Category Archives: Applications

The process of extracting natural gas from the earth or transporting it through pipelines can release methane into the atmosphere. Methane, the primary component of natural gas, is a greenhouse gas with a warming potential approximately 25 times larger than carbon dioxide, making it very efficient at trapping atmospheric heat energy. A new chip-based methane spectrometer, that is smaller than a dime, could one day make it easier to monitor for efficiency and leaks over large areas.

Scientists from IBM Thomas J. Watson Research Center in Yorktown Heights, NY, developed the new methane spectrometer, which is smaller than today’s standard spectrometers and more economical to manufacture. In Optica, The Optical Society’s journal for high impact research, the researchers detail the new spectrometer and show that it can detect methane in concentrations as low as 100 parts-per-million.

Low maintenance, high impact

The spectrometer is based on silicon photonics technology, which means it is an optical device made of silicon, the material used to make computer chips. Because the same high-volume manufacturing methods used for computer chips can be applied to make the chip-based methane spectrometer, the spectrometer along with a housing and a battery or solar power source might cost as little as a few hundred dollars if produced in large quantities.

“Compared with a cost of tens of thousands of dollars for today’s commercially available methane-detecting optical sensors, volume-manufacturing would translate to a significant value proposition for the chip spectrometer,” said William Green, leader of the IBM Research team. “Moreover, with no moving parts and no fundamental requirement for precise temperature control, this type of sensor could operate for years with almost no maintenance.”

Such low-cost, robust spectrometers could lead to exciting new applications. For example, the IBM team is working with partners in the oil and gas industry on a project that would use the spectrometers to detect methane leaks, saving companies the time and money involved in trying to find and fix leaks using in-person inspection of thousands of sites.

“During natural gas extraction and distribution, methane can leak into the air when equipment on the well malfunctions, valves get stuck, or there’s a crack in the pipeline,” said Green. “We’re developing a way to use this spectrometer-on-a-chip to create a network of sensors that could be distributed over a well pad, for example. Data from these sensors would be processed with IBM’s physical analytics software to automatically pinpoint the location of a leak as well as quantify the leak magnitude.”

Methane is a trace gas, the classification given to gases that make up less than 1 percent of the volume of Earth’s atmosphere. Although the researchers demonstrated methane detection, the same approach could be used for sensing the presence of other individual trace gases. It could also be used to detect multiple gases simultaneously.

“Our long-term vision is to incorporate these types of sensors into the home and things people use every day such as their cell phones or vehicles. They could be useful for detecting pollution, dangerous carbon monoxide levels or other molecules of interest,” said Eric Zhang, a member of the research team. “Because this spectrometer offers a platform for multispecies detection, it could also one day be used for health monitoring through breath analysis.”

Shrinking the spectrometer

The new device uses an approach known as absorption spectroscopy, which requires laser light at the wavelength uniquely absorbed by the molecule being measured. In a traditional absorption spectroscopy setup, the laser travels through the air, or free-space, until it reaches a detector. Measuring the light that reaches the detector reveals how much light was absorbed by the molecules of interest in the air and can be used to calculate the concentration of them present.

The new system uses a similar approach, but instead of a free-space setup, the laser travels through a narrow silicon waveguide that follows a 10-centimeter-long serpentine pattern on top of a chip measuring 16 square millimeters. Some of the light is trapped inside the waveguide while about 25 percent of the light extends outside of the silicon into the ambient air, where it can interact with trace gas molecules passing nearby the sensor waveguide. The researchers used near infrared laser light (1650 nanometer wavelength) for methane detection.

To increase the sensitivity of the device, the investigators carefully measured and controlled factors that contribute to noise and false absorption signals, fine-tuned the spectrometer’s design and determined the waveguide geometrical parameters that would produce favorable results.

Side-by-side comparison

To compare the new spectrometer’s performance with that of a standard free-space spectrometer, they placed the devices into an environmental chamber and released controlled concentrations of methane. The researchers found that the chip-based spectrometer provided accuracy on-par with the free-space sensor despite having 75 percent less light interacting with the air compared to the free-space design. Furthermore, the fundamental sensitivity of the chip sensor was quantified by measuring the smallest discernable change in methane concentration, showing performance comparable to free-space spectrometers developed in other laboratories.

“Although silicon photonics systems — especially those that use refractive index changes for sensing — have been explored previously, the innovative part of our work was to use this type of system to detect very weak absorption signals from small concentrations of methane, and our comprehensive analysis of the noise and minimum detection limits of our sensor chip,” said Zhang.

