Category Archives: Applications

Worldwide PC shipments totaled 61.1 million units in the second quarter of 2017, a 4.3 percent decline from the second quarter of 2016, according to preliminary results by Gartner, Inc. The PC industry is in the midst of a 5 year slump, and this is the 11th straight quarter of declining shipments. Shipments in the second quarter of this year were the lowest quarter volume since 2007.

“Higher PC prices due to the impact of component shortages for DRAM, solid state drives (SSDs) and LCD panels had a pronounced negative impact on PC demand in the second quarter of 2017,” said Mikako Kitagawa, principal analyst at Gartner “The approach to higher component costs varied by vendor. Some decided to absorb the component price hike without raising the final price of their devices, while other vendors transferred the costs to the end-user price.”

However, in the business segment, vendors could not increase the price too quickly, especially in large enterprises where the price is typically locked in based on the contract, which often run through the quarter or even the year,” Ms. Kitagawa said. “In the consumer market, the price hike has a greater impact as buying habits are more sensitive to price increases. Many consumers are willing to postpone their purchases until the price pressure eases.”

HP Inc. reclaimed the top position from Lenovo in the worldwide PC market in the second quarter of 2017 (see Table 1). HP Inc. has achieved five consecutive quarters of year-over-year growth. Shipments grew in most regions, and it did especially well in the U.S. market where its shipments growth far exceeded the regional average.

Table 1
Preliminary Worldwide PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

12,690

20.8

12,285

19.2

3.3

Lenovo

12,188

19.9

13,305

20.8

-8.4

Dell

9,557

15.6

9,421

14.7

1.4

Apple

4,236

6.9

4,252

6.7

-0.4

Asus

4,036

6.6

4,501

7.0

-10.3

Acer Group

3,850

6.3

4,402

6.9

-12.5

Others

14,546

23.8

15,710

24.6

-7.4

Total

61,105

100.0

63,876

100.0

-4.3

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

Lenovo’s global shipments declined 8.4 percent in the second quarter of 2017, after two quarters of growth. Lenovo recorded year-over-year shipment declines in all key regions. Ms. Kitagawa said the 2Q17 results could reflect Lenovo’s strategic shift from unit share gains to margin protection. The strategic balance between share gain and profitability is a challenge for all PC vendors.

Dell achieved five consecutive quarters of year-on-year global shipment growth, as shipments increased 1.4 percent in 2Q17. Dell has put a high priority on PCs as a strategic business. Among the top three vendors, Dell is the only vendor which can supply the integrated IT needs to businesses under the Dell Technologies umbrella of companies.

In the U.S., PC shipments totaled 14 million units in the second quarter of 2017, a 5.7 percent decline from the second quarter of 2016 (see Table 2). The U.S. market declined due to weak consumer PC demand. The business market has shown some consistent growth, while early indicators suggest that spending in the public sector was on track with normal seasonality as the second quarter is typically the peak PC procurement season. However, the education market was under pressure from strong Chromebook demand.

The Chromebook market has been growing much faster than the overall PC market. Gartner does not include Chromebook shipments within the overall PC market, but it is moderately impacting the PC market. Worldwide Chromebook shipments grew 38 percent in 2016, while the overall PC market declined 6 percent.

“The Chromebook is not a PC replacement as of now, but it could be potentially transformed as a PC replacement if a few conditions are met going forward,” Ms. Kitagawa said. “For example, infrastructure of general connectivity needs to improve; mobile data connectivity needs to become more affordable; and it needs to have more offline capability.”

Table 2
Preliminary U.S. PC Vendor Unit Shipment Estimates for 2Q17 (Thousands of Units)

Company

2Q17 Shipments

2Q17 Market Share (%)

2Q16 Shipments

2Q16 Market Share (%)

2Q17-2Q16 Growth (%)

HP Inc.

4,270

30.5

4,008

27.0

6.5

Dell

3,874

27.7

3,801

25.6

1.9

Lenovo

1,848

13.2

2,207

14.9

-16.3

Apple

1,649

11.8

1,825

12.3

-9.6

Asus

447

3.2

754

5.1

-40.7

Others

1,921

13.7

2,257

15.2

-14.9

Total

14,009

100.0

14,852

100.0

-5.7

Notes: Data includes desk-based PCs, notebook PCs and ultramobile premiums (such as Microsoft Surface), but not Chromebooks or iPads. All data is estimated based on a preliminary study. Final estimates will be subject to change. The statistics are based on shipments selling into channels. Numbers may not add up to totals shown due to rounding.
Source: Gartner (July 2017)

PC shipments in EMEA totaled 17 million units in the second quarter of 2017, a 3.5 percent decline year over year. There were mixed results across various countries. Uncertainty around the U.K. elections meant some U.K. businesses delayed buying, especially in the public sector. In France, consumer confidence rose more than expected after Emmanuel Macron was elected president, however spending on PCs remains sluggish. PC shipments increased in Germany as businesses invest in Windows 10 based new hardware, and the Russian market continued to show improvement driven by economic stabilization.

