Category Archives: Device Architecture

The Global Semiconductor Alliance (GSA) is pleased to announce the appointment of Dr. Leo Li as the chairman of the GSA Board of Directors for 2016 and 2017.  Dr. Li serves as chairman, chief executive officer of Spreadtrum Communications, leading the Company’s mission to achieve industry leadership through continuous innovation and service.

The GSA Board chairman is a coveted position throughout the industry reserved for the most innovative leaders who represent the semiconductor industry’s most active global regions. Dr. Li will be the first chairman to serve from mainland China.  As a global Alliance, this is a key step for GSA to ensure the commitment to all important regions of the ecosystem.  It is vital to GSA that Chinese companies are being serviced and global members have access to all of the opportunities in China.

Dr. Li has served as a regional member of the GSA Board of Directors, representing the Asia-Pacific region since 2012. He has also served as a member of GSA’s Asia-Pacific Leadership Council since 2011.  The Asia-Pacific Leadership Council serves as advisors to the GSA Board on global and regional issues.

“I am honored that the GSA Board of Directors has appointed me as their Chairman,” commented Dr. Li. “The industry is constantly evolving and GSA has been instrumental in solving a variety of challenges and promoting collaboration between its member companies and partners. I am looking forward to serving as the Chairman to help advance GSA’s commitment to support globalization and continue to be the most prominent advocate to expand cooperation and innovation in our dynamic global semiconductor industry.”

Dr. Li has more than 30 years experience in wireless communications industry, joining Spreadtrum Communications in May 2008. From 2005 to 2007, he served as the chief executive officer of Magicomm Technology Inc., a cell phone product development company. From 2002 to 2005, he was senior business development director at Broadcom and was responsible for a line of GSM/GPRS/EDGE/WCDMA baseband business. From 1998 to 2002, Dr. Li was appointed as general manager of Mobile Phone Product and Vice President of Mobilink Telecom, a GSM baseband start-up company that was sold to Broadcom in 2002. Prior to 1998, he held various senior engineering and program management positions at Rockwell Semiconductors and Ericsson. Dr. Li holds 10 patents in wireless communication systems, RF IC system and circuit designs, and RFID applications.

Dr. Li received a BS degree from the University of Science and Technology of China in Hefei, China; a MS degree from the Institute of Electronics, Chinese Academy of Sciences in Beijing, China; a Ph.D. degree in Electrical Engineering from the University of Maryland in College ParkMaryland, USA; and an MBA degree from the National University in La Jolla, California, USA.

“It is a great honor to have Dr. Li serve as the Chairman of the GSA Board of Directors,” said Jodi Shelton, president of the GSA.  “Dr. Li is one of the most influential leaders in the semiconductor industry in China and his involvement will be critical to our future success. GSA will greatly benefit from his global perspective and technical expertise, enabling GSA to expand its collaboration between China and the worldwide semiconductor industry.”

Steve Mollenkopf, the Chairman of the GSA Board of Directors from 2014 to present, will continue to serve as a regional leadership director for the Board.

A team led by researchers from the National University of Singapore (NUS) has developed a method to enhance the photoluminescence efficiency of tungsten diselenide, a two-dimensional semiconductor, paving the way for the application of such semiconductors in advanced optoelectronic and photonic devices.

Tungsten diselenide is a single-molecule-thick semiconductor that is part of an emerging class of materials called transition metal dichalcogenides (TMDCs), which have the ability to convert light to electricity and vice versa, making them strong potential candidates for optoelectronic devices such as thin film solar cells, photodetectors flexible logic circuits and sensors. However, its atomically thin structure reduces its absorption and photoluminescence properties, thereby limiting its practical applications.

By incorporating monolayers of tungsten diselenide onto gold substrates with nanosized trenches, the research team, led by Professor Andrew Wee of the Department of Physics at the NUS Faculty of Science, successfully enhanced the nanomaterial’s photoluminescence by up to 20,000-fold. This technological breakthrough creates new opportunities of applying tungsten diselenide as a novel semiconductor material for advanced applications.

Ms Wang Zhuo, a PhD candidate from the NUS Graduate School for Integrative Sciences and Engineering (NGS) and first author of the paper, explained, “This is the first work to demonstrate the use of gold plasmonic nanostructures to improve the photoluminescence of tungsten diselenide, and we have managed to achieve an unprecedented enhancement of the light absorption and emission efficiency of this nanomaterial.”