The current version of the spectrometer requires light to enter and exit the chip via optical fibers. However, the researchers are working to incorporate the light source and detectors onto the chip, which would create an essentially electrical device with no fiber connections required. Unlike current free-space sensors, the chip then does not require special sample or optical preparation. Next year, they plan to start field testing the spectrometers by placing them into a larger network that includes other off-the-shelf sensors.

“Our work shows that all of the knowledge behind silicon photonics manufacturing, packaging, and component design can be brought into the optical sensor space, to build high-volume manufactured and, in principle, low cost sensors, ultimately enabling an entirely new set of applications for this technology,” said Green.

Piezoelectric materials are used for applications ranging from the spark igniter in barbeque grills to the transducers needed by medical ultrasound imaging. Thin-film piezoelectrics, with dimensions on the scale of micrometers or smaller, offer potential for new applications where smaller dimensions or a lower voltage operation are required.

Researchers at Pennsylvania State University have demonstrated a new technique for making piezoelectric microelectromechanical systems (MEMS) by connecting a sample of lead zirconate titanate (PZT) piezoelectric thin films to flexible polymer substrates. Doctoral candidate Tianning Liu and her co-authors report their results this week in the Journal of Applied Physics, from AIP Publishing.

Electroded thin-film PZT on a flexible polyimide substrate of relatively large area. Credit: Tianning Liu

Electroded thin-film PZT on a flexible polyimide substrate of relatively large area. Credit: Tianning Liu

“There’s a rich history of work on piezoelectric thin films, but films on rigid substrates have limitations that come from the substrate,” said Thomas N. Jackson, a professor at Penn State and one of the paper’s authors. “This work opens up new areas for thin-film piezoelectrics that reduce the dependence on the substrate.”

The researchers grew polycrystalline PZT thin films on a silicon substrate with a zinc oxide release layer, to which they added a thin layer of polyimide. They then used acetic acid to etch away the zinc oxide, releasing the 1-micrometer thick PZT film with the polyimide layer from the silicon substrate. The PZT film on polyimide is flexible while possessing enhanced material properties compared to the films grown on rigid substrates.

Piezoelectric devices rely on the ability of some substances like PZT to generate electric charges when physically deformed, or inversely to deform when an electric field is applied to them. Growing high-quality PZT films, however, typically requires temperatures in excess of 650 degrees Celsius, almost 300 degrees hotter than what polyimide is able to withstand without degrading.

Most current piezoelectric device applications use bulk materials, which hampers miniaturization, precludes significant flexibility, and necessitates high-voltage operation.

“For example, if you’re looking at putting an ultrasound transducer in a catheter, a PZT film on a polymer substrate would allow you to wrap the transducer around the circumference of the catheter,” Liu said. “This could allow for significant miniaturization, and should provide more information for the clinician.”

The performance of many piezoelectric thin films has been limited by substrate clamping, a phenomenon in which the rigid substrate constrains the movement of the piezoelectric material’s domain walls and degrades its properties. Some work has been done crystallizing PZT at temperatures that are compatible with polymeric materials, for example using laser crystallization, but results thus far have led to porous thin films and inferior material properties.

The released thin films on polyimide that the researchers developed had a 45 percent increase in remanent polarization over silicon substrate controls, indicating a substantial mitigation in substrate clamping and improved performance. Even then, Liu said, much work remains before thin-film MEMS devices can compete with bulk piezoelectric systems.

“There’s still a big gap between putting PZT on thin film and bulk,” she said. “It’s not as big as between bulk and substrate, but there are also things like more defects that contribute to the lower response of the thin-film materials.”

Today, SEMI announced that SEMICON Japan, the exposition for the electronics manufacturing supply chain in Japan, will focus on smart applications as key drivers of the electronics industry. Over 30,000 attendees are expected to convene at SEMICON Japan at Tokyo Big Sight in Tokyo on December 13-15. Registration for the exhibition and programs is now open.

Both on the exhibition floors and in sessions, smart applications will be featured, including Smart Automotive, Smart Manufacturing, Smart MedTech and the Internet of Things (IoT), bringing the theme, “Dreams Start Here” to life.

Smart Automotive – On the show floor, Toyota and Tesla will share new Smart Automotive technologies. Two dedicated forums on Smart Automotive will be featured at SEMICON Japan:

  • IoT Key Technology Forum: Companies, including Nissan Motors, NVIDIA andHitachi Automotive Systems will share their perspectives on the future of Smart Automotive.
  • Smart Mobility Forum: The technologies shaping our future mobile society, including autonomous bus systems, robot cars and drones, are featured.