In Asia/Pacific, PC shipments surpassed 21.5 million units in the second quarter of 2017, down 5.1 percent from the same period last year. The PC market in this region was primarily affected by market dynamics in India and China. In India, the pent up demand after the demonetization cooled down after the first quarter, coupled with the absence of a large tender deal compared to a year ago and higher PC prices, brought about weak market growth. The China market was hugely impacted by the rise in PC prices due to the component shortage

These results are preliminary. Final statistics will be available soon to clients of Gartner’s PC Quarterly Statistics Worldwide by Region program. This program offers a comprehensive and timely picture of the worldwide PC market, allowing product planning, distribution, marketing and sales organizations to keep abreast of key issues and their future implications around the globe.

 

MagnaChip Semiconductor Corporation (NYSE: MX), a Korea-based designer and manufacturer of analog and mixed-signal semiconductor platform solutions for communications, IoT, consumer, industrial and automotive applications, announced today it was selected as a foundry partner by ELAN Microelectronics to manufacture the world’s first fingerprint sensor IC-based smartcard. The smartcard uses biometrics technology that provides secure identification to prevent credit card fraud, a severe and growing problem globally. The sensor-IC based smartcard will be manufactured utilizing MagnaChip’s 0.35 micron Mixed Signal Thick IMD manufacturing process technology.

The requirement for more precise, efficient and low-power ICs has increased dramatically, coinciding with the rise in importance of biometrics technology for a range of applications.  Industry analyst Frost & Sullivan forecasts that the biometrics industry will grow at a CAGR of 17.4% from 2014 to 2019 and that fingerprint-based sensor ICs will comprise 66% of the market.

MagnaChip was selected as ELAN’s foundry partner primarily because of the company’s recognized specialized foundry capability, proven and reliable manufacturing processes with robust analog  performance. MagnaChip’s current technologies for fingerprint sensor ICs include 0.35 micron, 0.18 micron 1.8V/3.3V and single 3.3V Mixed Signal technology processes. MagnaChip plans to expand its portfolio of manufacturing processes to include more advanced technologies such as its highly competitive 0.18 micron Slim Mixed Signal manufacturing process, which requires fewer mask layers than usual. MagnaChip’s manufacturing processes are well-suited for applications in fast-growing markets that require fingerprint identification, such as in the payment, medical, transportation and automobile industries.

“We hope that the collaboration between MagnaChip and ELAN will continue to produce innovative and high quality products for our customers,” said I. H. Yeh, ELAN’s Chief Executive Officer. “ELAN sees its continued strategic partnership with MagnaChip as a long-term benefit to ELAN and MagnaChip.”

YJ Kim, Chief Executive Officer of MagnaChip, commented, “We are very pleased to announce MagnaChip’s continued partnership with ELAN and the volume ramp of fingerprint sensor IC-based products utilizing our 0.35 micron Mixed Signal Thick IMD based process technology. This process is well-suited for smartcards, which require low power consumption. We will continue to develop high-performance and cost-effective fingerprint sensor IC technology solutions that meet the growing needs of our foundry customers.”

A hypoallergenic electronic sensor can be worn on the skin continuously for a week without discomfort, and is so light and thin that users forget they even have it on, says a Japanese group of scientists. The elastic electrode constructed of breathable nanoscale meshes holds promise for the development of noninvasive e-skin devices that can monitor a person’s health continuously over a long period.

Wearable electronics that monitor heart rate and other vital health signals have made headway in recent years, with next-generation gadgets employing lightweight, highly elastic materials attached directly onto the skin for more sensitive, precise measurements. However, although the ultrathin films and rubber sheets used in these devices adhere and conform well to the skin, their lack of breathability is deemed unsafe for long-term use: dermatological tests show the fine, stretchable materials prevent sweating and block airflow around the skin, causing irritation and inflammation, which ultimately could lead to lasting physiological and psychological effects.

“We learned that devices that can be worn for a week or longer for continuous monitoring were needed for practical use in medical and sports applications,” says Professor Takao Someya at the University of Tokyo’s Graduate School of Engineering whose research group had previously developed an on-skin patch that measured oxygen in blood.

