Category Archives: Applications

Leti, a research institute of CEA Tech, is marking its 50th anniversary this year during industry events and workshops in Grenoble, Tokyo, and Taipei and at both SEMICON West and IEDM 2017 in San Francisco.

Founded in 1967 as an electronics research division of the French Atomic Energy Commission, Leti evolved into a global leader in micro- and nanotechnologies tailoring differentiating applicative solutions.

Leti solutions target a wide variety of sectors, including sustainable transport systems, telecommunications, health, consumer electronics, energy, smart cities, defense and security and space. Leti has formed partnerships with world leaders of industry, such as IBM, Intel, Qualcomm and Applied Materials.

Among Leti’s 60 startups are Soitec and the company that became STMicroelectronics.

Leti miniaturization technologies in everyday life

Leti’s iconic low-power FD-SOI technology can be found in game consoles, GPS receivers, connected watches and many other everyday connected devices.  The institute’s accelerometer that automatically switches between portrait and landscape can now be found in millions of smartphones, along with Leti’s radio-frequency technologies. Leti also develops technology for health care, such as scanners and exoskeletons to increase quality of life for people affected with quadriplegia. Leti serves the defense and security industries with infrared technologies.

“Leti is an innovation institute,” said Marie Semeria, Leti’s CEO. “It is unique in the world because it embraces a broad diversity of technologies: CMOS, sensors, communication systems, packaging and 3D integration, power electronics, imaging, integrated circuits and many more. We will emphasize both Leti’s cultural of pioneering research and its technological strengths throughout this 50th anniversary year and on our redesigned website.”

Leti 50th anniversary worldwide events throughout the year

JUNE 28-29: FRANCE

Leti Innovation Days 

Leti and partners will discuss how microelectronics can make a difference in health care, address environmental concerns in a competitive world and help industrials and society embrace the digital revolution during its Leti Innovation Days, June 28-29, in Grenoble. Keynote sessions on June 28 will be followed on June 29 by an immersive exhibition packed with technology demonstrators, proof of concepts, a start-up corner and offering dynamic presentations on three routes to innovation in digital transformation, new frontiers in health care and electronics-driven environmental change. The institute will host a gala anniversary dinner event at Chateau de Sassenage.

OCTOBER: JAPAN & TAIWAN

Leti Day

Leti also will host one-day Leti Day events in Tokyo and Taiwan during the second week of October.

JULY & DECEMBER: USA

Leti Workshops

Anniversary-year events will conclude with workshops July 11 at SEMICON West in San Francisco and the International Electron Devices Meeting (IEDM 2017) Dec. 3 in San Francisco.

ams, a worldwide supplier of high performance sensor solutions, today announced the AS7225 tunable-white lighting smart system sensor, further broadening the solution set for sensor-integrated tunable-white lighting solutions. With the addition of the AS7225, OEM lighting manufacturers can access ams’ closed-loop CCT tuning and daylight compensation, while retaining the existing host microprocessor architecture in their smart lighting design. The result is higher precision, more flexible LED binning, and lower system costs for tunable white lighting systems.

The AS7225 is equipped with the product family’s industry-first embedded tri-stimulus CIE XYZ color sensor to enable precise color sensing with direct mapping to the International Commission on Illumination (CIE) 1931 color space which is recognized as the standard coordinate definition for human color perception. CCT and daylighting tuning directives are communicated to the host microprocessor via an industry-standard I2C interface, allowing IoT smart lighting manufacturers to avoid costly calibration and tuning algorithm development and reduce time to deployment.

“As the lighting industry moves to tunable solutions, the inclusion of closed loop sensor-driven integration not only increases white or daylighting tuning precision, it also loosens the required precision for both LED binning and system components. This results in cost reductions for both the overall bill of materials, as well as in time and cost savings in the materials management and manufacturing processes”, commented Tom Griffiths, Senior Marketing Manager at ams.