Smart Manufacturing – The Smart Manufacturing Forum will share the latest on advanced  manufacturing lines from two Japanese solution providers ─ Fuji Machine Manufacturing and Yokogawa Electric. On the exhibition floor, Peer Group, Siemens and Yokogawa Electric will showcase the technologies and products.

Smart MedTech – The Smart Healthcare Forum will feature the Internet Association Japan and Hitachi who will explore the development of medical electronics and the latest technologies and solutions brought by IoT and AI. On the show floor, companies providing key enabling technologies for wearable devices including JINS, Toyobo and YUASA Systems will exhibit in the Flexible Hybrid Electronics area.

WORLD OF IOT – Many of the above exhibits on smart applications and their enabling technologies will be located at the WORLD OF IOT, a technology showcase highlighting the companies, products, technologies, and applications enabling the IoT revolution. WORLD OF IOT will have more than 70 exhibitors including Fujitsu, Hitachi, IBM, Micron, Nokia, Panasonic, Soft Bank and Sony. SEMICON Japan also features two sessions on IoT technologies:

  • IoT Global Trends Forum: Executives from leading technology companies, including Arm, Intel and Sony, will discuss the technology development needed to reach a smarter and more connected world.
  • IoT Connectivity Forum: Presentations by wireless communication technology companies Ericsson and NTT Docomo on next-generation technology including 5G and LPWA, needed to accelerate the Industrial IoT and Smart Manufacturing.

 

All about Drones – SEMICON Japan will also present “All about Drones”─a spotlight on drones, a growing application of sensor and actuator technologies. A tear-down drone exhibit, drone lectures, and a demonstration area will allow visitors fly drones.

Osamu Nakamura, president of SEMI Japan said, “With all these exhibits and sessions, the semiconductor manufacturing supply chain will intersect with the growing application markets, technologies and players to find new opportunities for collaboration, innovation and growth. That’s why ‘Dreams Start Here’ at SEMICON Japan.”

For more information on the SEMICON Japan exposition and programs, visit http://www.semiconjapan.org/en.

STMicroelectronics (NYSE: STM) has taken underwater accuracy to new heights with its latest miniature pressure sensor, which is featured in the new Samsung Gear Fit 2 Pro.

As smart watches and wearable fitness trackers permeate the fabric of everyday life, owners want to go further with their devices and track performance across extra activities like swimming. Samsung’s Gear Fit 2 Pro, the next generation of sports band, supports these trends with features like built-in GPS, continuous heart rate monitoring, and larger on-board memory to do more even when not connected to a smartphone. ST’s new waterproof pressure sensor, the LPS33HW, is part of the mix: resistant to chemicals like chlorine, bromine, and salt water, it is ideal for pool or sea swimming, and will also resist soaps or detergents used when showering or cleaning.

Wearables are only just beginning to swim, and waterproofing pressure sensors creates challenges beyond just protecting the electronics. The LPS33HW is not only the most accurate, but also helps OEMs get their products to the store-shelves more quickly by recovering sooner after the stresses of manufacturing. Other sensors can require up to seven days to regain maximum accuracy after coming off the production line, but devices containing the LPS33HW are ready for action in less than half that time. This is due to the sensor’s high-performance built-in processor and the advanced formula of its water-resistant gel filling.

“Wearable trackers enhance smart living, and can now deliver an important extra boost with the go-anywhere ruggedness aided by our water-resistant LPS33HW sensor,” said Andrea Onetti, MEMS Sensor Division General Manager, STMicroelectronics. “Samsung takes advantage of the pressure sensor’s best-in-class performance for the new Gear Fit 2 Pro range and users will appreciate both its accuracy and toughness.”

In addition to smart consumer devices like wearables, other equipment including industrial sensors and utility meters can also benefit from the robustness and high measurement accuracy of the LPS33HW. The 10bar pressure sensor can withstand being submerged up to 90 meters, and the very low RMS pressure noise of 0.008mbar allows apps like an altimeter, depth gauge, or weather monitor to deliver consistent and stable results. The sensor accuracy drifts by less than ±1mbar per year.

When soldered to a circuit board during product manufacture, the accuracy is affected by less than ±2mbar, and returns to normal after less than 72 hours – significantly quicker than similar water-resistant pressure sensors.

The LPS33HW is in production now, in a 3.3mm x 3.3mm x 2.9mm cylindrical metal package suitable for use with O-ring seals, priced from $4.50 for orders of 1000 pieces.

On 14-17 November in Munich, SEMICON Europa will co-locate with productronica for the first time, for a focus on innovation and the future of the electronics manufacturing supply chain. Gathering key stakeholders from across the electronics manufacturing supply chain, the extensive range and depth, programs and networking events make the platform a necessity for players across the European electronics industry. SEMICON Europa will take place at Messe München Hall B1.