In the current research, the group developed an electrode constructed from nanoscale meshes containing a water-soluble polymer, polyvinyl alcohol (PVA), and a gold layer–materials considered safe and biologically compatible with the body. The device can be applied by spraying a tiny amount of water, which dissolves the PVA nanofibers and allows it to stick easily to the skin–it conformed seamlessly to curvilinear surfaces of human skin, such as sweat pores and the ridges of an index finger’s fingerprint pattern.

The researchers next conducted a skin patch test on 20 subjects and detected no inflammation on the participants’ skin after they had worn the device for a week. The group also evaluated the permeability, with water vapor, of the nanomesh conductor–along with those of other substrates like ultrathin plastic foil and a thin rubber sheet–and found that its porous mesh structure exhibited superior gas permeability compared to that of the other materials.

Furthermore, the scientists proved the device’s mechanical durability through repeated bending and stretching, exceeding 10,000 times, of a conductor attached on the forefinger; they also established its reliability as an electrode for electromyogram recordings when its readings of the electrical activity of muscles were comparable to those obtained through conventional gel electrodes.

“It will become possible to monitor patients’ vital signs without causing any stress or discomfort,” says Someya about the future implications of the team’s research. In addition to nursing care and medical applications, the new device promises to enable continuous, precise monitoring of athletes’ physiological signals and bodily motion without impeding their training or performance.

The electric current from a flexible battery placed near the knuckle flows through the conductor and powers the LED just below the fingernail. Credit: 2017 Someya Laboratory.

The electric current from a flexible battery placed near the knuckle flows through the conductor and powers the LED just below the fingernail. Credit: 2017 Someya Laboratory.

Transistors, as used in billions on every computer chip, are nowadays based on semiconductor-type materials, usually silicon. As the demands for computer chips in laptops, tablets and smartphones continue to rise, new possibilities are being sought out to fabricate them inexpensively, energy-saving and flexibly. The group led by Dr. Christian Klinke has now succeeded in producing transistors based on a completely different principle. They use metal nanoparticles which are so small that they no longer show their metallic character under current flow but exhibit an energy gap caused by the Coulomb repulsion of the electrons among one another. Via a controlling voltage, this gap can be shifted energetically and the current can thus be switched on and off as desired. In contrast to previous similar approaches, the nanoparticles are not deposited as individual structures, rendering the production very complex and the properties of the corresponding components unreliable, but, instead, they are deposited as thin films with a height of only one layer of nanoparticles. Employing this method, the electrical characteristics of the devices become adjustable and almost identical.

These Coulomb transistors have three main advantages that make them interesting for commercial applications: The synthesis of metal nanoparticles by colloidal chemistry is very well controllable and scalable. It provides very small nanocrystals that can be stored in solvents and are easy to process. The Langmuir-Blodgett deposition method provides high-quality monolayered films and can also be implemented on an industrial scale. Therefore, this approach enables the use of standard lithography methods for the design of the components and the integration into electrical circuits, which renders the devices inexpensive, flexible, and industry-compatible. The resulting transistors show a switching behavior of more than 90% and function up to room temperature. As a result, inexpensive transistors and computer chips with lower power consumption are possible in the future. The research results have now been published in the scientific journal “Science Advances“.

“Scientifically interesting is that the metal particles inherit semiconductor-like properties due to their small size. Of course, there is still a lot of research to be done, but our work shows that there are alternatives to traditional transistor concepts that can be used in the future in various fields of application”, says Christian Klinke. “The devices developed in our group can not only be used as transistors, but they are also very interesting as chemical sensors because the interstices between the nanoparticles, which act as so-called tunnel barriers, react highly sensitive to chemical deposits.”

Scientists from the Moscow Institute of Physics and Technology (MIPT) and the Kotelnikov Institute of Radio Engineering and Electronics (IRE) of the Russian Academy of Sciences (RAS), in collaboration with their colleagues from Finland, have developed a new type of optical fiber that has an extremely large core diameter and preserves the coherent properties of light. The paper was published in the journal Optics Express. The results of the study are promising for constructing high-power pulsed fiber lasers and amplifiers, as well as polarization-sensitive sensors.

When it comes to optical fiber applications, preserving the properties of light is crucial. There are two principal parameters that often need to be preserved: the distribution of light intensity in cross section and the polarization of light (a property that specifies the oscillation directions of the electric or magnetic field in a plane perpendicular to the wave propagation direction). In their study, the researchers managed to fulfill both conditions.

