Category Archives: Applications

OMRON Corporation announced its entry into a stock purchase agreement to acquire a 100 percent stake in Delta Tau Data Systems, Inc. of California (DT), which will result in DT becoming a member of the OMRON Group. The acquisition is subject to customary conditions to closing. Omron expects the acquisition to close in early September, 2015.

With headquarters in Chatsworth, California, DT is a control device company in the United States. This acquisition is part of OMRON’s strategy to promote its development of factory automation technology and strengthen its sales capability in the control device business. Through the acquisition of DT, OMRON aims to reinforce its technology development and engineering capabilities in the field of motion control designed to drive manufacturing equipment. Merging products and technologies of both companies will also enable delivery of optimized motion control solutions globally through combined distribution networks.

OMRON has extensive lines of control components and equipment, ranging from image-processing sensors and other input devices through various controllers to output devices such as servo drives and servo motors, along with a range of safety devices and in-panel controllers. Combining these products, OMRON continues to offer a wide range of advanced automation solutions to manufacturers worldwide.

DT, as a specialist manufacturer of motion controllers, boasts renowned and powerful development and systems integration capabilities that enabled the company to develop, manufacture, and market what is widely recognized as the world’s highest level motion controller, dubbed “PMAC.” This product is now used mainly by US and Korean producers of semiconductor and LCD manufacturing equipment, machine tools, packaging machines, among others.

This acquisition will allow OMRON to combine DT’s PMAC motion controller with its wide range of products and offer new solutions to its customers globally. By leveraging DT’s sales network, equipped with highly skilled engineering capability, OMRON will provide DT’s customers with high-performance solutions comprising OMRON’s control devices and DT’s PMAC. OMRON will also aim to expand applications of its solutions by adopting the high-performance motion control technology that DT has accumulated over many years.

Through the acquisition of DT, OMRON will further advance its leading automation technology. In addition, by promoting manufacturing innovation together with its customers, OMRON will steadily reinforce its industrial automation business, one of the pivotal strategies of OMRON Group’s long-term management strategy, called “Value Generation 2020,” as it works to drive further growth for the future.

 IBM today announced the launch of a new community, IBM developerWorks Recipes, designed to help developers – from novice to experienced – quickly and easily learn how to connect Internet of Things (IoT) devices to the cloud and how to use data coming from those connected devices.

Users of developerWorks Recipes can tap into IBM’s platform-as-a-serviceBluemix, to implement step-by-step tutorials for embedding advanced analytics and machine learning into IoT devices and applications. Examples include:

  • Understanding vehicle performance by analyzing data from its On-Board Diagnostic system.
  • Linking real-time machine condition monitoring with IBM asset management to monitor everything from the health of household appliances to wheels on a railroad car.
  • Spotting trends and obtaining solutions to common problems through graphical representation of historical and real-time data from IoT devices.

Gartner, Inc. forecasts that 4.9 billion connected things will be in use in 2015, up 30 percent from 2014, and will reach 25 billion by 2020.

By helping users connect their IoT devices to IBM Bluemix, which IBM launched in 2014 with a $1 billion investment and today has more than 100 open-source tools and services, users can then run advanced analytics, utilize machine learning and tap into additional Bluemix services. For example, data storage, predictive modeling and geospatial analytics can help users to better understand the data on their devices and also help to accelerate the IoT ecosystem.

“IBM has long been a leader in offering innovative tools for developers to create the applications of our future.  Now, IBM is expanding that focus so anyone — from the software novice to the experienced hardware engineer — can easily and quickly access materials providing guidance in the creation, management and connection of IoT devices to each other and the cloud,” said Christopher O’Connor, General Manager, Offerings, Internet of Things, IBM. “With developerWorks Recipes, IBM provides easy access to new analytics and operational insight capabilities that tap into the vast data from many connected devices, home appliances or cars.”

Developers and the IoT ecosystem are already taking advantage of the new IoT community from IBM:

“For years, companies have been building their machine-to-machine and IoT applications essentially from scratch. IBM developerWorks Recipes enables companies to leverage the hard lessons learned by other developers in order to simplify the process – a goal to which MultiTech has been committed for more than 40 years,” said Daniel Quant, Vice President of Product Management, MultiTech Systems. “IBM is helping to enable us and our customers to connect devices quickly and with security features to the IBM Cloud – with the ultimate goal of transforming our business processes and efficiencies.”