An Opening Ceremony will include a welcome speech by Ajit Manocha, president and CEO of SEMI, followed by Laith Altimime, president, SEMI Europe, plus four keynotes:

  • Bosch Sensortec: Stefan Finkbeiner, CEO, on how environmental sensing can contribute to a better quality of life in the context of the IoT
  • Rinspeed Inc.: Frank M. Rinderknecht, founder and CEO, on how to create innovative technologies, materials and mobility means of tomorrow
  • SOITEC: Carlos Mazure, CTO, executive VP, on contributions and benefits of engineered substrates solutions and thin-layer transfer technologies, focusing on applications in the smart space
  • TSMC Europe: Maria Marced, president, on opportunities for new business models to apply in the Smart City

“We are at the brink of a new wave of innovation ─ called the “Fourth Industrial Revolution” or “Smart Manufacturing.” It’s driven by connected devices and smart applications known as the IoT. This presents many opportunities for closer collaborations at global level, connecting key players, key ecosystems and building on the strengths of players in the value chain,” said Laith Altimime, president of SEMI Europe.

New programs on Flexible Electronics, Materials, and Automotive expand SEMICON Europa’s impact:

Returning programs include:

Register for programs before 12 November for a discount: http://www.semiconeuropa.org/register

SEMICON Europa offers free programs available on the exhibition show floor, including the TechARENA sessions ─ from MedTech to Lithography, Smart Manufacturing and Photonics, and many other topics.

For the fourth time at SEMICON Europa, INNOVATION VILLAGE will bring early-stage technology companies, the semiconductor industry’s top strategic investors, and leading technology partners together. This year sponsors include the City of Dresden and Volkswagen.

More than ever, there are unique opportunities to network with peers and connect with a large number of stakeholders at SEMICON Europa as attendees gather at the SEMICON CXO Luncheon, SEMI Member Breakfast, and SEMI Networking Night.

Connect! Register here and stay in touch via Twitter at http://www.twitter.com (use #SEMICONEuropa)

The MIPI Alliance, an international organization that develops interface specifications for mobile and mobile-influenced industries, today announced the formation of an Automotive Birds of a Feather (BoF) Group to solicit industry input from original equipment manufacturers (OEMs) and their suppliers to enhance existing or develop new interface specifications for automotive applications. The group is open to both MIPI Alliance member and non-member companies to represent the broader automotive ecosystem.

Automobiles have become a new platform for innovation, and manufacturers are already using MIPI Alliance specifications as they develop and implement applications for passive and active safety, infotainment and advanced driver assistance systems (ADAS).MIPI interfaces such as Camera Serial Interface 2 (MIPI CSI-2SM)Display Serial Interface (MIPI DSISM) and Display Serial Interface 2 (MIPI DSI-2SM) are ideal for a variety of low- and high-bandwidth applications that integrate components such as cameras, displays, biometric readers, microphones and accelerometers. MIPI I3CSM helps automotive systems designers minimize the complexity, cost and development time for products that use multiple sensors in a space-constrained form factor. Highly sensitive, mission-critical automotive applications also benefit from MIPI interfaces’ low electromagnetic interference (EMI), a capability that’s been proven in billions of mobile phones and other handheld devices.

“Automakers already rely on MIPI Alliance’s industry-standard interfaces to enable a wide variety of applications, including collision mitigation and avoidance, infotainment and navigation,” said Matt Ronning, chair of the MIPI Alliance Automotive Subgroup and the Automotive BoF. “This call for participation helps ensure we cast a wide net to capture expertise to aid with extending existing and shape future MIPI specifications and collectively help realize the vision of how connected cars and automotive applications will evolve over the next decade. Just as mobile handset manufacturers benefited from the standardization that MIPI Alliance has provided, automotive OEMs would similarly benefit.”

“Active participation of automotive OEMs, tier-one and tier-two suppliers is greatly appreciated and necessary to, for example, work out the data link requirements between surround sensors, electronic control units, actors and displays for driver assistance and autonomous driving projects beyond 2020 and incorporate them into MIPI interface specifications,” said Uwe Beutnagel-Buchner, vice-chair of the MIPI Alliance Automotive Subgroup and the Automotive BoF.

For short-distance communications (< 0.3 meters), the MIPI CSI specification is the most widely adopted in automotive camera applications; MIPI DSI is rapidly gaining adoption also. The Automotive BoF Group’s initial focus will be to examine how MIPI specifications can potentially be extended to support communication link distances up to 15 meters, and at the same time support the high data rates associated with cameras and radar sensors for autonomous driving systems.