The AS7225 is an extension of ams’ Cognitive Lighting smart lighting manager family. The efficient AS7225 is available in a 4.5 x 4.7mm LGA package, for flexible integration into luminaires, light-engines and larger replacement lamps, such as LED linear T-LED products. The device provides precise CCT tuning direction between configured warm and cool white LED strings within a luminaire. In addition to the CCT- tuning functions, the AS7225 can additionally be used looking outward in luminaire designs to provide precise daylight management, or can deliver combined CCT-tuning and daylighting directives by the addition of ams’ TSL4531 ambient light sensor.

“Recent trends in LED device pricing show that chips have moved away from being the primary cost element in a typical commercial luminaire. This means that in just a few years, tunable lighting will become the standard for new commercial lighting installations”, Griffiths added. “The comfort, productivity and health benefits of good lighting have been clear for decades, and as it is becoming cost effective to do so, tunable lighting will be a key element in delivering those benefits from LED smart lighting platforms.”

Pricing for the AS7225 spectral tuning IoT smart lighting manager is set at $2.40 in quantities of 5,000 pieces, and is available in production volumes now.

Imec is granting its Lifetime of Innovation Award to Dr. Kinam Kim, President and General Manager of Semiconductor Business at Samsung Electronics. The selection recognizes Dr. Kim’s leadership and strategic vision, as well as his undeniable impact in the semiconductor industries.

The award ceremony will take place on May 16, during the global edition of the Imec Technology Forum (ITF), one of Europe’s leading tech events on technologies and solutions that will drive groundbreaking innovation across sectors in nano-electronics and the Internet of Things, smart health, smart cities, smart industries and smart energy.

“Dr. Kim has been a driving force at Samsung for more than 30 years, and the beacon the industry has used to navigate towards further innovations and technological breakthroughs in memory and computing,” states Luc Van den hove, president and CEO of imec. “His unparalleled contributions, leadership and strategic vision have not only paved the way for Samsung’s role as a world leader in the field, but have also shaped today’s society and our relation with computers, mobile and other similar devices.”

Dr. Kim joined Samsung Electronics in 1981, and led the development and advancement of various memory technologies such as DRAM and NAND flash, and logic technologies such as Application Processor and Communication Modem. As CEO of Samsung Advanced Institute of Technology (SAIT), he spearheaded the research and development of technologies that have significantly impacted the semiconductor industry, such as graphene, carbon nanotubes and quantum dots, advanced materials, 3D fusion technologies, batteries and printed electronics.

Imec’s Lifetime of Innovation Award was launched in 2015, in support of imec’s commitment to recognizing the prominent individuals who have made outstanding contributions to the industry. Previous recipients were Dr. Morris Chang in 2015 and Dr. Gordon Moore in 2016.

dr kim samsung

Brigham Young University researchers have developed new glass technology that could add a new level of flexibility to the microscopic world of medical devices.

A graduate student at BYU holds up a disc of microchips that have flexible glass membranes. Credit: Jaren Wilkey/BYU Photo

A graduate student at BYU holds up a disc of microchips that have flexible glass membranes. Credit: Jaren Wilkey/BYU Photo

Led by electrical engineering professor Aaron Hawkins, the researchers have found a way to make the normally brittle material of glass bend and flex. The research opens up the ability to create a new family of lab-on-a-chip devices based on flexing glass.

“If you keep the movements to the nanoscale, glass can still snap back into shape,” Hawkins said. “We’ve created glass membranes that can move up and down and bend. They are the first building blocks of a whole new plumbing system that could move very small volumes of liquid around.”

While current lab-on-a-chip membrane devices effectively function on the microscale, Hawkins’ research, recently published in Applied Physics Letters, will allow equally effective work at the nanoscale. Chemists and biologists could use the nanoscale devices to move, trap and analyze very small biological particles like proteins, viruses and DNA.

So why work with glass? According to lead study author and BYU Ph.D. student John Stout, glass has some great perks: it’s stiff and solid and not a material upon which things react, it’s easy to clean, and it isn’t toxic.