“Developers just can’t be experts on each new ‘thing’ that gets added to the IoT,” said Jone Rasmussen, General Manager of IoT developer tool startup Bitreactive. “To control costs of IoT projects, developers need easy, repeatable ways to quickly extract data from devices. IBM developerWorks Recipes is the perfect platform to do just that. It brings the embedded and cloud developer communities together in one place. Any cloud IoT developer can now easily find and reuse our templates for producing intelligent data at the edge of the network. With developerWorks Recipes, IBM shows it understands what’s needed to make developers’ lives easier.”

“The ecosystems around the IoT are complex and that complexity makes it more difficult for companies to get the true business benefits from IoT,” said Tony Milbourn, Vice President Corporate Strategy, u-blox. “To cut through this complexity, particularly in the Internet of Things that Really Matter, u-blox has combined its robust cellular, short-range and positioning products and solutions with IBM’s deep data analytics and management capabilities in IBM Bluemix cloud platform. developerWorks Recipes brings recipes, tools and prototypes that show customers the benefits, support ease of deployment, and most importantly provide information about how to best reduce risk.  The combination of IBM and u-blox is ideal for key global players in the automotive, industrial and professional markets.”

IBM developerWorks Recipes is currently open for anyone to take advantage of existing IoT content, create new content and share with the community: https://developer.ibm.com/recipes/

By encoding information in photons via their spin, “photonic” computers could be orders of magnitude faster and efficient than their current-day counterparts. Likewise, encoding information in the spin of electrons, rather than just their quantity, could make “spintronic” computers with similar advantages.

University of Pennsylvania engineers and physicists have now discovered a property of silicon that combines aspects of all of these desirable qualities.

In a study published in Science, they have demonstrated a silicon-based photonic device that is sensitive to the spin of the photons in a laser shined on one of its electrodes. Light that is polarized clockwise causes current to flow in one direction, while counter-clockwise polarized light makes it flow in the other direction.

This property was hiding in plain sight; it is a function of the geometric relationship between the pattern of atoms on the surface of silicon nanowires and how electrodes placed on those wires intersect them. The interaction between the semiconducting silicon and the metallic electrodes produces an electric field at an angle that breaks the mirror symmetry that silicon typically exhibits. This chiral property is what sends electrons in one direction or the other down the nanowire depending on the polarity of the light that hits the electrodes.

The study was led by Ritesh Agarwal, a professor in the Department of Materials Science and Engineering in Penn’s School of Engineering and Applied Science, and Sajal Dhara, a postdoctoral researcher in Agarwal’s lab. They collaborated with Eugene Mele, a professor in the Department of Physics and Astronomy in Penn’s School of Arts & Sciences.

“Whenever you change a symmetry, you can do new things,” said Agarwal. “In this case, we have demonstrated how to make a photodetector sensitive to a photon’s spin. All photonic computers need photodetectors, but they currently only use the quantity of photons to encode information. This sensitivity to photon spin would be an extra degree of freedom, meaning you could encode additional information on each photon.

“Typically, materials with heavy elements show this property due to their spins strongly interacting with electron’s orbital motion, but we have demonstrated this effect on the surface of silicon, originating only from the electron’s orbital motion”

Agarwal and Dhara reached out to Mele due to his work on topological insulators. He, along with fellow Penn physicist Charles Kane, laid the foundation for this new a class of materials, which are electrical insulators on their interiors but conduct electricity on their surfaces.

Agarwal’s group was working on various materials that exhibit topological effects, but as a check on their methods, Mele suggested trying their experiments with silicon as well. As a light, highly symmetric material, silicon was not thought to be able to exhibit these properties.

“We expected the control experiment to give a null result, instead we discovered something new about nanomaterials,” Mele said.

Silicon is the heart of computer industry, so finding ways of producing these types of effects in that element is preferable to learning how to work with the heavier, rarer elements that naturally exhibit them.

Once it was clear that silicon was capable of having chiral properties, the researchers set out to find out the atomic mechanisms behind it.

“The effect was coming from the surface of the nanowire,” Dhara said. “The way most silicon nanowires are grown, the atoms are bound in zigzag chains that go along the surface, not down into the wire.”

These zigzag patterns are such that placing a mirror on top of them would produce an image that could be superimposed on the original. This is why silicon is not intrinsically chiral. However, when metal electrodes are placed on the wire in the typical perpendicular fashion, they intersect the direction of the chains at a slight angle.