Elaborating on the significance of the novel method, Prof Wee said, “The key to this work is the design of the gold plasmonic nanoarray templates. In our system, the resonances can be tuned to be matched with the pump laser wavelength by varying the pitch of the structures. This is critical for plasmon coupling with light to achieve optimal field confinement.”

The novel research was first published online in the journal Nature Communications on 6 May 2016.

Best of both worlds


May 9, 2016

More, faster, better, cheaper. These are the demands of our device-happy and data-centered world. Meeting these demands requires technologies for processing and storing information. Now, a significant obstacle to the development of next-generation device technologies appears to have been overcome, according to researchers from the University of Tokyo (Japan), Tokyo Institute of Technology (Japan) and Ho Chi Minh University of Pedagogy (Vietnam).

Specializing in the emerging field of semiconductor spintronics, the team has become the first to report growing iron-doped ferromagnetic semiconductors working at room temperature — a longstanding physical constraint. Doping is the practice of adding atoms of impurities to a semiconductor lattice to modify electrical structure and properties. Ferromagnetic semiconductors are valued for their potential to enhance device functionality by utilizing the spin degrees of freedom of electrons in semiconductor devices.

“Bridging semiconductor and magnetism is desirable because it would provide new opportunities of utilizing spin degrees of freedom in semiconductor devices,” explained research leader Masaaki Tanaka, Ph.D., of the Department of Electrical Engineering & Information Systems, and Center for Spintronics Research Network, University of Tokyo. “Our approach is, in fact, against the traditional views of material design for ferromagnetic semiconductors. In our work, we have made a breakthrough by growing an iron-doped semiconductor which shows ferromagnetism up to room temperature for the first time in semiconductors that have good compatibility with modern electronics. Our results open a way to realize semiconductor spintronic devices operating at room temperature.”

The researchers discuss their findings this week in Applied Physics Letters, from AIP Publishing. The researchers’ maverick move challenged the prevailing theory that predicted a type of semiconductor known as “wide band gap” would be strongly ferromagnetic. Most research focuses on the wide band gap approach. “We instead chose narrow-gap semiconductors, such as indium arsenide, or gallium antimonide, as the host semiconductors,” Tanaka said. This choice enabled them to obtain ferromagnetism and conserve it at room temperature by adjusting doping concentrations.

Investigators have long envisioned bridging semiconductors and magnetism to create new opportunities of utilizing spin degrees of freedom and harnessing electron spin in semiconductors. But until now, ferromagnetic semiconductors have only worked under experimental conditions at extremely low, cold temperatures, typically lower than 200 K (-73oC), which is much colder than the freezing point of water, 273.15 K. Here, K (Kelvin) is a temperature scale which, like the Celsius (oC) scale, has 100 degrees between boiling (373.15 K = 100oC) and freezing (273.15 K = 0oC) of water.

Potential applications of ferromagnetic-semiconductors include designing new and improved devices, such as spin transistors.

“Spin transistors are expected to be used as the basic element of low-power-consumption, non-volatile and reconfigurable logic circuits,” Tanaka explained.

In 2012, the team postulated that using iron as magnetic doping agents in semiconductors would produce performance advantages not seen in the more frequently studied manganese class of dopants.

Skeptics doubted this approach, but the team continued and successfully created a ferromagnetic semiconductor known as “n-type.”

“This was thought impossible by almost all leading theorists,” Tanaka noted. “They predicted that such n-type ferromagnetic semiconductors cannot retain ferromagnetism at temperatures higher than 0.1 K. We demonstrated, however, many new functionalities, such as the quantum size effect and the ability to tune ferromagnetism by wave function manipulation.”

On a practical level, the team continues its research with the goal of applying iron-doped ferromagnetic semiconductors to the field of spintronic device innovation. On a theoretical level, the team is interested in re-evaluating conventional theories of magnetism in semiconductors. “Based on the results of many experimental tests, we have proven that ferromagnetism in our iron-doped semiconductor is intrinsic,” Tanaka said.

The Semiconductor Industry Association (SIA) this week announced worldwide sales of semiconductors reached $26.1 billion for the month of March 2016, a slight increase of 0.3 percent compared to the previous month’s total of $26.0 billion. Sales from the first quarter of 2016 were $78.3 billion, down 5.5 percent compared to the previous quarter and 5.8 lower than the first quarter of 2015. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Global semiconductor sales increased in March for the first time in five months, but soft demand, market cyclicality, and macroeconomic conditions continue to impede more robust growth,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Q1 sales lagged behind last quarter across nearly all regional markets, with the Americas showing the sharpest decline.”