“Glass is clean for sensitive types of samples, like blood samples,” Stout said. “Working with this glass device will allow us to look at particles of any size and at any given range. It will also allow us to analyze the particles in the sample without modifying them.”

The researchers believe their device could also mean performing successful tests using much smaller quantities of a substance. Instead of needing several ounces to run a blood test, the glass membrane device created by Hawkins, Stout and coauthor Taylor Welker would only require a drop or two of blood.

Hawkins said the device should also allow for faster analysis of blood samples: “Instead of shipping a vial of blood to a lab and have it run through all those machines and steps, we are creating devices that can give you an answer on the spot.”

There is an increased demand for portable on-site rapid testing in the healthcare industry. Much of this is being realized through these microfluidic systems and devices, and the BYU device could take that testing to the next level of detail.

“This has the promise of being a rapid delivery of disease diagnosis, cholesterol level testing and virus testing,” Hawkins said. “In addition, it would help in the process of healthcare knowing the correct treatment method for the patient.”

This article originally appeared on SemiMD.com and was featured in the March 2017 issue of Solid State Technology. 

By Dave Lammers, Contributing Editor

It takes a range of skills to create a successful business in the Internet of Things space, where chips sell for a few dollars and competition is intense. Circuit design and software support for multiple wireless standards must combine with manufacturing capabilities.

Daniel Cooley, senior vice president and general manager of IoT products at Silicon Labs (Austin, Tx.), said three trends are impacting the manufacture of IoT end-node devices, which usually combine an MCU, an RF transceiver, and embedded flash memory.

“There is an explosion in the amount of memory on embedded SoCs, both RAM and non-volatile memory,” said Cooley. Today’s multi-protocol wireless software stacks, graphics processing, and security requirements routinely double or quadruple the memory sizes of the past.

Secondly, while IoT edge devices continue to use trailing-edge technologies, nonetheless they also are moving to more advanced nodes. However, that movement is partially gated by the availability of embedded flash.

Thirdly, pre-certified system-in-package (SiP) solutions, running a proven software stack, “are becoming much more important,” Cooley said. These SiPs typically encapsulate an MCU, an integrated antenna and shielding, power management, crystal oscillators, and inductors and capacitors. While Silicon Labs has been shipping multi-chip modules for many years, SiPs are gaining favor in part because they can be quickly deployed by engineers with relatively little expertise in wireless development, he said.

“Personally, I believe that very advanced SIPs increasingly will be standard products, not anything exotic. They are a complete solution, like a PCB module, but encased with a molding compound. The SiP manufacturers are becoming very sophisticated, and we are ready to take that technology and apply it more broadly,” he said.

For example, Silicon Labs recently introduced a Bluetooth SiP module measuring 6.5 by 6.5 mm, designed for use in sports and fitness wearables, smartwatches, personal medical devices, wireless sensor nodes, and other space-constrained connected devices.

“We have built multi-chip packages – those go back to the first products of the company – but we haven’t done a fully certified module with a built-in antenna until now. A SiP module simplifies the go-to-market process. Customers can just put it down on a PCB and connect power and ground. Of course, they can attach other chips with the built-in interfaces, but they don’t need anything else to make the Bluetooth system work,” Cooley said.

“Designing with a certified SiP module supports better data throughput, and improves reliability as well. The SiP approach is especially beneficial for end-node customers which “haven’t gone through the process of launching a wireless product in in the market,” Cooley said.

Control by voice

The BGM12x Blue Gecko SiP is aimed at Bluetooth-enabled applications, a genre that is rapidly expanding as ecosystems like the Amazon Echo, Apple HomeKit, and Google Home proliferate.