“When you have any metal and any semiconductor in contact, you’ll get an electric field at the interface, and it’s this field that is breaking the mirror symmetry in the silicon chains,” Dhara said.

Because the direction of the electric field does not exactly match the direction of the zigzag chains, there are angles where the silicon is asymmetric. This means it can exhibit chiral properties. Shining a circularly polarized laser at the point on the nanowire where metal and semiconductor meet produces a current, and the spin of the photons in that laser determines the direction of the current’s flow.

Dhara and Agarwal are currently working on ways to get planar silicon to exhibit these properties using the same mechanism.

Market revenues associated with network communications, sensing, and control functions in subsystems and objects attached to the Internet of Things (IoT) are forecast to grow 29 percent in 2015 to $62.4 billion after increasing 21 percent in 2014 to about $48.4 billion, according to data in IC Insights’ recently released Update to its 2015 IC Market Drivers Report.  Figure 1 provides a breakout of sales growth in five IoT market categories, based on IC Insights’ updated forecast.

wearable sensors IC

 

IC Insights raised its projection for IoT-related revenues in 2015 to show much stronger growth in wearable systems after the formal launch of Apple’s first smartwatches in April 2015.  The long-term fate of smartwatches continues to be debated.  Whether these wearable systems evolve into a major end-use market category or simply become a niche with a short lifecycle remains to be seen.  In the short-term, however, the launch of the Apple Watch—jam-packed with ICs, sensors, and other components—has provided a major boost to semiconductor unit shipments and sales to the wearable IoT category.

Total IoT-related revenues (excluding Internet servers, network infrastructure, and cloud-computing systems) are now expected to rise by a compound annual growth rate (CAGR) of 21.1 percent from 2013 to 2018, reaching $104.1 billion at the end of the forecast period.

Worldwide growth of “things” connected to the Internet continues to significantly outpace the addition of human users to the World Wide Web, according to the IC Market Drivers Update.  New connections to the “Internet of Things” (IoT) are forecast to increase 40 percent in 2015 with 574 million new Internet connections expected to be attached to embedded systems, sensors, instruments, vehicles, controllers, cameras, wearable electronics, and other objects.  IoT connections grew to 410 million in 2014, which was a 45 percent increase from 282 million in 2013 (Figure 2).  The total installed base of connected things on the IoT is forecast to reach 13.2 billion units worldwide in 2015 versus about 3.1 billion humans using computers, cellphones, and other system applications over the Internet this year, based on IC Insights’ updated projections.  By the end of this decade, more than 25 billion systems and objects are expected to be attached to the Internet versus about 4.4 billion human users.

wearable sensors IC fig 2

Nano-electronics research center imec announced today at SEMICON West that it has demonstrated concept and feasibility for pore-sealing low-k dielectrics in advanced interconnects. The method, based on the self-assembly of an organic monolayer, paves the way to scaling interconnects beyond N5.

The need for ultra-porous low-k materials as interconnect dielectrics to meet the requirements dictated by the ITRS (International Technology Roadmap for Semiconductors) poses several challenges for successful IC integration. One of the most critical issues is the indiffusion of moisture, ALD/CVD metal barrier precursors and Cu atoms into the porous low-k materials during processing (low-k pore diameter larger than 3nm, up to 40% porosity). This leads to a dramatic increase of the material dielectric constant and leakage current, and to the reduction of the voltage for dielectric breakdown.

Imec has developed a method to seal the pores of the low-k material with a monomolecular organic film. The method not only prevents diffusion of moisture and metal precursors into the low-k material, it also might provide an effective barrier to confine copper within the copper wires and prevent copper diffusion into the low-k material.

Self-assembled monolayers (SAMs) derived from silane precursors, are deposited from vapor phase on 300mm wafers into low-k during chemical vapor or atomic layer deposition and subsequent Cu metallization. The dielectric constant (k) of the resulting sealing layer is 3.5 and a thickness lower than 1.5nm was achieved. This is key to limit the RC delay increase enabling beyond 5nm technology nodes. As a result, a ca. 30% capacitance reduction was observed after SAM pore-sealing was applied. Moreover, a clear positive impact on the low-k breakdown voltage is observed upon sealing.

imec

Imec’s research into advanced interconnects includes key partners as GLOBALFOUNDRIES, Intel, Micron, Panasonic, Samsung, SK Hynix, Sony, and TSMC.