Regionally, month-to-month sales increased in Japan (4.8 percent), Asia Pacific/All Other (2.3 percent), and Europe (0.1 percent), but fell in China (-1.1 percent) and the Americas (-2.8 percent). Compared to the same month last year, sales in March increased in Japan (1.8 percent) and China (1.3 percent), but decreased in Asia Pacific/All Other (-6.4 percent), Europe (-9.8 percent), and the Americas (-15.8 percent).

“Eighty-three percent of U.S. semiconductor industry sales are into markets outside the U.S., so access to overseas markets is imperative to the long-term strength of our industry,” Neuffer said. “The Trans-Pacific Partnership (TPP) is a landmark trade agreement that would tear down myriad barriers to trade with countries in the Asia-Pacific. The TPP is good for the semiconductor industry, the tech sector, the American economy, and the global economy. Congress should approve it.”

March 2016

Billions

Month-to-Month Sales                               

Market

Last Month

Current Month

% Change

Americas

5.03

4.89

-2.8%

Europe

2.66

2.67

0.1%

Japan

2.47

2.59

4.8%

China

8.02

7.93

-1.1%

Asia Pacific/All Other

7.83

8.01

2.3%

Total

26.02

26.09

0.3%

Year-to-Year Sales                          

Market

Last Year

Current Month

% Change

Americas

5.81

4.89

-15.8%

Europe

2.96

2.67

-9.8%

Japan

2.55

2.59

1.8%

China

7.83

7.93

1.3%

Asia Pacific/All Other

8.57

8.01

-6.4%

Total

27.70

26.09

-5.8%

Three-Month-Moving Average Sales

Market

Oct/Nov/Dec

Jan/Feb/Mar

% Change

Americas

5.75

4.89

-15.0%

Europe

2.77

2.67

-3.6%

Japan

2.57

2.59

0.8%

China

8.45

7.93

-6.1%

Asia Pacific/All Other

8.08

8.01

-0.8%

Total

27.62

26.09

-5.5%

Year-to-year percent change in world semiconductor revenues over the past 20 years.

Year-to-year percent change in world semiconductor revenues over the past 20 years.

The Semiconductor Industry Association (SIA) today released a new report highlighting the evolution, complexity, and pivotal importance of the global semiconductor value chain. The report, drafted by Nathan Associates and titled, “Beyond Borders: How an Interconnected Industry Promotes Innovation and Growth,” emphasizes the global value chain’s tremendous benefits to technological advancement, semiconductor companies, affiliated industries, participating countries, and the global economy. The report also warns of the risks of attempting to reproduce the entire value chain within a single country.

“Much like the intricate circuitry of chips themselves, the global semiconductor value chain is a complex, interdependent network that is highly efficient, productive, and constantly evolving,” said John Neuffer, president and CEO, Semiconductor Industry Association. “This interlocking ecosystem drives growth and innovation and strengthens participating countries by increasing employment and export opportunities.”

The “Beyond Borders” report examines how the semiconductor value chain weaves together researchers, designers, manufacturers, assemblers, and suppliers from all over the world to create the building blocks of modern electronics. The system is driven in part by the extreme complexity and competitive nature of the industry itself. Nonstop, competition-driven demand for more and better capabilities, features, reliability, miniaturization, and speed at reduced cost requires a heavy investment in research and development, design, and efficient, low-cost manufacturing, testing, assembling and packaging, and distribution.

These same pressures also affect a vast array of supporting activities, such as the production of semiconductor manufacturing equipment, development of design software and other semiconductor intellectual property, and provision of raw materials. The pressures have compelled semiconductor companies to develop business models that look beyond national borders to achieve efficiencies to compete in the marketplace. Moving forward, this trend is likely to continue and intensify as the demand for innovation becomes even greater, according to the report.

“The semiconductor industry is relentlessly focused on the future, on exploring and advancing new technological frontiers such as brain-inspired computing, the Internet of Things, energy-efficient sensing, automated devices, robotics, and artificial intelligence,” Neuffer said. “A globally interdependent system that links together the strengths and capabilities of each participant will help the semiconductor industry unlock new technologies that will shape the future of the digital economy.”