Matt Maupin is Silicon Labs’ product marketing manager for mesh networking products, which includes SoCs and modules for low-power Zigbee and Thread wireless connectivity. Asked how a home lighting system, for example, might be connected to one of the home “ecosystems” now being sold by Amazon, Apple, Google, Nest, and others, Maupin said the major lighting suppliers, such as OSRAM, Philips, and others, often use Zigbee for lighting, rather than Bluetooth, because of Zigbee’s mesh networking capability. (Some manufactures use Bluetooth low energy (BLE) for point-to-point control from a phone.)

“The ability for a device to connect directly relies on the same protocols being used. Google and Amazon products do not support Zigbee or Thread connectivity at this time,” Maupin explained.

Normally, these lighting devices are connected to a hub. For example, Amazon’s Echo and Google’s Home “both control the Philips lights through the Philips hub. Communication happens over the Ethernet network (wireless or wired depending on the hub).  The Philips hub also supports HomeKit so that will work as well,” he said.

Maupin’s home configuration is set up so the Philips lights connect via Zigbee to the Philips hub, which connects to an Ethernet network. An Amazon Echo is connected to the Ethernet Network by WiFi.

“I have the Philips devices at home configured via their app. For example, I have lights in my bedroom configured differently for me and my wife. With voice commands, I can control these lamps with different commands such as ‘Alexa, turn off Matt’s lamp,’ or ‘Alexa, turn off the bedroom lamps.’”

Alexa communicates wirelessly to the Ethernet Network, which then goes to the Philips hub (which is sold under the brand name Philips Hue Bridge) via Ethernet, where the Philips hub then converts that to Zigbee to control that actual lamps. While that sounds complicated, Maupin said, “to consumers, it is just magic.”

A divided IoT market

IoT systems can be divided into the high-performance number crunchers which deal with massive amounts of data, and the “end-node” products which drive a much different set of requirements. Sandeep Kumar, senior vice president of worldwide operations at Silicon Labs, said RF, ultra-low-power processes and embedded NVM are essential for many end-node applications, and it can take several years for foundries to develop them beyond the base technology becoming available.

“40nm is an old technology node for the big digital companies. For IoT end nodes where we need a cost-effective RF process with ultra-low leakage and embedded NVM, the state of the art is 55nm; 40 nm is just getting ready,” Kumar said.

Embedded flash or any NVM takes as long as it does because, most often, it is developed not by the foundries themselves but by independent companies, such as Silicon Storage Technology. The foundry will implement this IP after the foundry has developed the base process. (SST has been part of Microchip Technology since 2010.) Typically, the eFlash capability lags by a few years for high-volume uses, and Kumar notes that “the 40nm eFlash is still not in high-volume production for end-node devices.”

Similarly, the ultra-low-leakage versions of a technology node take time and equipment investments, as well as cooperation from IP partners. Foundry customers and the fabless design houses must requalify for the low-leakage processes. “All the models change and simulations have to be redone,” Kumar said.

“We need low-leakage for the end applications that run on a button cell (battery), so that a security door or motion sensor, for example, can run for five to seven years. After the base technology is developed, it typically takes at least three years. If 40nm was available several years ago, the ultra-low-leakage process is just becoming available now.

“And some foundries may decide not to do ultra-low-leakage on certain technology nodes. It is a big capital and R&D investment to do ultra-low-leakage. Foundries have to make choices, and we have to manage that,” Kumar said.

The majority of Silicon Labs’ IoT product volume is in 180nm, while other non-IoT products use a 55nm process. The line of Blue Gecko wireless SoCs currently is on 90nm, made in 300mm fabs, while new designs are headed toward more advanced process nodes.

Because 180nm fabs are being used for MEMS, sensors and other analog-intensive, high-volume products, there is still “somewhat of a shortage” of 180nm wafers, Kumar said, though the situation is improving. “It has gotten better because TSMC and other foundries have added capacity, having heard from several customers that the 180nm node is where they are going to stay, or at least stay longer than they expected. While the foundries have added equipment and capital, it is still quite tight. I am sure the big MEMS and sensor companies are perfectly happy with 180nm,” Kumar said.

