Category Archives: Device Architecture

Global semiconductor industry revenue declined 3.4 percent in the first quarter of 2018 falling to $115.8 billion. Semiconductor industry performance was negatively affected by the declining sales and first-quarter seasonality in the wireless communications market. Other sectors, such as automotive and consumer semiconductors, experienced nominal market growth, according to IHS Markit (Nasdaq: INFO).

The memory category experienced the highest growth of 1.7 percent in the first quarter, reaching $39.7 billion, as demand for memory components increased in the enterprise and storage markets. In fact, DRAM pricing and shipments both increased during the quarter, as strong demand for server DRAM continued to propel the semiconductor market. However, NAND began to show signs of softening, with slight revenue declines during the quarter, mainly due to single-digit price declines. “Even with the slight revenue decline during the quarter, the NAND market still achieved its second-highest revenue quarter on record, with strong demand coming from the enterprise and client solid-state drive markets,” said Craig Stice, senior director, memory and storage, IHS Markit.

Semiconductor market share

Led by its dominant position in the memory market, Samsung Electronics led the semiconductor industry in the first quarter of 2018, with 16.1 percent of the market, followed by Intel at 13.6 percent and SK Hynix at 7.0 percent. Quarter-over-quarter market shares were relatively flat, with no change in the top-three ranking list. However, on a year-over-year basis, Samsung supplanted Intel as the leading semiconductor company, compared to the first quarter of 2017.

Analog component sales for Texas Instruments, Maxim Integrated, ON Semiconductor and other companies with a strategic focus on industrial and automotive industries managed single-digit sales increases in the first quarter. In contrast, analog component revenue declined by double digits for Qualcomm, Skyworks Solutions, Oorvo and other companies targeting the wireless industry.

Memory IC companies — Samsung Electronics, SK Hynix, Micron Technologies and Toshiba — continued to dominate the top ten semiconductor companies. Micron achieved the highest growth rate in the top ten, recording 9.8 percent growth in the first quarter, compared to the previous quarter. Qualcomm revenue fell 13.6 percent, which was the largest sequential drop, due to the weakness in the wireless communication market. Qualcomm and nVidia were the only two fabless companies remaining in the top ten.

Alta Devices has today announced that its most recent single junction solar cell has been certified by NREL (National Renewable Energy Laboratory) as being 28.9% efficient. This certification confirms that Alta has set a new record and continues to hold the world record efficiency for this type of solar cell. This breakthrough, combined with the unique thinness and flexibility of Alta’s cells, redefines how solar technology can be used to empower autonomy in many applications.

“Alta Devices goal is to continue to lead the industry in solar technology and to enable a broad range of autonomous systems. We believe this is the best way to support the innovations of our customers,” said Jian Ding, Alta Devices CEO.

Autonomous systems are predicted to become a part of daily life – often operating without human intervention. However, every time an autonomous system or vehicle has to stop to refuel or recharge, it requires intervention and is no longer truly autonomous. Alta focuses on developing the world’s best solar technology specifically for autonomous power, allowing vehicles to seamlessly recharge while in motion.

Alta Devices has held continuous world records for solar efficiency for most of the last decade. Alta Devices Founders, Professor Harry Atwater of Caltech and Professor Eli Yablonovitch of the University of California Berkeley explained the significance of this record:

Prof. Atwater said, “Achieving a new record for this class of devices is a landmark because a 1-sun, 1-junction cell is the archetypal solar cell. The fact that Alta is breaking its own record is also significant since many other teams have been actively attempting to break this record.”

Elaborating on the fundamental technical understanding that has driven this achievement, Professor Yablonovitch said, “Alta has the first solar cell based on Internal Luminescence Extraction, which has enabled Alta to remain ahead of others. This scientific principle will be in all future high efficiency solar cells.”

The company has recently launched its Gen4 AnyLight™ commercial technology, demonstrating a significant weight reduction from the previous version, resulting in an improved power to weight ratio of 160 percent. This is critical for tomorrow’s autonomous UAVs (unmanned aerial vehicles), electric vehicles, and sensors. It can be used to generate substantial power over small surfaces without compromising design criteria.

