proposals, prioritize and manage projects, and administer funding. Grant recipients must match the fund award with cash and in-kind contributions to cover total project cost. Historically, grant recipients have provided, on average, more than 60 percent of project costs. A product demonstration is also required for award consideration.

“This solicitation emphasizes FHE for the Internet of Things (IoT) as we seek to advance the state of the art and incorporate thinned ICs, flexible and printed electronics, power and sensors into a flexible, conformal, low-power package,” explained Melissa Grupen-Shemansky, Executive Director and CTO of SEMI-FlexTech. “The SEMI-FlexTech program is designed to engage multi-disciplinary teams from across the supply chain to develop creative solutions that accelerate the introduction of new FHE technologies.”

SEMI-FlexTech will fund technical approaches that are revolutionary or carry high risk as well as lower-risk evolutionary approaches with shorter development and delivery timetables. SEMI-FlexTech funds research and development initiatives that fall within the U.S. government’s Technology Readiness Levels (TRLs) 3-6 and Manufacturing Readiness Levels (MRLs) 1-3.