Blood and tears at DAC


July 14, 2015

BY PETE SINGER, Editor-in-Chief

At this year’s Design Automation Conference (DAC) in San Francisco, Brian Otis, a Director at Google, talked about how hundreds of millions of people are at risk of diabetes – and how a smart contact lens that continuously monitors blood glucose levels and transmits the data to a smartphone might just be the ideal solution.

There is a good correlation between your glucose levels in tears and that in blood (although it’s a factor of magnitude lower), so a smart contact lens can measure glucose levels using a wireless chip and miniaturized glucose sensor. The devices are embedded between two layers of soft contact lens material.

Google announced the smart lens project in January of 2014, at which time multiple clinical studies had been completed. A partnership was subsequently announced with Novartis’s Alcon eye-care division in July of 2014.

Otis said that the universe of people who are either bona fide pre-diabetic or at risk is huge. “It’s hundreds of millions of people,” he said. “Our hypothesis is that if we are able to create more comfortable CGMs (continuous glucose monitors), this will significantly impact the diabetes management problem we’re facing. No one has solved this problem yet, but we really want to do this because it could improve people’s lives,” he said.

A smart contact lens could solve the problem because it’s a wearable device that many millions of people already wear on a daily basis. “If there is an option of wearing the device that many people wear, that’s comfortable and also corrects your vision and gives you this valuable information, you’re likely to do that over than, let’s say, pricking your finger,” Otis said.

Otis described smart contact lenses as not just another gadget. “It’s really part of an ecosystem that can form a new type of proactive healthcare. We’re going to work really hard on that,” he said.

What makes this all possible, of course, is the work that the semiconductor industry has done in minia- turization over the last several decades. Otis said more work is needed: “The chips, the passive components, the power supplies, the antennas: Everything needs to shrink,” he said.

Leti_Jean-Eric_MichalletBy Jean-Eric Michallet, Leti Vice President of Sales and Marketing

Smart devices for the Internet of Things are among the top three growth drivers for the semiconductor industry, but the IoT is a highly fragmented market where multiple applications have varying energy requirements.

Speaking at a session on “Consumer & Energy Efficiency” at the LetiDays annual event in Grenoble, France, Edith Beigné, a senior scientist in the Architecture, ID Design, and Embedded Software Department at CEA-Leti, said the fragmentation presents challenges for technology providers, because it is difficult and expensive to design a single chip for one application or to provide a software or hardware platform to cover each archetype.

Leti’s new Internet of Things platform, L-IoT, is designed to overcome the challenges of fragmentation by providing a complete, flexible ultra-low power solution with adaptable analog and digital building blocks globally optimized for high energy efficiency and that “sleep” when energy-supply is low. All functionality, except the sensors, is integrated on a single chip.

L-IoT: a Flexible Platform

LetiDays 2-1

Adaptive Always-Responsive/On-Demand, according to energy levels

Known as “Elliot”, the platform includes both an “always-on” subsystem and “on-demand” subsystem. For applications such as video surveillance, secure communications, data fusion and tracking and monitoring, for example, the “on-demand” system can be woken up to provide additional data, as needed.

The application may have a variety of power sources for the “on-demand” tasks, but energy harvesting is the preferred choice, Beigné said.

Silicon Impulse

Leti also recently introduced Silicon Impulse, a comprehensive IC technology platform offering IC design, advanced intellectual property, emulator and test services and industrial multi-project wafer (MPW) shuttles. The eight-member consortium supporting the platform offers leading-edge, hardware-and-software solutions, including embedded software dedicated to geo-location and people location, for instance; subsystems such as 3D multi-core and low-power CPU modules, and a wide range of ICs: FD-SOI, RF, sensors, mixed-signal, MEMS and NEMS and 3D devices.

Caroline Arnaud, head of the Platform and Design Center Department at Leti, said the platform supports 28nm FD-SOI now, and Leti is in discussions with GLOBALFOUNDRIES for access to 22nm technology next year.

From sensor fusion to context awareness

Vivian Cattin, Leti project Manager, outlined future consumer applications that context-awareness technology can provide. She summarized Leti’s ongoing work with InvenSense, the world’s leading provider of MotionTracking sensor system-on-chip (SoC) and sound solutions for consumer electronic devices. In 2014, the company acquired the Leti spinout Movea, which was widely recognized for its advanced software for ultra-low-power location, activity tracking and context sensing.