Edmund Optics®, a supplier of optical components, has ordered the  SPECTOR® Ion Beam Sputtering System from Veeco Instruments Inc. (Nasdaq: VECO). The new capability is in support of Edmund Optics’ expanding portfolio of high quality laser optics for infrared, visible, and ultraviolet systems. Edmund Optics’ growing presence in the laser optics landscape builds on the company’s long history as a supplier of high quality imaging and photonics components. The SPECTOR platform represents Edmund Optics’ most recent financial and technical commitment to advancing state-of-the-art optics fabrication, adding to the company’s existing expertise in aspheric design and manufacturing, advanced optical metrology, and production of optics designed for high laser fluence applications.

“The SPECTOR platform gives us two essential elements: the best tool available to support precision and custom optical coatings, and the best partner to support our technical needs,” said Joel Bagwell, director of engineering and manufacturing technology at Edmund Optics. “Veeco fit the bill perfectly on both counts. The SPECTOR’s ability to create extremely high quality, high performance films is especially important for our laser optics coatings, and will help expand our portfolio to encompass new and emerging applications. As a company that holds customer service as our highest priority, we were also impressed with Veeco’s demonstrated track record of successfully supporting customers with global reach— the kind of service we provide to our customers and we seek from our suppliers.”

The SPECTOR ion beam sputtering platform offers exceptional layer thickness control, enhanced process stability, and the lowest published optical losses in the industry. The platform is engineered to enhance key production parameters, such as target material utilization, optical endpoint control, and process time for cutting-edge optical coating applications. The SPECTOR platform, which is the preferred ion beam sputtering system in the industry, has been installed in more than 200 advanced manufacturing settings across the world. The system is consistently chosen by manufacturers for the qualitative advantages of ion beam sputtering technology—low scatter loss, high film purity, stable deposition rates, and film thickness control of less than 0.1nm.

“Edmund Optics is a premier provider of optical components, known for providing the highest quality products for the life sciences, biomedical, semiconductor, defense, and research and development markets,” said Adrian Devasahayam, Ph.D., vice president and general manager of advanced deposition and etch products at Veeco. “Their selection of Veeco’s SPECTOR ion beam sputtering system further demonstrates the platform’s flexibility to support a wide range of applications with unmatched control and precision.”

Optical coatings are valuable in a wide variety of commercial categories including telecom, defense, architecture, medical, solar, transportation, and industrial, as well as consumer categories including flat-screen TVs, computers, tablets, cell phones, and eyeglass coatings. According to BCC Research, the global market for optical coatings is expected to reach $14.2 billion in 2021, up from $9.5 billion in 2016. The commercial segment in particular is expected to grow from $5.4 billion in 2016 to $9.4 billion in 2021—demonstrating a five-year compound annual growth rate (CAGR) of 11.5 percent. Key drivers of this growth are emerging applications in commercial and consumer categories, as well as innovative coatings to improve existing applications.

As silicon-based semiconductors reach their performance limits, gallium nitride (GaN) is becoming the next go-to material to advance light-emitting diode (LED) technologies, high-frequency transistors and photovoltaic devices. Holding GaN back, however, is its high numbers of defects.

This material degradation is due to dislocations — when atoms become displaced in the crystal lattice structure. When multiple dislocations simultaneously move from shear force, bonds along the lattice planes stretch and eventually break. As the atoms rearrange themselves to reform their bonds, some planes stay intact while others become permanently deformed, with only half planes in place. If the shear force is great enough, the dislocation will end up along the edge of the material.

As silicon-based semiconductors reach performance limits, gallium nitride is becoming the next go-to material for several technologies. Holding GaN back, however, is its high numbers of defects. Better understanding how GaN defects form at the atomic level could improve the performance of the devices made using this material. Researchers have taken a significant step by examining and determining six core configurations of the GaN lattice. They present their findings in the Journal of Applied Physics. This image shoes the distribution of stresses per atom (a) and (b) of a-edge dislocations along the <1-100> direction in wurtzite GaN. Credit: Physics Department, Aristotle University of Thessaloniki

Layering GaN on substrates of different materials makes the problem that much worse because the lattice structures typically don’t align. This is why expanding our understanding of how GaN defects form at the atomic level could improve the performance of the devices made using this material.

A team of researchers has taken a significant step toward this goal by examining and determining six core configurations of the GaN lattice. They presented their findings in the Journal of Applied Physics, from AIP Publishing.