Join the MIPI Alliance Automotive BoF Group

The MIPI Automotive BoF is seeking additional qualified experts from OEMs, tier-one suppliers, component suppliers and related companies to provide key input into current and future MIPI interface specifications. The Automotive BoF is expected to convene via teleconference on a biweekly basis, with face-to-face meetings planned as necessary.

Companies already participating in MIPI Alliance’s Automotive BoF Group include: Analog Devices, Inc.; Analogix Semiconductor, Inc.; BitSim AB; BMW Group; Cadence Design Systems, Inc.; Continental Corporation; Etron Technology, Inc.; Ford Motor Company; Genesys Logic, Inc.; Hardent Inc.; Lontium Semiconductor Corporation; Microchip Technology Inc.; Mixel, Inc.; Mobileye, an Intel Company; NVIDIA; NXP Semiconductors; ON Semiconductor; Parade Technologies Ltd.; Qualcomm Incorporated; Robert Bosch GmbH; Sony Corporation; STMicroelectronics; Synopsys, Inc.; TE Connectivity Ltd.; Tektronix Inc.; Teledyne LeCroy; Texas Instruments Incorporated; Toshiba Corporation; Western Digital and others.

ArterisIP, the supplier of silicon-proven commercial system-on-chip (SoC) interconnect IP, today announced it has joined the FDXcelerator Partner Program. This program enables SoC designers to integrate ArterisIP interconnect IP into their projects with the ability to accelerate the timing closure process for FDX-based designs. The partnership speeds the development of pioneering products in applications from automotive ADAS and machine learning to small IoT processors.

ArterisIP offerings participating in the FDXcelerator program include:

  • The Ncore Cache Coherent Interconnect IP with Ncore Resilience Package, which has been chosen by the industry’s leading automotive ADAS, autonomous driving, and machine learning SoC vendors for its power, performance, and area advantages and ISO 26262 functional safety features.
  • The FlexNoC Interconnect IP with FlexNoC Resilience Package, which is the backbone interconnect for most mobility and consumer electronics SoC designs where power consumption, performance, and cost are key design metrics.
  • The PIANO Timing Closure Package, which assists back-end timing closure with technology that works earlier in the SoC design flow, thereby reducing schedule risk.

“The addition of ArterisIP to the FDXcelerator Partnership Program has already realized benefits with the implementation of an FD-SOI automotive ADAS multi-processor SoC with fellow FDXcelerator partner Dream Chip Technologies,” said Alain Mutricy, senior vice president of product management at GF. “ArterisIP’s commitment to GF’s FDX technology enables a scalable on-chip interconnect IP technology that will help our customers meet stringent automotive safety requirements.”

“GF’s FDXcelerator program plays an important role for ArterisIP, enabling us to gain access to FD-SOI technology process and design information to enable improved automation of our interconnect timing closure assistance technology,” said K. Charles Janac, President and CEO of ArterisIP. “Interconnect timing closure assistance is becoming imperative as technologies like FD-SOI shrink feature sizes and allow ever-increasing transistor and wire densities.”

GLOBALFOUNDRIES today unveiled AutoPro, a new platform designed to provide automotive customers a broad set of technology solutions and manufacturing services that minimize certification efforts and speed time-to-market. The company offers the industry’s broadest set of solutions for a full range of driving system applications, from informational Advanced Driver Assistance Systems (ADAS) to high-performance real-time processors for autonomous cars.

Today, the automobile semiconductor market is approximately $35 billion, and is expected to grow to an estimated $54 billion by 2023. This is driven by a need for new technologies that promise to enhance the driving experience such as navigation, remote roadside assistance and advanced systems that combine data from multiple sensors with high-performance processors that make control decisions.

“As vehicles move rapidly toward greater autonomy, auto manufacturers and parts suppliers are designing new ICs,” said Gregg Bartlett, senior vice president of the CMOS Business Unit at GF. “GF’s diverse automotive platform combines a range of technologies and services that meet the complexity and requirements for applications that enable connected intelligence for the automotive industry.”

Building on 10 years of automotive experience, the company’s AutoPro technology platform includes offerings in silicon germanium (SiGe), FD-SOI (FDX), CMOS and advanced FinFET nodes, combined with a broad range of ASIC design services, packaging and IP.

GF’s CMOS and RF solutions deliver an optimal combination of performance, integration and power efficiency for advanced sensors (radar, lidar, cameras), ADAS and autonomous processing (sensor fusion and AI compute) and body and powertrain control, with embedded eNVM technology for in-vehicle MCUs, as well as connectivity and infotainment systems. The company’s BCD and BCDLite® technologies provide high-voltage capabilities, with a path to supporting 48 volts that enable automotive power solutions for electric powertrain, Hybrid-electric (HEVs) and Internal Combustion Engine (ICE) vehicles.