The continuing collaboration is focused on improving context awareness by combining data from a variety of sensors, including accelerators and gyrometers, with other sources, such as WiFi beacons and the GPS systems from a person’s mobile device, to not only locate the person but estimate his or her direction or trajectory. The application also can estimate the travel time to the destination.

Cattin said a next step, called “user-adaptive processing”, would combine additional sensors, including wearable devices, software that supports machine learning, and the user’s own cloud-based information to support new uses such as personal wellness tips.

Less energy, more powerful applications for consumers

Jean-Michel Goiran, IoT business-development manager at Leti, highlighted Leti programs and projects that provide more powerful applications for consumers in the Internet of Things era, while using less power.

Connected sensor nodes typically reserve two-thirds of available power in standby mode for the microprocessor, while 13 percent is used by the sensor, 11 percent by the radio, and 10 percent by the active microprocessor. “We need an ultra-low standby-power solution for sustainable and long-living IoT devices deployment,” he said.

Non-volatile memory will be a big part of the solution for better standby-power management, because its content doesn’t require periodic refreshing. Super directivity, which refers to very small antennas directing their signals in only one direction, are another energy saver for IoT applications. Mutualizing functions on a single sensor, such as C02 detection, ventilation, presence detection and fire alarms, also can significantly lower power demand. “You need energy for sensors, so the fewer sensors the better,” Goiran said.

Wired houses for energy efficiency and security

Joël Mercelat, chief technical officer at Delta Dore, described a fully connected house that provides enhanced security and maintains residents’ preferred heating/cooling and lighting preferences, while cutting energy use. These functions are automated, but also can be controlled be hand-held devices.

Read more from CEA-Leti: 

What chipmakers will need to address growing complexity, cost of IC design and yield ramps

 

Large-screen smartphones, with displays of 5 inches or greater and often called “phablets” (for phone/tablet hybrids), are on track to surpass worldwide shipments of tablet computers this year, according to IC Insights’ new Update to the 2015 IC Market Drivers report.  The Update’s forecast shows the popularity of extra-large smartphones continuing to gain momentum in the first half of 2015 with unit shipments now expected to reach 252 million this year, which is a 66 percent increase from 152 million sold in 2014 (Figure 1).  Strong growth in large smartphones is having a major impact on tablet unit sales, which are forecast to increase just 2 percent in 2015 to 238 million units.

Figure 1

Figure 1

IC Insights believes strong sales of large-screen smartphones will continue in the next three years while the tablet market struggles with low single-digit percentage growth through 2018.  The revised forecast shows large-screen smartphone shipments climbing by a compound annual growth rate (CAGR) of 40 percent between 2014 and 2018, while tablet unit shipments are expected to rise by a CAGR of just 3 percent in this four-year period.  Large-screen smartphones are having the biggest impact on mini tablets, which saw a rise in popularity in the past few years.  Mini tablets have 7- to 8.9-inch displays and typically run the same software as smartphones.

The phablet segment is expected to account for 17 percent of total smartphone shipments in 2015, which are forecast to be about 1.5 billion handsets.  The Update report shows phablets representing 21 percent of the 1.7 billion smartphones that are forecast to be shipped in 2016.  Phablet sales are projected to reach 30 percent of the nearly 2 billion total smartphones shipped in 2018, according to the Update of the 2015 IC Market Drivers report.

Tablet unit sales have nearly stalled out because incremental improvements in new models have not been enough to convince owners of existing systems to buy replacements.  More consumers are opting to buy new large-screen phablets instead using both a smartphone and tablet.  Large smartphones have gained traction because more handsets are being used for video applications (including streaming of TV programs and movies) in addition to Internet web browsing, video gaming, GPS navigation, and looking at digital photos.

The market for large-screen smartphones received a boost from Apple’s highly successful iPhone 6 Plus handset, which started shipping in September 2014 and continued to gain momentum in the first half of 2015.  Apple joined the phablet movement somewhat belatedly, but its 5.5-inch display iPhone 6 Plus smartphone played a major role in the company shipping 61.2 million iPhone handsets in 1Q15, which was a 40 percent increase over the same quarter in 2014.

Engineers at Oregon State University have invented a way to fabricate silver, a highly conductive metal, for printed electronics that are produced at room temperature.