“The goal is to identify, process and characterize these dislocations to fully understand the impact of defects in GaN so we can find specific ways to optimize this material,” said Joseph Kioseoglou, a researcher at the Aristotle University of Thessaloniki and an author of the paper.

There are also problems that are intrinsic to the properties of GaN that result in unwanted effects like color shifts in the emission of GaN-based LEDs. According to Kioseoglou, this could potentially could be addressed by exploiting different growth orientations.

The researchers used computational analysis via molecular dynamics and density functional theory simulations to determine the structural and electronic properties of a-type basal edge dislocations along the <1-100> direction in GaN. Dislocations along this direction are common in semipolar growth orientations.

The study was based on three models with different core configurations. The first consisted of three nitrogen (N) atoms and one gallium (Ga) atom for the Ga polarity; the second had four N atoms and two Ga atoms; the third contained two N atoms and two Ga core-associated atoms. Molecular dynamic calculations were performed using approximately 15,000 atoms for each configuration.

The researchers found that the N polarity configurations exhibited significantly more states in the bandgap compared to the Ga polarity ones, with the N polar configurations presenting smaller bandgap values.

“There is a connection between the smaller bandgap values and the great number of states inside them,” said Kioseoglou. “These findings potentially demonstrate the role of nitrogen as a major contributor to dislocation-related effects in GaN-based devices.”

GLOBALFOUNDRIES today announced that Socionext Inc. will manufacture the third and latest generation of its graphics display controllers, the SC1701, on GF’s 55nm Low Power Extended (55LPx) process technology with embedded non-volatile memory (SuperFlash®). The 55LPx platform enables several new features in Socionext’s SC1701 series including enhanced diagnostic and security protection capabilities, cyclic redundancy code (CRC) checks, picture freeze detection, and multi window signature unit for advanced in-vehicle display systems. The shipping of the SC1701 from Socionext will start at the end of July.

In recent years, the number of in-vehicle electronic systems has risen exponentially with increasing requirements for multiple content-rich displays. Socionext’s SC1701 controller integrates a variety of system component features along with APIX®3 technology and automotive safety functions to meet the increasing demand for high speed video and data connectivity and stringent safety requirements. The device supports display resolution up to one U-HD (4K) or two F-HD (2K) at 30bpp, and capable of receiving two separate video streams over a single link by utilizing the VESA® display stream compression (DSC) method. Moreover, the SC1701 offers video content protection through built-in HDCP decryption technology that enables a richer user experience.

“The SC1701 display controller is designed to support high performance computing within a vehicle, with one of the most innovative evolutions in automotive system architectures,” said Koichi Yamashita, senior vice president and head of IoT and Graphics Solution Business Unit at Socionext. “GF’s automotive grade 1 qualified 55LPx platform, with its low power logic and highly reliable embedded non-volatile memory, was ideal for our product.”

GF’s 55LPx platform, with SST’s SuperFlash® memory technology, provides a fast path-to-product solution, and is fully qualified for consumer, industrial and automotive grade 1 applications. The implementation of SuperFlash® on 55LPx provides a small bitcell size, increased fast read speed along with superior data retention and endurance.

“GF is excited to be working with Socionext, who is a leader in state-of-the-art SoC technology,” said Dave Eggleston, vice president of embedded memory at GF. “Socionext joins our rapidly growing client base for GF’s 55LPx platform, which offers a combination of superior low power logic, embedded non-volatile memory, extensive IP, and superior reliability for the industrial and automotive grade 1 system-on-chip markets.”

The 55LPx-enabled platform is in volume production at GF’s 300mm line in Singapore. In addition to the SC1701, Socionext is currently developing several products on the technology, joining On Semiconductor, Silicon Mobility and Fudan Microelectronics, who are currently optimizing their chip designs with GF’s 55LPx platform for wearable IoT and automotive products.

Process design kits and an extensive offering of silicon proven IP are available now. For more information on GF’s mainstream CMOS solutions, contact your GF sales representative or go to globalfoundries.com.

Each year at SEMICON West, the “Best of West” awards are presented by Solid State Technology and SEMI. More than 26,000 professionals from the electronics manufacturing supply chain attend SEMICON West and the co-located Intersolar. The “Best of West” award was established to recognize new products moving the industry forward with technological developments in the electronics supply chain.