“Optical fiber research is one of the most rapidly developing fields of optics. Over the last decade, numerous technological solutions have been proposed and implemented. For instance, researchers and engineers at IRE RAS can now produce optical fiber of almost any diameter with arbitrary transverse structure,” says Vasily Ustimchik, who is a co-author of the study, a senior research scientist at IRE RAS and the Russian Quantum Center, and a professor at MIPT. “In the course of this study, a specific structure was formed in the optical fiber. It varies along two orthogonal axes, and its diameters change proportionally along the fiber. Individually, such solutions are already widely used, so it is critical to continue to work in this direction.”

An optical fiber is generally a very thin flexible strand drawn from glass or transparent plastic. At first glance, it seems to be a rather simple system, but in practice, we are confronted with a number of major issues limiting its applications, the first being signal attenuation in fiber-optic lines. The solution to this problem has long been found, paving the way for fiber-optic communications. However, communications are not the only area where optical fibers can be applied. Today, one of the most common types of lasers are based on fiber-optic technology. A fiber laser, just like any other, incorporates an optical resonator, which causes light to travel back and forth repeatedly. The geometrical parameters of the fiber resonator allow for only a limited set of transverse patterns of light intensity distribution in the output beam — the so-called transverse modes of the resonator (see Fig. 1). Naturally, one would want to control the mode structure of the light, and in fact, when it comes to practice, researchers and engineers are mostly seeking to excite nothing but one pure fundamental mode (see the upper left corner of Fig. 1) that does not change with time.

In order to maintain single-mode operation, the fiber must consist of a core and a cladding — materials with different refractive indexes. Ordinarily, the thickness of the inner part (fiber core), through which radiation propagates, normally has to be less than 10 micrometers.

An increase in the optical power of the light propagating in the fiber results in a greater amount of energy being absorbed. This translates into a change in the properties of the fiber. Specifically, it causes uncontrolled variation of the refractive index of the fiber material. This gives rise to parasitic nonlinear effects, resulting in additional spectral lines of emission etc., which limits the strength of the optical signals that are transmitted. An existing solution to the problem — which the authors also used — lies in the variation of the core and outer diameters along the length of the fiber (see Fig. 2).

If the expansion of the fiber occurs adiabatically — that is, relatively slowly — it is possible to reduce the amount of energy transferred to other modes to less than 1 percent, even with a core diameter of up to 100 micrometers (which is exceptionally large for single-mode fibers). Moreover, the fact that the core diameter is large and varies along the fiber increases the threshold for nonlinear effects occurrence.

To achieve the second goal — which was to preserve the polarization state of the light — the authors of the study made the cladding of the fiber anisotropic: The width and the height of the inner cladding are different (the cladding is elliptical), which means the propagation speed of light with different field oscillation directions is not the same. In a structure like this, the process of transferring energy from one polarized mode to another is almost entirely disrupted. In their study, the researchers have shown that the geometric length of the path traveled by light through the fiber at which the oscillations of the two different polarizations are in antiphase depends on the fiber core diameter: It decreases as the diameter is increased. This length, known as the polarization beat length, corresponds to one complete rotation of the linear polarization state in the fiber. In other words, if you launch linearly polarized light into a fiber, it will be linearly polarized again after traveling precisely this distance. The ability to measure this parameter is in itself evidence of the fact that the polarization state in the fiber is preserved.

In order to investigate the properties related to light polarization in the fiber, the method of optical frequency-domain reflectometry was used. It involves launching an optical signal into the fiber and detecting the backscattered signal. The reflected signal contains a lot of information. This method is normally used to determine the location of defects and impurities in optical fibers, but it can also determine both the coherence length and the spatial distribution of polarization beat length. Coherence reflectometry techniques are widely used to monitor the state of optical fibers. However, the method used in this study is notable for enabling data collection at a high resolution of up to 20 micrometers along the fiber length.

Professor Sergey Nikitov, who is deputy head of MIPT’s Section of Solid State Physics, Radiophysics and Applied Information Technologies, corresponding member of RAS, the director of IRE RAS, and the leader of the research group, commented: “The fiber samples we obtained have demonstrated great results, indicating good prospects for further development of such technological solutions. They will find use not only in laser systems but also in optical fiber sensors, where the change of polarization characteristics is known in advance, since they are determined by external environmental factors, such as temperature, pressure, biological and other impurities. Besides, they have a number of advantages over semiconductor sensors. For example, they need no electrical power and are capable of carrying out distributed sensing, and that is not a complete list.”