There may be broad applications in microelectronics, sensors, energy devices, low emissivity coatings and even transparent displays.

A patent has been applied for on the technology, which is now available for further commercial development. The findings were reported in Journal of Materials Chemistry C.

Silver has long been considered for the advantages it offers in electronic devices. Because of its conductive properties, it is efficient and also stays cool. But manufacturers have often needed high temperatures in the processes they use to make the devices, adding to their cost and complexity, and making them unsuitable for use on some substrates, such as plastics that might melt or papers that might burn.

This advance may open the door to much wider use of silver and other conductors in electronics applications, researchers said.

“There’s a great deal of interest in printed electronics, because they’re fast, cheap, can be done in small volumes and changed easily,” said Chih-hung Chang, a professor in the OSU College of Engineering. “But the heat needed for most applications of silver nanoparticles has limited their use.”

OSU scientists have solved that problem by using a microreactor to create silver nanoparticles at room temperatures without any protective coating, and then immediately printing them onto almost any substrate with a continuous flow process.

“Because we could now use different substrates such as plastics, glass or even paper, these electronics could be flexible, very inexpensive and stable,” Chang said. “This could be quite important and allow us to use silver in many more types of electronic applications.”

Among those, he said, could be solar cells, printed circuit boards, low-emissivity coatings, or transparent electronics. A microchannel applicator used in the system will allow the creation of smaller, more complex electronics features.

Smartphones first accounted for more than 50 percent of total quarterly cellphone shipments in 1Q13. In 4Q15, smartphones are forecast to reach 435 million units or 80 percent of total cellphones shipped according to data in IC Insights’ newly released Update to its IC Market Drivers Report (Figure 1). On an annual basis, smartphones first surpassed the 50 percent penetration level in 2013 (54 percent) and are forecast to represent 93 percent of total cellphone shipments in 2018.

Figure 1

Figure 1

In contrast, non-smartphone cellphone shipments dropped by 18 percent in 2013 and 23 percent in 2014.  Moreover, IC Insights expects the 2015 non-smartphone cellphone unit shipment decline to be steeper than 2014’s drop with a decline of 27 percent. Total cellphone unit shipments grew by only 5 percent in 2014 and are forecast to grow by only 3 percent in 2015 (Figure 2).

Figure 2

Figure 2

Samsung and Apple dominated the smartphone market in both 2013 and 2014.  In total, these two companies shipped 457 million smartphones and held a combined 47 percent share of the total smartphone market in 2013.  These two companies shipped over 500 million smartphones in 2014 (503.9 million), but their combined smartphone unit marketshare dropped seven percentage points to 40 percent.  It appears that both Samsung and Apple are losing smartphone marketshare to the up-and-coming Chinese producers like Xiaomi, Yulong/Coolpad, and TCL.

In contrast to the weakening fortunes of Nokia, BlackBerry, and HTC, 2013-2014 smartphone sales from China-based Lenovo (which acquired Motorola’s smartphone business from Google in October of 2014), Huawei, Xiaomi, Yulong/Coolpad, and TCL surged.  Combined, the six top-10 China-based smartphone suppliers shipped 359 million smartphones in 2014, a 79 percent increase from the 201 million smartphones these six companies shipped in 2013.  As a result, the top six Chinese smartphone suppliers together held a 29 percent share of the worldwide smartphone market in 2014, up eight points from the 21 percent share these companies held in 2013.

In early 2015, there were numerous reports of slowing in the Chinese smartphone market.  Since most of the Chinese smartphone producer’s sales are to Chinese customers, this slowdown became evident in their 1Q15 smartphone sales figures.  In total, the top six China-based smartphone suppliers shipped 83.4 million smartphones and held a 25 percent share of the 1Q15 worldwide smartphone market, down four points from their 29 percent combined marketshare in 2014.

Chinese smartphone suppliers primarily serve the China and Asia-Pacific marketplaces.  Their smartphones, unlike those from Apple, Sony, and HTC are low-cost low-end handsets that typically sell for less than $200.  In some cases, smartphones sold by the Chinese companies have been known to sell for as little as $50.

With much of the growth in the smartphone market currently taking place in developing countries such as China and India, low-end smartphones are expected to be a driving force in the smartphone market over the next few years.  IC Insights defines low-end smartphones as those that sell for $200 or less and high-end smartphones as those that sell for greater than $200.