Selected from over 600 exhibitors, SEMI announced today that the following Best of West 2018 Finalists will be displaying their products on the show floor at Moscone Center from July 10-12:

  • Advantest: T5503HS2 Memory Tester— The T5503HS2 memory tester is the industry’s most productive test solution for the fastest memory devices available today as well as next-generation, super-high-speed DRAMs.  The new system’s flexibility extends the capabilities of the T5503 product family in the current “super cycle,” in which global demand for memories is skyrocketing. (South Hall Booth #1105)
  • BISTel: Dynamic Fault Detection (DFD®) – The DFD system offers full trace data coverage and eliminating the need for timely and costly modeling and set up. DFD® is also a bridge to smart factory manufacturing because it integrates seamlessly to legacy FDC systems meaning customers can access the most comprehensive, and accurate fault detection system on the market. (South Hall Booth 1811)
  • Rudolph Technologies: Dragonfly System with Truebump Technology– Rudolph’s Dragonfly System with Truebump Technology was designed to provide a complete solution for “total bump process control.” Using a unique approach, Truebump Technology combines 2D inspection and measurement information from image-based techniques with 3D data from separate high-precision and high-throughput laser-based techniques to deliver accurate and complete characterization at production-capable throughputs. (North Hall Booth #6170)

Congratulations to each of the Finalists. The Best of West Award winner will be announced during SEMICON West (www.semiconwest.org) on Wednesday, July 11, 2018.

About SEMI

SEMI® connects over 2,000 member companies and 1.3 million professionals worldwide to advance the technology and business of electronics manufacturing. SEMI members are responsible for the innovations in materials, design, equipment, software, devices, and services that enable smarter, faster, more powerful, and more affordable electronic products. FlexTech, the Fab Owners Alliance (FOA) and the MEMS & Sensors Industry Group (MSIG) are SEMI Strategic Association Partners, defined communities within SEMI focused on specific technologies. Since 1970, SEMI has built connections that have helped its members prosper, create new markets, and address common industry challenges together. SEMI maintains offices in Bangalore, Berlin, Brussels, Grenoble, Hsinchu, Seoul, Shanghai, Silicon Valley (Milpitas, Calif.), Singapore, Tokyo, and Washington, D.C.  For more information, visit www.semi.org and follow SEMI on LinkedIn and Twitter.

About Extension Media

Extension Media is a publisher of over 20 business-to-business magazines (including Solid State Technology), resource catalogs, newsletters and web sites that address high-technology industry platforms and emerging technologies such as chip design, embedded systems, software and infrastructure, intellectual property, architectures, operating systems and industry standards. Extension Media publications serve several markets including Electronics, Software/IT and Mobile/Wireless. Extension Media is a privately held company based in San Francisco, Calif. For more information, visit www.extensionmedia.com

IC Insights will release its 200+ page Mid-Year Update to the 2018 McClean Report next month.  The Mid-Year Update will revise IC Insights’ worldwide economic and IC industry forecasts through 2022 that were originally presented in the 2018 McClean Report issued in January of this year.

Figure 1 shows that IC Insights forecasts that China-headquartered companies will spend $11.0 billion in semiconductor industry capex in 2018, which would represent 10.6% of the expected worldwide outlays of $103.5 billion.  Not only would this amount be 5x what the Chinese companies spent only three years earlier in 2015, but it would also exceed the combined semiconductor industry capital spending of Japan- and Europe-headquartered companies this year.

Since adopting the fab-lite business model, the three major European producers have represented a very small share of total semiconductor industry capital expenditures and are forecast to account for only 4% of global spending in 2018 after representing 8% of worldwide capex in 2005.  Although there may be an occasional spike in capital spending from European companies (e.g., the surge in spending from ST and AMS in 2017), IC Insights believes that Europe-headquartered companies will represent only 3% of worldwide semiconductor capital expenditures in 2022.

It should be noted that several Japanese semiconductor companies have also transitioned to a fab-lite business model (e.g., Renesas, Sony, etc.).  With strong competition reducing the number and strength of Japanese semiconductor manufacturers, the loss of its vertically integrated businesses and thus missing out on supplying devices for several high-volume end-use applications, and its collective shift toward fab-lite business models, Japanese companies have greatly reduced their investment in new wafer fabs and equipment.  In fact, Japanese companies are forecast to represent only 6% of total semiconductor industry capital expenditures in 2018, a big decline from the 22% share they held in 2005 and an even more precipitous drop from the 51% share they held in 1990.