By Michaël Tchagaspanian, Vice President of Sales and Marketing, Leti

Digital disruption begets innovation. Challenges equal opportunities. Those were clear messages during Leti Innovation Days recently in Grenoble, France. Over two days at the annual event, which this year coincided with Leti’s 50th anniversary, speakers and exhibitions highlighted challenges of the digital revolution and presented specific current-and-anticipated solutions for industry, healthcare and energy and the environment.

Coinciding with the launch of the administration of French President Emmanuel Macron, who has already talked of France becoming “a start-up nation”, Leti also noted the importance of creating and supporting startups that will help consumers, companies and countries address the challenges and opportunities of the digital revolution.

Citing challenges in the energy sector, Thierry Lepercq, executive vice president of research, technology and innovation at the international French energy company ENGIE, warned of potential energy blackouts and financial problems for traditional energy providers due to the growing penetration of alternative energy sources, the switch from fossil fuels – and energy sharing by households.

These developments, which ENGIE calls “Full 3D” – decarbonization, decentralization and digitalization – have destabilized traditional power systems and providers.

For example, a German residential battery-storage supplier allows residents to store energy at home and swap it on the grid, cutting out traditional electricity providers. Lepercq also noted that the rapid growth in the use of electric vehicles can load the grid with demand that was not anticipated even a few years ago. But the digital revolution also has prompted entrepreneurial responses. EV-Box, the Dutch company that has deployed more than 40,000 vehicle-charging stations in 20 countries, is gathering usage data, which will help officials understand the vehicles’ demands on the grid.

ENGIE acquired EV-Box this year as a strategic step towards operating in a completely new global energy paradigm.

Driving toward a new economy

Last month, Intel released a study that predicted autonomous vehicles will create a “Passenger Economy” – with mobility-as-a-service – that could grow to $800 billion in 2035 and to $7 trillion by 2050.

With autonomous vehicles, the car will no longer be a “stand-alone vehicle”, but “something that reacts with the environment”, said Mike Mayberry, corporate vice president and managing director of Intel Labs. Intel has opened advanced vehicle labs in the U.S. and Germany to explore the various requirements related to self-driving vehicles and the future of transportation. That includes sensing, in-vehicle computing, artificial intelligence, connectivity, and supporting cloud technologies and services.

When a panel discussion on driverless cars was asked when these vehicles will be in general use, Jean-François Tarabbia, CTO of Valeo, the automotive supplier to automakers worldwide, said “the better question is ‘why’”. And that depends in part on the industry’s ability to demonstrate vehicle safety. He said that traffic jams could be reduced by 30 percent with autonomous cars. Still, the cars will require a driver inside who will do something other than driving until he or she is needed to operate the vehicle.

Pierrick Cornet, brand incubator at Renault Nissan, said autonomous cars also will have to accommodate owners who occasionally want to drive their vehicles. For carmakers like Renault Nissan, the challenges are managing the cost and weight of the vehicles, which are loaded with batteries, as well as computing and sensing gear – and making them able to charge quickly.

Fabio Marchiò, automotive digital general manager at STMicroelectronics, noted that cars are the least-used appliance/machine in the household. He agreed with Tarabbia that safety and consumer resistance are primary roadblocks for the vehicles, but added that government regulations could slow down their widespread use.

Moore’s Law obtains

Outlining some of Intel’s R&D programs, Mayberry brushed aside frequent predictions that Moore’s Law has run its course. He said Intel expects Moore’s Law to be in effect at least through the next decade, because of the industry’s continued evolution to smaller technology nodes with new IC technologies.

In addition to focusing on enabling Moore’s Law going forward, Intel’s research on components and hardware includes developing novel integration techniques. But Intel Labs also is focused on enabling future product capabilities and “imagining what’s next”.

As part of that effort, Intel Labs has partnered with Princeton University to decode digital brain data, which is scanned using functional magnetic resonance imaging (fMRI). The goal is to reveal how neural activity gives rise to learning, memory and other cognitive functions such as human attention, control and decision-making.

Leti and Intel agreed last year to collaborate on strategic research programs, including the Internet of Things, high-speed wireless communication, security technologies and 3D displays.

Quantum computing

Also peering into the more-distant future, Leti CEO Marie Semeria noted development of Leti’s Si-CMOS quantum-technology platform.

“The quantum topic has recently become central, thanks to the huge advances made in solid-state implementation, both in superconducting systems and in silicon technologies,” she said. “Interest in silicon-based technologies is huge because of their reliability and their capability to reproduce industrial standards along with the low-noise characteristics and low variability of CMOS devices.”

Noting that the University of New South Wales recently demonstrated a promising two-qubit logic gate based on the silicon-28 isotope, Semeria said Leti had demonstrated the compatibility of such circuits with state-of-the-art CMOS processes.