A testing advantage

IoT is a broad-based market with thousands of customers and a lot of small volume customizations. Over the past decade Silicon Labs has deployed a proprietary ultra-low-cost tester, developed in-house and used in internal back-end operations in Austin and Singapore at assembly and test subcontractors and at a few outside module makers as well. The Silicon Labs tester is much more cost effective than commercially available testers, an important cost advantage in a market where a wireless MCU can sell in small volumes to a large number of customers for just a few dollars.

“Testing adds costs, and it is a critical part of our strategy. We use our internally developed tester for our broad-based products, and it is effective at managing costs,” Kumar said.

STMicroelectronics (NYSE: STM), a global semiconductor and a top MEMS supplier, and iFLYTEK (SHE: 002230), a voice-recognition cloud service provider in China, have introduced the market’s first IoT development platform that enables voice-recognition cloud services in Chinese. The joint solution is on display at electronica China 2017, Shanghai New International Expo Center, Hall E4 Booth 4102, March 14-16, 2017.

The new platform combines ST’s SensorTile multi-sensor module, STM32 ODE (Open Development Environment), and Open.software package with iFLYTEK’s voice-recognition technology. It gives designers a complete toolset for the development of voice-enabled Smart-Home, Smart-Driving, IoT, and robotics applications.

The SensorTile module captures voice inputs through the digital MEMS microphone (MP34DT04) and transmits them using the Bluetooth Low Energy network processor (BlueNRG-MS) to iFLYTEK’s cloud through a smartphone with the voice-recognition result back within seconds.

“ST’s SensorTile is a perfect match for developers integrating voice-control capabilities in applications across Smart-Home, Smart-Industry, and Smart-Driving segments. iFLYTEK has been empowering developers with the best performing and easy-to-use speech-recognition service,” said Jidong YU, Senior Vice President of iFLYTEK Co., Ltd. “We have been working with ST to enable the SensorTile platform with a high-performance Chinese-language recognition. Leveraging iFLYTEK’s more than 270,000 developers on xfyun.cn and ST’s smart IoT development tools, we look forward to creating more designs together in future.”

“The implementation of iFLYTEK’s automatic speech-recognition services on SensorTile accelerates and simplifies voice-enabled IoT design,” said Collins Wu, Marketing Director, Analog and MEMS Group, Greater China & South Asia, STMicroelectronics. “Leveraging a powerful open-software ecosystem, including the STM32(TM) Open Development Environment, shortens time to market and makes IoT design simple and cool.”

ST’s Analog and MEMS Group has also played an active role in nurturing the Innovator Community and Smart Hardware Development Platform in China, establishing a Chinese-speaking engineer community, st_AMSchina, a service subscription on Wechat, as well as the MEMS QQ Group.

STMicroelectronics’ 13.5mm x 13.5mm SensorTile is currently the smallest turnkey sensor board of its type, containing ST’s MEMS accelerometer, gyroscope, magnetometer, pressure sensor, and MEMS microphone. With the on-board low-power STM32L4 microcontroller, it can be used as a sensing and connectivity hub for developing products such as wearables, gaming accessories, and smart-home or Internet-of-Things (IoT) devices.

Imec and Holst Centre (initiated by imec and TNO) have developed a novel phase-tracking receiver bringing further power and cost reduction for the next generations of Bluetooth and IEEE802.15.4 radio chips. The ultra-low power digital-style receiver is 3x smaller than the current state-of-the-art. It supports supply voltages as low as 0.85V and consumes less than 1.6mW peak. An innovative low power antenna impedance detection technique enhances radio performance, especially for wearables or implantable applications.

The ongoing evolution towards an intuitive IoT has created unprecedented opportunities in various application domains. However, the deployment of massive numbers of interconnected sensors requires ultra-low power solutions enabling multi-year battery life. To increase the autonomy of sensors, imec develops ultra-low power wireless technology for IoT applications, such as next-generation Bluetooth Low Energy and IEEE 802.15.4.