Figure 1

Although China-headquartered pure-play foundry SMIC has been part of the list of major semiconductor industry capital spenders for quite some time, there are four additional Chinese companies that are forecast to become significant semiconductor industry spenders this year and next—memory suppliers XMC/YMTC, Innotron, JHICC, and pure-play foundry Shanghai Huali.  Each of these companies is expected to spend a considerable amount of money equipping and ramping up their new fabs in 2018 and 2019.

Due to the increased spending by startup China-based memory manufacturers, IC Insights believes that the Asia-Pac/Others share of semiconductor industry capital spending will remain over 60% for at least the next couple of years.

Optimum Semiconductor Technologies, Inc., a fabless semiconductor company providing highly-integrated Systems on Chips (SoCs) for China’s thriving electronics markets, announced the GP8300 SoC. The GP8300 dramatically reduces chip cost, area, and power consumption for image recognition and object detection in a broad range of products such as self-driving cars, autonomous vehicles, smart cameras and other IoT edge devices.

Created in 28nm technology, the GP8300 includes four 2GHz ‘Unity’ CPU cores from General Processor Technologies (GPT) interconnected with a cache coherent memory supporting Heterogeneous Systems Architecture (HSA) processing for a common programming framework. The GP8300 also integrates four of GPT’s new 2GHz Variable Length Vector DSP (VLVm1) cores for signal processing applications. Within the chip, the out-of-order CPUs execute control code while very long vectors process data. In addition to these generalized compute units, the chip also integrates two 1GHz AI accelerators from GPT.

“The GP8300 brings together several of GPT’s innovative IP cores with underlying embedded artificial intelligence (eAI) algorithms in a highly-integrated design targeting a wide range of exciting applications,” said Gary Nacer, President and COO of Optimum. “The new SoC is one of the first CNN accelerators in China, and it provides the right combination of high performance, low power consumption, and the cost efficiency that our customers need as they create innovative new products.”

Building on the success of OST’s innovative SB3500 multithreaded heterogeneous computing platform for low-power software defined radio (SDR), the GP8300 represents a new architecture that achieves deep integration of eAI, edge computing, and communications on a single chip. OST provides support for CaffeNet-based training and tools for automatic fixed-point conversion and compression for inference.

TowerJazz, the global specialty foundry, today announced details on its 13th annual Technical Global Symposium (TGS) being held in China, Japan, and the United States. This year, TowerJazz TGS will focus on the Company’s leading analog technology offerings, advanced manufacturing solutions and commitment to customer partnerships. All TGS events will commence with a keynote from TowerJazz CEO, Mr. Russell Ellwanger focusing on the Company’s performance, business strategy and industry leadership through alignment with customer roadmaps, innovative and superior technology, and worldwide manufacturing capabilities.

During TGS, speakers will discuss market directions and the latest TowerJazz plans, developments and activities for strategic growth in its specialty process technologies such as Radio Frequency (RF) & High Performance Analog (HPA), power management, and CMOS image sensors (CIS), as well as its process transfer offering (TOPS) for the rising markets of automotive, sensors, the IoT, and 5G, among others. In addition, TowerJazz will present the latest design enablement tools and solutions jointly developed with its EDA partners as well as the Company’s expanded manufacturing capacity and multi-sourcing capabilities.

The global TGS events facilitate customer and partner interaction with TowerJazz team members and industry executives to exchange information on the latest unique and advanced solutions for next-generation analog ICs. TowerJazz focuses on strong roadmap alignment and long-term partnerships with its customers to meet their current and future needs with the most innovative process platforms, addressing the requirements of the fastest growing markets.

As the leading analog pure play foundry, TowerJazz continues to be committed and passionate toward creating value for its customers. The Company offers the most advanced analog technology and best-in-class design enablement while providing global capacity assurance and flexibility to enable customers with competitive advantage and fast time to market.

This year, TowerJazz TGS events will be hosted in the following locations:

Sponsors at TowerJazz TGS events include the industry’s leading EDA vendors and tool providers who will share the latest design capabilities offered in collaboration with TowerJazz: Cadence, HES, Integra Tech, Keysight Technologies, Magwel, Mentor, PacTech, Photronics, Presto, Silvaco, Synkom and Synopsis.