“From an architectural point of view, it is clear that the future quantum computer will be hybrid. It will combine a quantum engine with a classical digital computer,” she explained. “The program that will run on such a machine will need to combine at least two computing models: a classical part, to prepare data and process results, and a quantum one. A tight connection between the two programming models will be necessary.”

With its history of pioneering in technology and its culture of spinning out new companies to further develop and commercialize innovative technologies, Leti is poised to help France achieve Macron’s goal: “I want France to be a ‘start-up nation’, meaning both a nation that works with and for the start-ups, but also a nation that thinks and moves like a start-up.”

Leti has launched 64 startups, including 13 in the past four years.

Digital innovations in healthcare

Jai Hakhu, president & CEO of HORIBA International Corporation (U.S.), explained how the digital revolution is creating in vitro diagnostics business potential by enabling delivery of preventive healthcare services in even remote regions of the world. In one of HORIBA and Leti’s joint projects, they are developing a hematology, microfluidics-based, lensfree, point-of-care and home-testing system that can be used in underdeveloped countries.

The collaboration is helping realize HORIBA’s vision of providing preventive self-testing anywhere in the world.

Leti’s start-up Avalun has developed a portable medical device for multiple-measurement capabilities using point-of-care testing. Other recent healthcare-related startups include Diabeloop, which is in the final stages of testing an artificial pancreas, and Aryballe Technologies, which is developing olfactory and gustatory sensors.

Routes to innovation

Those new companies were among the presenters at Leti’s immersive exhibition, “Routes to Innovation”, which was the focus of day two of the event. Entrepreneurs and Leti scientists offered more than 60 demonstrations of patented technologies, to show with concrete examples how Leti’s technological know-how and industrial transfer expertise can help French and international companies innovate and become more competitive.

The three “Digital Revolution” topics included “Micro-Nano Pathfinding”, showing how the diversity of Leti’s digital technologies are available to all economic sectors; “Cyber Physical Systems”, and “Business-Model Disruption”.

The “Environmental Transition” demos covered “Sustainable Activities”, “Monitoring Our World’ and “More with Less”. The “New Frontiers for Healthcare” demos covered “Prevention, Independence, Well Being”, “New Therapies” and “Analysis & Diagnosis”. 

Collaborating for technological sovereignty

During the event, Semeria and Fraunhofer Group for Microelectronics Chairman Hubert Lakner announced a wide-ranging collaboration to develop innovative, next-generation microelectronics technologies to spur innovation in their countries and strengthen European strategic and economic sovereignty.

The two institutes will initially focus on extending CMOS and More-than-Moore technologies to enable next-generation components for applications in the Internet of Things, augmented reality, automotive, health, aeronautics and other sectors, as well as systems to support French and German industries.

‘Smart everything everywhere’

Over the two days, a record number of guests, including CEOs, CTOs, journalists and special guests and speakers heard and saw examples of Leti’s advanced technology platforms, its commitment to research excellence and its vision for applying innovative technologies to challenges of the digital era.

Max Lemke, head of the Components and Systems Unit at the European Commission, noted that Leti’s contributions extend beyond microelectronics to cyber-physical systems, 5G, the Internet of Things, photonics and post-CMOS technologies. By supporting the digital transformation of industry, Leti plays a leading role in “smart everything everywhere”, Lemke said.

“Leti is excellently positioned to continue doing forward-looking research” on components and systems to build the foundation for Europe’s future competitiveness, and to play an instrumental role in supporting French and European industry in their digital transformation, he said.

By Dave Lammers

Keynote speakers Terry Higashi of Tokyo Electron Ltd. and Tom Caulfield of GlobalFoundries took the stage at the Yerba Buena Theater Tuesday morning to predict major changes in the goals and operations of the semiconductor industry.

higashi2013_11_600px_0 ThomasCaufieldSized

In many ways, 2017 has been marked by intense interest in the capabilities of neural networks and other forms of artificial intelligence (AI). Higashi, now a corporate director at TEL, predicted that AI and virtual reality are among the applications that will propel demand for semiconductors “almost without limit.” Neuromorphic processors, the veteran TEL executive said, “are one of the promising devices to enhance human creativity. They will be improved step by step, just as logic and memory devices were improved.”

Looking toward a future in which AI and human skills combine to resolve problems, Higashi predicted that today’s Von Neumann-based architectures and neuromorphic device will complement each other. “Artificial intelligence solutions will be proposed, and the challenges and problems will be solved by scientists and engineers. The combination of Von Neumann and neuromorphic computing gets us closer to true intelligence,” he said.