These automotive solutions are available now, with additional access to quality and service across GF’s manufacturing fabs in the U.S., Europe, and Asia. GF AutoPro solutions support the full range of AEC-Q100 quality grades from Grade 2 to Grade 0.

AutoPro Service Package

In addition to GF’s technology platform, the company has initiated its AutoPro Service Package designed to ensure technology readiness, operational excellence and a robust automotive-ready quality system to continually improve quality and reliability throughout the product life-cycle.

GF’s Service Package builds on the company’s proven automotive quality and operational controls, providing customers access to the latest technologies which are designed to meet strict automotive quality requirements defined in the ISO, International Automotive Task Force (IATF), Automotive Electronics Council (AEC), and VDA (German) standards.

GF is currently working with major OEM customers and suppliers to develop and produce chips of the optimum quality and reliability as required by the various automotive applications.

Gartner, Inc. this week highlighted the top strategic technology trends that will impact most organizations in 2018. Analysts presented their findings during Gartner Symposium/ITxpo, which took place through Thursday.

Gartner defines a strategic technology trend as one with substantial disruptive potential that is beginning to break out of an emerging state into broader impact and use, or which are rapidly growing trends with a high degree of volatility reaching tipping points over the next five years.

“Gartner’s top 10 strategic technology trends for 2018 tie into the Intelligent Digital Mesh. The intelligent digital mesh is a foundation for future digital business and ecosystems,” said David Cearley, vice president and Gartner Fellow. “IT leaders must factor these technology trends into their innovation strategies or risk losing ground to those that do.”

The first three strategic technology trends explore how artificial intelligence (AI) and machine learning are seeping into virtually everything and represent a major battleground for technology providers over the next five years. The next four trends focus on blending the digital and physical worlds to create an immersive, digitally enhanced environment. The last three refer to exploiting connections between an expanding set of people and businesses, as well as devices, content and services to deliver digital business outcomes.

The top 10 strategic technology trends for 2018 are:

AI Foundation
Creating systems that learn, adapt and potentially act autonomously will be a major battleground for technology vendors through at least 2020. The ability to use AI to enhance decision making, reinvent business models and ecosystems, and remake the customer experience will drive the payoff for digital initiatives through 2025.

“AI techniques are evolving rapidly and organizations will need to invest significantly in skills, processes and tools to successfully exploit these techniques and build AI-enhanced systems,” said Mr. Cearley. “Investment areas can include data preparation, integration, algorithm and training methodology selection, and model creation. Multiple constituencies including data scientists, developers and business process owners will need to work together.”

Intelligent Apps and Analytics
Over the next few years, virtually every app, application and service will incorporate some level of AI. Some of these apps will be obvious intelligent apps that could not exist without AI and machine learning. Others will be unobtrusive users of AI that provide intelligence behind the scenes. Intelligent apps create a new intelligent intermediary layer between people and systems and have the potential to transform the nature of work and the structure of the workplace.

“Explore intelligent apps as a way of augmenting human activity and not simply as a way of replacing people,” said Mr. Cearley. “Augmented analytics is a particularly strategic growing area which uses machine learning to automate data preparation, insight discovery and insight sharing for a broad range of business users, operational workers and citizen data scientists.”

AI has become the next major battleground in a wide range of software and service markets, including aspects of enterprise resource planning (ERP). Packaged software and service providers should outline how they’ll be using AI to add business value in new versions in the form of advanced analytics, intelligent processes and advanced user experiences.

Intelligent Things
Intelligent things are physical things that go beyond the execution of rigid programming models to exploit AI to deliver advanced behaviors and interact more naturally with their surroundings and with people. AI is driving advances for new intelligent things (such as autonomous vehicles, robots and drones) and delivering enhanced capability to many existing things (such as Internet of Things [IoT] connected consumer and industrial systems).

“Currently, the use of autonomous vehicles in controlled settings (for example, in farming and mining) is a rapidly growing area of intelligent things. We are likely to see examples of autonomous vehicles on limited, well-defined and controlled roadways by 2022, but general use of autonomous cars will likely require a person in the driver’s seat in case the technology should unexpectedly fail,” said Mr. Cearley. “For at least the next five years, we expect that semiautonomous scenarios requiring a driver will dominate. During this time, manufacturers will test the technology more rigorously, and the nontechnology issues such as regulations, legal issues and cultural acceptance will be addressed.” 