Imec’s novel receiver concept features sub-1nJ/bit energy efficiency and low supply voltage operation at 0.85V while maintaining similar RX sensitivity as best-in-class products. The receiver employs digital phase-tracking to directly translate the RF input to demodulated digital data. A digitally-controlled oscillator (DCO) is used instead of a power hungry phase locked loop (PLL). The receiver, implemented in 40nm CMOS, is only 0.3mm2, which is at least 3x smaller compared to the state-of-the-art. Due to this small size it can be manufactured at strongly reduced cost.

Especially in wearable or implantable devices, the antenna impedance can dynamically change due to variations in a device’s position or surroundings. This can deteriorate the radio’s performance and degrade battery lifetime. Imec demonstrated a fully integrated, sub-mW impedance detection technique for ultra-low power radios, enabling tunable matching between the antenna and the radio front-end. This technique can be implemented in an adaptive radio front-end to further improve receiver sensitivity and transmitter efficiency in the presence of antenna impedance variations.

“This innovative receiver concept will not only serve the new Bluetooth 5 devices, but provides our industrial partners a long term competitive advantage for multiple new generations of Bluetooth and 802.15.4 radios, still to come,” says Kathleen Philips, Program Director Perceptive Systems at imec/Holst Centre. “This great achievement is a confirmation of our continuous efforts to push the technology limits toward ever higher performance, lower power consumption and smaller form factor, which are essential features for internet-of-things radio solutions.”

imec and holst

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Similar to carbon, silicon forms two dimensional networks that are only one atomic layer thick. Like graphene, for whose discovery Andre Geim and Konstantin Novoselov received the Nobel Prize in 2010, these layers possess extraordinary optoelectrical properties. Silicon nanosheets might thus find application in nanoelectronics, for example in flexible displays, field-effect transistors and photodetectors. With its ability to store lithium ions, it is also under consideration as an anode material in rechargeable lithium batteries.

“Silicon nanosheets are particularly interesting because today’s information technology builds on silicon and, unlike with graphene, the basic material does not need to be exchanged,” explains Tobias Helbich from the WACKER Chair for Macromolecular Chemistry at TUM. “However, the nanosheets themselves are very delicate and quickly disintegrate when exposed to UV light, which has significantly limited their application thus far.”

Polymer and nanosheets – the best of both worlds in one

Now Helbich, in collaboration with Professor Bernhard Rieger, Chair of Macromolecular Chemistry, has for the first time successfully embedded the silicon nanosheets into a polymer, protecting them from decay. At the same time, the nanosheets are protected against oxidation. This is the first nanocomposite based on silicon nanosheets.

“What makes our nanocomposite special is that it combines the positive properties of both of its components,” explains Tobias Helbich. “The polymer matrix absorbs light in the UV domain, stabilizes the nanosheets and gives the material the properties of the polymer, while at the same time maintaining the remarkable optoelectronic properties of the nanosheets.”

Long-term goal of nanoelectronics – In leaps and bounds to industrial application

Its flexibility and durability against external influences also makes the newly developed material amenable to standard polymer technology for industrial processing. This puts actual applications within an arm’s reach.

The composites are particularly well suited for application in the up and coming field of nanoelectronics. Here, “classical” electronic components like circuits and transistors are implemented on scales of less than 100 nanometers. This allows whole new technologies to be realized – for faster computer processors, for example.

Nanoelectronic photodetector

The first successful application of the nanocomposite constructed by Helbich was only recently presented in the context of the ATUMS Graduate Program (Alberta / TUM International Graduate School for Functional Hybrid Materials): Alina Lyuleeva and Prof. Paolo Lugli from the Institute of Nanoelectronics at TU Munich, in collaboration with Helbich and Rieger, succeeded in building a photodetector based on these silicon nanosheets.

To this end, they mounted the polymer embedded silicon nanosheets onto a silicon dioxide surface coated with gold contacts. Because of its Lilliputian dimensions, this kind of nanoelectronic detector saves a lot of both space and energy.