AI also will play a role in enhancing the immersive experiences promised by virtual reality, experiences which visionaries have predicted but which thus far mankind “has never fully experienced.”

Higashi said that by combining VR and AI, “we can attain a suspension of disbelief, and simply enjoy the experience. If we can provide the technologies, consumers will experience excitement and a form of happiness.”

Caulfield, the general manager of the Malta fab near Albany, agreed with Higashi’s assessment that that the semiconductor industry is seeing “new buds” that will bloom into large semiconductor markets.

However, Caulfield said that to achieve anything like the rate of technological progress seen over the first half century of the semiconductor industry, companies and customers will have to take collaboration to new levels. And he offered the collaboration between GlobalFoundries and AMD as an example.

“Collaboration, potentially, is the biggest thing we need to do. We need strategic partnerships, and not only among semiconductor manufacturers but also with equipment suppliers.”

At its Malta fab, GlobalFoundries builds all of AMD’s leading-edge discrete graphics engines and CPUs. “The AMD and GlobalFoundries engineering teams are so embedded with each other, one can hardly tell” which company an engineer works for, he said.

Noting the resurgence of AMD, Caulfield said “we are all proud to be part of that partnership.” And he pointed to another collaboration, between Samsung and GlobalFoundries, which allows customers to take the same 14nm design and choose whether to manufacture it at Samsung’s Austin fab or at Malta. “Customers can run photomasks in Austin or in Malta, New York and have the product look the same,” he said.

Government role

In such a collaboration-rich business environment, governments also have a role to play, Caulfield said.

“Public-private investments must imply a return to governments as well as to companies. Otherwise, they send the wrong message.” By investing several billion dollars in the Malta fab, GlobalFoundries and the state of New York put to work the well-educated young people who otherwise would have left the state in search of technology jobs. When Malta began operations, only 20 percent of the staff were educated in New York. Now, fully half of the workforce has benefited from a New York education.

“We were exporting talent. Now, the workforce has great opportunity within the state,” he said.

Both Higashi and Caulfield said major challenges face the industry. Higashi noted that innovation will be required to keep flash memory costs under control. “As data is captured by sensors and is transferred via the appropriate networks and stored in data centers, demand for NAND will be high. We must make huge efforts to reduce the overall cost, as the semiconductor industry is expected to provide enough volumes to support the Internet of Things.”

Caulfield said the performance of logic transistors has struggled to keep pace, even as density increases have continued. When the industry moved from 28nm to 14nm technologies, performance increased by fully 50 percent. But from 14nm to 10nm, speeds improved by about 18 percent, making shrinks primarily a cost improvement.

With the industry now focused on brining 7nm logic to the market, the question arises whether 5nm CMOS will provide enough performance to justify that node. While the jury on technology scaling is still out, Caulfield said the industry may have to move to gate all around (GAA) structures, or to non-silicon channel materials, in order to gain the kinds of performance improvements that customers expect from a new node.

Higashi said systems must get faster. “Real-time processing is crucial in the cyber world. And with robotic hands, there should be no delays in physical operations.”

“Memory, logic, and sensing make it possible for AI systems to solve problems much faster than a team of geniuses. We are now in a new era, one of super integration. In addition to improved specialty devices – based on logic, memory, and sensors – we must take these separate devices and put them together into fully integrated systems. It is time to make a pizza, with some of the best ingredients,” he said.

MEMS & Sensors Industry Group® (MSIG), the industry association advancing MEMS and sensors across global markets, is hosting a TechXPOT program today, titled “What’s Next for MEMS & Sensors: Big Growth of Disruptive Applications for Smart Sensing Changes the Business.” Speakers from industry and academia will explore the disruptive influence of MEMS and sensors on applications that span human-machine interfaces, disposable wireless electronics, and wireless sensor nodes for smart cities. They will also discuss advancements in piezoelectric materials for emerging applications as well as MEMS foundry process technologies that speed time to market.

“From smart autos and smart manufacturing to smart cities and smart health monitoring, emerging markets for MEMS and sensors are creating greater demand for integrated intelligence,” said Karen Lightman, vice president, MEMS & Sensors Industry Group, SEMI. “MSIG speakers at SEMICON West will help MEMS and sensors suppliers to more ably respond to this demand, as they learn how to add value through technological innovation and integration.”