Nanoelectronics research center imec has announced that Dr. Gordon E. Moore, creator of the famous Moore’s law theory and co-founder of Intel, is the recipient of its lifetime of innovation award. Imec’s annual award recognizes Dr. Moore’s visionary view, unrivalled innovation, and his profound impact on the global electronics industry.

In 1965, Dr. Moore predicted that the number of components on an integrated circuit (IC) would double every year for the coming 10 years, thereby making ICs and computer processing simultaneously faster, cheaper, and more powerful. In 1975, Dr. Moore revised the forecast rate to approximately every two years. Moore’s law turned out to be incredibly accurate, growing beyond its predictive character to become an industry driver that holds true today, 50 years later. Keeping up with Moore law’s progression has required a tremendous amount of engineering and commitment from the global semiconductor industry. While its meaning has evolved over generations, it has had a profound impact in many areas of technological change and progress.

“It is truly an honor to present imec’s lifetime innovation award to Dr. Moore, on behalf of all our global partners and our researchers,” stated Luc Van den hove, president and CEO of imec. “Dr. Moore’s name is synonymous with progress, and his vision has inspired and given direction to the entire semiconductor industry, which has revolutionized the way we compute, communicate, and interact. As the industry upholds this prediction and brings forth new innovations in chip technology, the future of Moore’s law will impact such things as healthcare, a sustainable climate, and safer transport all for the better.”

Dr. Moore began his career at Johns Hopkins University. He cofounded Fairchild Semiconductor in 1957 and launched Intel in 1968 together with Robert Noyce and Andy Grove. Today, Intel is a world leader in the design and manufacturing of integrated circuits and is the largest semiconductor company. Dr. Moore served as Intel CEO from 1975-1987, and then became its chairman of the board until his retirement in 1997.

“Although Moore’s law was created more than 50 years ago, it remains extremely valid and serves as a guide to what we innovate at imec,” continued Van den hove. “Throughout our organizations’ 32-year existence, we’ve worked at enabling Moore’s law and helping our partners innovate and develop the modern technology that society has embraced and demands. Dr. Moore’s legacy continues to be our mission and we are privileged to honor him.” 

Imec’s Lifetime of Innovation award is awarded to Dr. Moore on May 24, 2016 at its annual ITF Brussels, the flagship of imec’s worldwide ITF events.

Cypress CEO to step down


April 28, 2016

Cypress Semiconductor Corp. (NASDAQ:  CY) today announced that its CEO, T.J. Rodgers, will step down this week and that a search—both internal and external—would be launched to replace him.  In the interim, daily operational activities will be taken over by an Office of the CEO comprised of four current Cypress EVPs: Hassane El-Khoury (EVP, Programmable Systems Division), Dana Nazarian (EVP, Memory Products Division), Joe Rauschmayer (EVP, Manufacturing) and Thad Trent (CFO).  Rodgers will remain on the Cypress Board and become a project leader working on key technical projects.

Rodgers said, “This March, Valeta and I celebrated my 68th birthday in Mexico.  Upon reflection, while I am still passionately interested in Element 14, silicon, I have always planned not to be spending most of my time in the last decade of my career immersed in the details of the operations, including those of the 7,000-person company that Cypress has become.  And, to be completely candid, the board and even the executive staff have urged me to bring new blood into operations.  Thus, the first-quarter 2016 report, my 120th as Cypress’s CEO, will be my last.  More importantly to me, I will now be able to work full time on the technology that has fascinated me since my mother first kindled my interest in electronics when I was a fifth-grader.”

Rodgers continued, “I have always reserved about 30 percent of my time to work on technology and one key project.  This activity adds value to the company and remains of high interest to me at this stage of my career.  In the future, Cypress management will be able to assign a key project to me and count on it getting done right.”

A group of scientists from ITMO University in Saint Petersburg has put forward a new approach to effective manipulation of light at the nanoscale based on hybrid metal-dielectric nanoantennas. The new technology promises to bring about a new platform for ultradense optical data recording and pave the way to high throughput fabrication of a wide range of optical nanodevices capable of localizing, enhancing and manipulating light at the nanoscale. The results of the study were published in Advanced Materials.