Digital Twin
A digital twin refers to the digital representation of a real-world entity or system. Digital twins in the context of IoT projects is particularly promising over the next three to five years and is leading the interest in digital twins today. Well-designed digital twins of assets have the potential to significantly improve enterprise decision making. These digital twins are linked to their real-world counterparts and are used to understand the state of the thing or system, respond to changes, improve operations and add value. Organizations will implement digital twins simply at first, then evolve them over time, improving their ability to collect and visualize the right data, apply the right analytics and rules, and respond effectively to business objectives.

“Over time, digital representations of virtually every aspect of our world will be connected dynamically with their real-world counterpart and with one another and infused with AI-based capabilities to enable advanced simulation, operation and analysis,” said Mr. Cearley. “City planners, digital marketers, healthcare professionals and industrial planners will all benefit from this long-term shift to the integrated digital twin world.”

Cloud to the Edge
Edge computing describes a computing topology in which information processing, and content collection and delivery, are placed closer to the sources of this information. Connectivity and latency challenges, bandwidth constraints and greater functionality embedded at the edge favors distributed models. Enterprises should begin using edge design patterns in their infrastructure architectures — particularly for those with significant IoT elements.

While many view cloud and edge as competing approaches, cloud is a style of computing where elastically scalable technology capabilities are delivered as a service and does not inherently mandate a centralized model.

“When used as complementary concepts, cloud can be the style of computing used to create a service-oriented model and a centralized control and coordination structure with edge being used as a delivery style allowing for disconnected or distributed process execution of aspects of the cloud service,” said Mr. Cearley.

Conversational Platforms
Conversational platforms will drive the next big paradigm shift in how humans interact with the digital world. The burden of translating intent shifts from user to computer. The platform takes a question or command from the user and then responds by executing some function, presenting some content or asking for additional input. Over the next few years, conversational interfaces will become a primary design goal for user interaction and be delivered in dedicated hardware, core OS features, platforms and applications.

“Conversational platforms have reached a tipping point in terms of understanding language and basic user intent, but they still fall short,” said Mr. Cearley. “The challenge that conversational platforms face is that users must communicate in a very structured way, and this is often a frustrating experience. A primary differentiator among conversational platforms will be the robustness of their conversational models and the application programming interface (API) and event models used to access, invoke and orchestrate third-party services to deliver complex outcomes.” 

Immersive Experience
While conversational interfaces are changing how people control the digital world, virtual, augmented and mixed reality are changing the way that people perceive and interact with the digital world. The virtual reality (VR) and augmented reality (AR) market is currently adolescent and fragmented. Interest is high, resulting in many novelty VR applications that deliver little real business value outside of advanced entertainment, such as video games and 360-degree spherical videos. To drive real tangible business benefit, enterprises must examine specific real-life scenarios where VR and AR can be applied to make employees more productive and enhance the design, training and visualization processes.

Mixed reality, a type of immersion that merges and extends the technical functionality of both AR and VR, is emerging as the immersive experience of choice providing a compelling technology that optimizes its interface to better match how people view and interact with their world. Mixed reality exists along a spectrum and includes head-mounted displays (HMDs) for augmented or virtual reality as well as smartphone and tablet-based AR and use of environmental sensors. Mixed reality represents the span of how people perceive and interact with the digital world.

Blockchain
Blockchain is evolving from a digital currency infrastructure into a platform for digital transformation. Blockchain technologies offer a radical departure from the current centralized transaction and record-keeping mechanisms and can serve as a foundation of disruptive digital business for both established enterprises and startups. Although the hype surrounding blockchains originally focused on the financial services industry, blockchains have many potential applications, including government, healthcare, manufacturing, media distribution, identity verification, title registry and supply chain. Although it holds long-term promise and will undoubtedly create disruption, blockchain promise outstrips blockchain reality, and many of the associated technologies are immature for the next two to three years.

Event Driven
Central to digital business is the idea that the business is always sensing and ready to exploit new digital business moments. Business events could be anything that is noted digitally, reflecting the discovery of notable states or state changes, for example, completion of a purchase order, or an aircraft landing. With the use of event brokers, IoT, cloud computing, blockchain, in-memory data management and AI, business events can be detected faster and analyzed in greater detail. But technology alone without cultural and leadership change does not deliver the full value of the event-driven model. Digital business drives the need for IT leaders, planners and architects to embrace event thinking.

Continuous Adaptive Risk and Trust
To securely enable digital business initiatives in a world of advanced, targeted attacks, security and risk management leaders must adopt a continuous adaptive risk and trust assessment (CARTA) approach to allow real-time, risk and trust-based decision making with adaptive responses. Security infrastructure must be adaptive everywhere, to embrace the opportunity — and manage the risks — that comes delivering security that moves at the speed of digital business.