The research is part of the ATUMS Graduate Program (Alberta / TUM International Graduate School for Functional Hybrid Materials (ATUMS; IRTG 2022)) in which German and Canadian scientists in the fields of chemistry, electrical engineering and physics collaborate closely. Their goal is not only to create novel functions based on nanoparticles and polymer materials, but, at the same time, to develop first applications. The work is funded by the German Research Council (DFG) and the Natural Science and Engineering Research Council of Canada (NSERC).

Eutelsat Communications (NYSE Euronext Paris: ETL),a satellite operator, and STMicroelectronics (NYSE: STM) have achieved a new milestone with a new-generation chip that will power Eutelsat’s SmartLNB interactive terminal.

ST’s advanced, low-power System-on-Chip (STiD337) represents a big step down in the overall cost of interactive satellite terminals. The STiD337’s first adoption is in Eutelsat’s SmartLNB, lowering cost, upgrading service, and significantly reducing power consumption.

The SmartLNB is an electronic feed that replaces the traditional Ku-band reception of DTH satellite signals, embedding one or more satellite tuners/demodulators directly inside the LNB (low-noise block) and adding a narrowband return link optimized for transmissions of IP packets. The SmartLNB enables a wide range of connected TV applications, providing a transparent bidirectional IP link compatible with existing services. Not limited to the TV and broadcast market, applications also cover the exploding sector of connected objects (Machine-to-Machine, Internet of Things, SCADA, home-automation, Smart Buildings, etc.) with a cost-effective solution via satellite.

ST has employed its very low-power 28nm FD-SOI (Fully Depleted Silicon on Insulator) process technology that enables deep sleep and auto wake up for the system. With a maximum 3.5W power dissipation at full speed and less than 50mW (typical) during sleep, the STiD337 is the most power-efficient device available today to take the SmartLNB to a new level of performance and efficiency.

The STiD337 adds the latest DVB-S2X satellite standard for the forward link, as well as GSE (Generic Stream Encapsulation) for efficient data handling; it can achieve throughput of over 100Mb/sec. The return path implements a software-radio approach that is optimized for the enhanced spread-spectrum technique with asynchronous access typically used for the SmartLNB. The device also includes the full complement of hardware mechanisms to support real-time multiple-access techniques. The return modulation is calculated on the internal processors. The platform includes a dual ARM Cortex-A9 core with NEON co-processors and four ST231 DSP offload coprocessors to enhance its compute power and ensure complete flexibility in the choice of return-channel modulation type.

The new SoC will be available in secure and standard versions. The secure version includes pre-loaded encryption keys, serial numbers, safe-boot, and many other features to increase the level of protection of data-delivering and gathering operations by the SmartLNB.

“We wanted a step change in the cost and performance for the next generation of our SmartLNB interactive service. We know from our customers that security is a major concern and we wanted to address that head on. Furthermore, with satellite terminals becoming more ubiquitous and employed in a greater range of use cases we needed to pay even greater attention to power consumption,” said Antonio Arcidiacono, Director of Innovation at Eutelsat. “The design objectives we set have all been met and we’re aiming to roll out higher-performance, lower-cost, secure, and above all, lower-power consumption SmartLNB terminals based on ST’s new satellite SoC by the end of 2017.”

“Working closely with Eutelsat, we’ve developed the lowest-cost, lowest-power, secure, and most advanced interactive satellite-modem SoC to date,” said Jocelyne Garnier, Group VP, General Manager, Aerospace, Defense, and Legacy Division, STMicroelectronics. “From the outset we knew we could bring innovations to the market that played to many of the strengths we have in ST, especially in digital satellite systems, our system-on-chip experience, our low-power technologies, and of course, our security IP.”

ST provides a hardware evaluation platform, a Linux-based operating system, and a basic driver set. Final production samples of the STiD337 are available now and full production is scheduled for May 2017. Further information is available on ST.com and under NDA.