Selective laser exposure to create hybrid nanostructures. Credit: ITMO University

Selective laser exposure to create hybrid nanostructures. Credit: ITMO University

Nanoantenna is a device that converts freely propagating light into localized light – compressed into several tens of nanometers. The localization enables scientists to effectively control light at the nanoscale. This is one of the reasons why nanoantennas may become the fundamental building blocks of future optical computers that rely on photons instead of electrons to process and transmit information. This inevitable replacement of the information carrier is related to the fact that photons surpass electrons by several orders of magnitude in terms of information capacity, require less energy, rule out circuit heating and ensure high velocity data exchange.

Until recently, the production of planar arrays of hybrid nanoantennas for light manipulation was considered an extremely painstaking process. A solution to this problem was found by researchers from ITMO University in collaboration with colleagues from Saint Petersburg Academic University and Joint Institute for High Temperatures in Moscow. The research group has for the first time developed a technique for creating such arrays of hybrid nanoantennas and for high-accuracy adjustment of individual nanoantennas within the array. The achievement was made possible by subsequently combining two production stages: lithography and precise exposure of thenanoantenna to a femtosecond laser – ultrashort impulse laser.

The practical application of hybrid nanoantennas lies, in particular, within the field of ultradense data recording. Modern optical drives can record information with density around 10 Gbit/inch2, which equals to the size of a single pixel of a few hundred nanometers. Although such dimensions are comparable to the size of the nanoantennas, the scientists propose to additionally control their color in the visible spectrum. This procedure leads to the addition of yet another ‘dimension’ for data recording, which immediately increases the entire data storage capacity of the system.

Apart from ultradense data recording, the selective modification of hybrid nanoantennas can help create new designs of hybrid metasurfaces, waveguides and compact sensors for environmental monitoring. In the nearest future, the research group plans to focus on the development of such specific applications of their hybrid nanoantennas.

The nanoantennas are made of two components: a truncated silicon cone with a thin golden disk located on top. The researchers demonstrated that, thanks to nanoscale laser reshaping, it is possible to precisely modify the shape of the golden particle without affecting the silicon cone. The change in the shape of the golden particle results in changing optical properties of the nanoantenna as a whole due to different degrees of resonance overlap between the silicon and golden nanoparticles.

“Our method opens a possibility to gradually switch the optical properties of nanoantennas by means of selective laser melting of the golden particles. Depending on the intensity of the laser beam the golden particle will either remain disc-shaped, convert into a cup or become a globe. Such precise manipulation allows us to obtain a functional hybrid nanostructure with desired properties in the flicker of a second,” comments Sergey Makarov, one of the authors of the paper and researcher at the Department of Nanophotonics and Metamaterials of ITMO University.

Contrary to conventional heat-induced fabrication of nanoantennas, the new method raises the possibility of adjusting individual nanoantennas within the array and exerting precise control over overall optical properties of the hybrid nanostructures.

“Our concept of asymmetric hybrid nanoantennas unifies two approaches that were previously thought to be mutually exclusive: plasmonics and all-dielectric nanophotonics. Our hybrid nanostructures inherited the advantages of both approaches – localization and enhancement of light at the nanoscale, low optical losses and the ability to control the scattering power pattern. In turn, the use of laser reshaping helps us precisely and quickly change the optical properties of such structures and perhaps even record information with extremely high density,” concludes Dmitry Zuev, lead author of the study and researcher at the Department of Nanophotonics and Metamaterials of ITMO University.

Cypress Semiconductor Corp. (Nasdaq:  CY) and Broadcom Limited (Nasdaq:  AVGO) today announced the signing of a definitive agreement under which Cypress will acquire Broadcom’s Wireless Internet of Things (IoT) business and related assets in an all-cash transaction valued at $550 million. Under the terms of the deal, Cypress will acquire Broadcom’s Wi-Fi, Bluetooth and Zigbee IoT product lines and intellectual property, along with its WICED brand and developer ecosystem. Broadcom’s IoT business unit, which employs approximately 430 people worldwide, generated $189 million in revenue during the last twelve months. The acquisition strengthens Cypress’s position in key embedded systems markets, such as automotive and industrial, and establishes it as a leader in the high-growth consumer IoT market, a segment that includes wearable electronics and home automation solutions.

The transaction, which has been approved by the board of directors of Cypress and Broadcom, is expected to close in the third calendar quarter of 2016, subject to customary conditions and regulatory approvals. Cypress expects the transaction to be accretive within a year of closing and to improve its gross margin, earnings and long-term revenue potential.