For more information about TowerJazz TGS and registration please visit:
http://www.towerjazz.com/events.html#tgs

Micron Technology, Inc. (Nasdaq:MU) today announced volume production on its 8Gb GDDR6 memory. Built on experience and execution for several generations of GDDR memory, GDDR6 – Micron’s fastest and most powerful graphics memory designed in Micron’s Munich Development Center – is optimized for a variety of applications that require high performance memory, including artificial intelligence (AI), networking, automotive and graphics processing units (GPUs). Additionally, Micron has worked with core ecosystem partners to ramp GDDR6 documentation and interoperability, enabling faster time to market for designs.

“Micron is a pioneer in developing advanced high bandwidth memory solutions and continues that leadership with GDDR6. Micron demonstrated this leadership by recently achieving throughput up to 20 Gb/s on our GDDR6 solutions,” said Andreas Schlapka, director, Compute Networking Business Unit, Micron. “In addition to performance increases, Micron has developed a deep partner ecosystem to enable rapid creation of GDDR6 designs, enabling faster time to market for customers looking to leverage this powerful new memory technology.”

The need for high performance GDDR6 memory has grown as end-users demand advanced applications. GDDR6 enables advanced performance with lower power consumption in a number of segments including:

  • Artificial Intelligence – Artificial intelligence, machine learning, deep learning are memory intensive applications that require more bandwidth from memory solutions. GDDR6 delivers the higher bandwidth required to accelerate AI in applications like computer vision, autonomous driving and the many other applications that require this higher bandwidth.
  • Graphics – Enabling significant performance improvements for today’s top GPUs, GDDR6 delivers enhanced graphic memory speeds to enable higher application bandwidth. Micron GDDR6 will be a core enabling technology of advanced GPU applications, including acceleration, 4K video and improved rendering, VR/AR and crypto mining applications.
  • Networking – Advanced networking technologies require access to high speed/high bandwidth memory. GDDR6-powered smart Network Interface Cards (NIC) enable significant improvements in network bandwidth. Additionally, high bandwidth RAID controllers featuring GDDR6 memory deliver dramatic enhancements to data access and protection.
  • Automotive – As auto manufacturers push for autonomous vehicles, high performance memory is required to process the vast amounts of real-time data required to make this technology a reality. Micron GDDR6 delivers 448 GB/s auto qualified memory solutions, that deliver more than double the bandwidth of LPDDR5 automotive memory solutions.

“As demand for advanced automotive applications such as ADAS and other autonomous driving solutions grows, the need for high bandwidth memory in automotive will grow as well. Advanced high bandwidth GDDR6 memory solutions are a key enabling technology for autonomous vehicles and will be an important tool for the automotive industry as they develop next generation transportation initiatives,” said Kris Baxter, vice president, Marketing, Micron’s Embedded Business Unit.

Targeting up to 64GB/s in one package, GDDR6 brings a significant improvement over the fastest available GDDR5. This unprecedented level of single-chip performance, using proven, industry-standard BGA packaging provides designers a powerful, cost-efficient and low-risk solution using the most scalable, high-speed discrete memory available to the market.

In order to deliver this leading edge high bandwidth memory technology to customers, Micron is working directly with ecosystem partners in order to enable learning on both pre-silicon verification as well as validation. Prior to mass production of GDDR6 memory, Micron shipped early validation silicon to our ecosystem partners to accelerate engineering efforts behind validating intellectual property and build robust models and toolsets in the ecosystem and deliver board layout validation. This ensures that engineers are able to implement GDDR6 in designs at a faster rate and bring bandwidth intensive applications to the marketplace. These ecosystem partners include Rambus and more.

“With nearly 30 years’ experience in implementing designs for high-speed interfaces, Rambus is the first IP provider to launch a comprehensive GDDR6 PHY solution for next-generation AI, ADAS, networking and graphics applications and continues to be at the leading edge of implementing industry standards. We are proud to work with Micron and other ecosystem partners to help customers accelerate time to market for GDDR6 designs and deliver the most advanced solutions based on GDDR6 memory,” said Frank Ferro, senior director of product marketing, Rambus.

Micron GDDR6 memory solutions will be on display in booth B-1340 at ISC 2018, June 24-28, in Frankfurt, Germany. For more information, visit www.micron.com.