Topics and presenters at the MEMS program at the TechXPOT include:

  • What’s Next for the MEMS Industry? ─ Jean-Christophe Eloy, CEO and founder, Yole Développement
  • New MEMS Opportunities from Piezoelectric Technology ─ David Horsley, professor, Mechanical & Aerospace Engineering, University of California Davis
  • Smart IT Systems and Development Protocols Enable Faster Time-to-Market in MEMS ─ Tomas Bauer, senior VP, sales/business development, Silex Microsystems
  • Waggle and the Future of Edge Computing and Smart Cities ─ Pete Beckman, co-director, Northwestern-Argonne Institute for Science and Engineering
  • Roll-up Implementation of Gesture Sensing and Voice Isolation Sensing Wall for Future Human-Machine Interface ─ James Sturm, professor, Electrical Engineering, Princeton University
  • Three Bit NFC Sensor Labels Based on a Flexible, Hybrid Printed CMOS TFT Process ─ Arvind Kamath, VP of Engineering, Thin Film Electronics

MSIG also invites members to attend the MEMS/NEMS Committee Meeting, including a Task Force on microfluidics, from 3:30-5:30 pm on July 13 at the San Francisco Marriott Marquis.

Presto Engineering, Inc., an outsourced operations provider to semiconductor and Internet of Things (IoT) device manufacturers, announces a management expansion: Cedric Mayor has been named Chief Operating Officer (COO) and Martin Kingdon has been appointed VP Sales.

“We have experienced growing demand for IoT and related turnkey production & operations outsourcing,” said Michel Villemain, CEO, Presto Engineering. “Our expanded management team will complement our talented employee base to help meet this market demand and advance Presto Engineering into the next phase of innovation and growth.”

Mayor was previously the Chief Technology Officer for Presto Engineering. In his new role as COO, he will work with Presto’s Europe and Asia-based facilities to take customers’ new product releases from prototype to high-volume production, and through wafer procurement to finished goods. He has been with the company for more than seven years and has over a decade of experience in semiconductor design and manufacturing. A graduate of Ecole Centrale Marseille, France, Mayor has a Master’s degree in Physics and Electrical Engineering and holds several patents in chip design.

Kingdon has more than 20 years of experience in sales and marketing of semiconductor devices, IP, and test & manufacturing. Prior to joining Presto as VP Sales, Kingdon served as European sales director for the test and manufacturing services division of TT Electronics plc. Kingdon graduated from the University of York, UK, and holds a Master’s degree in Electronic Systems Engineering.

CMOS image sensor sales are on pace to reach a seventh straight record high this year and nothing ahead should stop this semiconductor product category from breaking more annual records through 2021 (Figure 1), according to IC Insights’ 2017 O-S-D Report—A Market Analysis and Forecast for Optoelectronics, Sensors/Actuators, and Discretes.

After rising 9% in 2017 to about $11.5 billion, worldwide CMOS image sensors sales are expected to increase by a compound annual growth rate (CAGR) of 8.7% to $15.9 billion in 2021 from the current record high of $10.5 billion set in 2016, based on the five-year forecast in the 360-page O-S-D Report, which covers more than 40 different product categories across optoelectronics, sensors and actuators, and discrete semiconductors.

Figure 1

Figure 1

After strong growth from the first wave of digital cameras and camera-equipped cellphones, image sensor sales leveled off in the second half of the last decade.  However, another round of strong growth has begun in CMOS image sensors for new embedded cameras and digital imaging applications in automotive, medical, machine vision, security, wearable systems, virtual and augmented reality applications, and user-recognition interfaces.

Competition among CMOS image sensor suppliers is heating up for new three-dimensional sensing capability using time-of-flight (ToF) technology and other techniques for 3D imaging and distance measurements.  ToF determines and senses the distance of faces, hand gestures, and other things by measuring the time it takes for light to bounce back to sensors from emitted light (often an infrared laser or LED).  CMOS technology has progressed to the point of supporting integration of ToF functions into small chip modules and potentially down to a single die.  Sony, Samsung, OmniVision, ON Semiconductor, STMicroelectronics, and others have rolled out and developed 3D image sensors. Infineon has also jumped into the image sensor arena with a 3D offering that is built in ToF-optimized CMOS technology.

Automotive systems are forecast to be the fastest growing application for CMOS image sensors, rising by a CAGR of 48% to $2.3 billion in 2021 or 14% of the market’s total sales that year, says the 2017 O-S-D Report.  CMOS image sensor sales for cameras in cellphones are forecast to grow by a CAGR of just 2% to $7.6 billion in 2021, or about 47% of the market total versus 67% in 2016 ($7.0 billion).  Smartphone applications are getting a lift from dual-camera systems that enable a new depth-of-field effect (known as “bokeh”), which focuses on close-in subjects while blurring backgrounds—similar to the capabilities of high-quality single-lens reflex cameras.