As part of a CARTA approach, organizations must overcome the barriers between security teams and application teams, much as DevOps tools and processes overcome the divide between development and operations. Information security architects must integrate security testing at multiple points into DevOps workflows in a collaborative way that is largely transparent to developers, and preserves the teamwork, agility and speed of DevOps and agile development environments, delivering “DevSecOps.” CARTA can also be applied at runtime with approaches such as deception technologies. Advances in technologies such as virtualization and software-defined networking has made it easier to deploy, manage and monitor “adaptive honeypots” — the basic component of network-based deception.

Gartner clients can learn more in the Gartner Special Report “Top Strategic Technology Trends for 2018.” Additional detailed analysis on each tech trend can be found in the Smarter With Gartner article “Gartner Top 10 Strategic Technology Trends for 2018.”

From lifesaving smart headsets for truck drivers to gliding electric skateboards, five companies using MEMS and sensors will compete for audience votes during the Technology Showcase at the SEMI | MSIG MEMS & Sensors Executive Congress on November 1-2 in Napa Valley, Calif. As a featured event at the MEMS & Sensors Industry Group (MSIG) annual professional forum for executives from MEMS/sensors manufacturing and their end-user customers, the Technology Showcase highlights the newest and most unique MEMS/sensors-enabled applications in the industry.

“This year’s Technology Showcase finalists at the MEMS & Sensors Executive Congress are as fascinating as they are diverse,” said Frank Shemansky, CTO of SEMI | MSIG. “Imagine, for example, a MEMS-based switching element the width of a human hair, enabling RF switching that is 1,000 times faster and lasts 1,000 times longer than traditional mechanical switches. That is the kind of MEMS technology that could dramatically improve wireless applications, and it is just one of our Tech Showcase finalists ─  the others are equally compelling. The Tech Showcase is always a big draw at the Executive Congress because it gives attendees the chance to personally interact with the finalists’ demos to decide their vote for the winner – one of whom will be ‘crowned’ at the close of the conference.”

Tech Showcase Finalists

The LEIF eSnowboard by LEIF Technologies is the world’s first light electric vehicle that moves just like a snowboard. The LEIF brings to the pavement the smooth, sliding moves only found on a mountain or a wave — up to 23 mph and 15 miles per battery pack.

The Maven Co-Pilot by Maven Machines is the first smart headset for truck drivers. Employing MEMS, sensor fusion, wearable technology, machine intelligence and mobile-cloud architecture, the Maven Co-Pilot monitors drivers’ fatigue and distraction levels 50 times per second to provide accurate instantaneous early warnings to both drivers and fleet managers.

Menlo Digital-Micro-Switch Technology by Menlo Micro demonstrates fundamental materials’ advancements that improve the size, speed, power handling and reliability of MEMS switches. Smaller than the width of a human hair, Menlo Micro’s switching elements are so small that hundreds of them fit in a space smaller than 10mm2. Menlo Micro switches operate 1,000x faster than traditional mechanical switches — in a few microseconds rather than milliseconds. Their scalable architecture allows the handling of 100s of volts and 10s of amps without arcing. Menlo Micro’s devices last 1,000x longer than traditional mechanical switches, supporting billions of cycles without performance degradation.

The Berries Smart Sensor series by eLichens are patented autonomous non-dispersive infrared (NDIR) gas sensors offered in a 2 x 2 x 1cm package. These sensors integrate a dual-channel feature for a calibration-free long-life cycle. The miniaturized optical gas sensor is a complete system in package (SIP) integrating a proprietary infrared MEMS emitter and detectors, a highly efficient patented optical sampling chamber, and signal processing. The Berries series address the demanding requirements of the gas-sensing industries, where accuracy, auto-calibration and low power consumption are essential for new generations of gas- and air-detection products.

Coupled Time Domain Simulation for MEMS Sensors and System Integration by PZFlex lets engineers model and simulate a wide range of physics in new MEMS areas such as piezoelectric micromachined ultrasonic transducers (PMUTs) for fingerprint sensing. Engineers can conduct large-scale time-domain finite element analysis (FEA) simulation using PZFlex to gain insights into discrete device performance, device array performance, and full system performance for a PMUT fingerprint sensor embedded within a smartphone touch-display stackup.

MEMS & Sensors Executive Congress 2017 will take place November 1-2 at the Silverado Resort and Spa in Napa Valley, Calif. For more information, please contact SEMI via email: [email protected] or visit: www.semi.org/en/mems-sensors-executive-congress-2017.