Surface roughness reduction is a really big deal when it comes to fundamental surface physics and while fabricating electronic and optical devices. As transistor dimensions within integrated circuits continue to shrink, smooth metallic lines are required to interconnect these devices. If the surfaces of these tiny metal lines aren’t smooth enough, it substantially reduces their ability to conduct electrical and thermal energy — decreasing functionality.

A group of engineers at the University of Massachusetts Amherst are now reporting an advance this week in Applied Physics Letters, from AIP Publishing, in the form of modeling results that establish electrical surface treatment of conducting thin films as a physical processing method for reducing surface roughness.

Sequence of snapshots from a computer simulation of electric-field-driven morphological evolution of a copper thin film, demonstrating current-induced smooth surface. Credit: Du and Maroudas

Sequence of snapshots from a computer simulation of electric-field-driven morphological evolution of a copper thin film, demonstrating current-induced smooth surface. Credit: Du and Maroudas

“We’ve been thinking hard about this roughness problem for many years, since showing that electric currents can be used to inhibit surface cracking,” said Dimitrios Maroudas, co-author and a professor in the Department of Chemical Engineering. “So as soon as we developed the computational tools to attack the full film roughness problem, we got to work.”

The group’s work focused on using a copper film on a silicon nitride layer to quantify the model parameters for their simulations and make comparisons with available experimental findings, which they were able to reproduce.

“Surface electromigration is the key physical concept involved,” Maroudas explained. “It’s the directed transport of atoms on the metal surface due to the so-called electron wind force, which expresses the transfer of momentum from the electrons of the metal moving under the action of an electric field to the atoms (ions) — biasing atomic migration.”

Think of it as akin to the diffusion of ink in flowing water. “Electromigration’s role in the transport of surface atoms is analogous to that of convection due to flow on the transport of ink within the water,” Maroudas said. “The combined effects of a well-controlled applied electric field and rough surface geometry drive the atoms on the metal surface to move from the hills of the rough surface morphology to the neighboring valleys, which eventually smooth away the rough surfaces.”

This work is significant, particularly within the microelectronics realm, because it establishes the electrical treatment of metallic (conducting) films as a viable physical processing strategy for reducing their surface roughness.

“Our approach is qualitatively different than traditional mechanical polishing or ion-beam irradiation techniques,” said Lin Du, co-author and a doctoral student working with Maroudas. “It directly influences the driven diffusion of surface atoms precisely, which affects surface atomic motion and enables a smooth surface all the way down to the atomic level.”

The required electric field action can be conveniently controlled macroscopically: simply choose a direction, adjust the voltage, and flip a switch “on.”

“While studying the phenomenon, we discovered that a sufficiently strong electric field can bring the metallic surface to an atomically smooth state,” Du said. “The required electric field strength depends largely on the field direction and surface material properties of the metallic film — such as film texture and surface diffusional anisotropy, because in surfaces of crystalline materials diffusion is faster along certain preferred directions.”

A true irony here is that “electromigration is best known for its damaging effects within metallic interconnects — underlying crucial materials reliability problems in many generations of microelectronics,” Maroudas said.

As far as applications, since this work establishes the principles to create smoother conducting material surfaces, “it can be used for fabricating and processing nanoscale-thick metallic components within electronic and optical devices, which require atomic-scale smoothness,” Maroudas said. “The ability to reduce the surface roughness of metallic components, such as interconnects within integrated circuits, will significantly improve their performance as well as durability and reliability.”

What’s the next step for the engineers? “We’re currently exploring how the effectiveness of the method depends on the metallic film texture (or surface crystallographic orientation), the film’s wetting of the substrate, and the electric field direction with respect to certain surface crystallographic directions,” Maroudas said.

The group’s immediate goal is “to optimize the electrical treatment technique, and to identify the conditions for minimizing the required electric field strength, as well as the cost of applying this technique,” he added. “Our next natural step should be a partnership with an experimental laboratory with the proper expertise to carry out tests that will help us move from proof of concept to an enabling technology.”