“Cypress is a significant player in the IoT today because of our ultra-low-power PSoC programmable system-on-chip technology, but we’ve only been able to pair it with generic radios so far. Now we have the highly regarded Broadcom IoT business—Wi-Fi, Bluetooth and Zigbee RF technologies—that will transform us into a force in IoT and provide us with new market opportunities as well,” Cypress President and CEO T.J. Rodgers said. “What we bring to the party is over 30,000 customers worldwide who need advanced, ultra-low-power wireless communication but only can absorb it in the form of an easy-to-use programmable embedded system solution.”

“We are thrilled to be joining forces with Cypress to address the fast growing IoT market,” Broadcom IoT General Manager Stephen DiFranco said. “With our IoT connectivity products, Cypress will be able to provide the connectivity; the MCU, system-on-chip, module and memory technologies; and the mature developer ecosystem that IoT designers require, creating an end-to-end portfolio of embedded solutions and a single IoT design platform.”

Under the terms of the deal, Broadcom will continue to focus on its wireless connectivity solutions for the access and mobility segments that are not IoT related, including serving set-top box, wireless access, smartphone, laptop and notebook customers. Cypress will capitalize on the rapidly growing Wi-Fi and Bluetooth connectivity (17% per year1) markets in consumer, industrial and automotive IoT segments.

“The robust, ready-to-scale WICED brand and developer network of module makers, value-added resellers (VARs), technology partners and ODMs who are already working with its technology will give us immediate revenue growth capability in new channels,” Rodgers said. “Cypress will continue to support and grow this network and to provide it with future generations of innovative, disruptive connected products. Cypress will also bring these new technologies to the automotive market, where we are already No. 3 worldwide in microcontrollers and memories, and where the connected car boom has just started.”

Greenhill & Co., LLC served as lead financial advisor, Bank of America Merrill Lynch served as financial advisor and is providing committed debt financing, subject to customary conditions, and Wilson Sonsini Goodrich & Rosati acted as legal counsel to Cypress for this transaction.

Cartamundi, imec and Holst Centre (set up by imec and TNO) are proud to announce to have just won the “Best Product” – Award at Printed Electronics Europe for their ultra-thin plastic RFID technology integrated into Cartamundi’s playing cards. The jury has hereby recognized the potential of this technology to become a gamechanger for the gaming industry, as well as for many other printed electronics applications in the Internet-of-Things domain.

With economic and form-factor advantages compared to traditional silicon-based technologies, Holst Centre’s and imec’s ultra-thin plastic RFID solution is essential to improve and broaden the applicability of electronics seamlessly integrated in paper. This enables Cartamundi to develop connected devices with additional value and content for consumers. At the conference, Cartamundi, imec and Holst Centre demonstrate an industry-first prototype of the ultra-thin flexible RFID chip integrated into a playing card. In each card, the RFID chip has a unique code that communicates wirelessly to an RFID reader, giving the cards in the game a unique digital identity.

Chris Van Doorslaer (CEO) is delighted with the award and sounds ambitious:

“Cartamundi’s ambition to embed wireless RFID tags in games and trading cards products is a ‘game changer’ indeed. The new technology will connect traditional game play with electronic devices like smartphones and tablets. As Cartamundi is committed to creating products that connect families and friends of every generation to enhance the valuable quality time they share during the day, this technology is a real enabler.”

“This is a thrilling development to demonstrate our TOLAE electronic technology integrated in the product of a partner company. TOLAE stands for Thin, Oxide and Large-Area Electronics”, stated Paul Heremans, department director of thin-film electronics at imec and technology director at the Holst Centre. “Our prototype thin-film RFID is thinner than paper—so thin that it can be invisibly embedded in paper products, such as playing cards. This key enabling technology will bring the cards and traditional games of our customer in direct connection with the Cloud. This achievement also opens up new applications in the IoT domain that we are exploring, to bring more data and possibilities to applications such as smart packaging, security paper, and maybe even banknotes.”

Steven Nietvelt Chief Technology & Innovation Officer: “This is Cartamundi at it’s very best: bringing new solutions to the ever creative game developing community. We are convinced the gaming community will be inspired by this technology. It can possibly enhance existing games but also allows for brand new concepts to arise.”

Imec and Cartamundi engineers will now explore up-scaling of the technology using a foundry production model.

This award would not have been possible without the support and advise of VLAIO. VLAIO played a substantial role by bringing all partners of the project together.

icards