Category Archives: Device Architecture

Imec today announced at the International Microwave Symposium (IMS, Philadelphia, USA), the world’s first CMOS 140GHz radar-on-chip system with integrated antennas in standard 28nm technology. The achievement is an important step in the development of radar-based sensors for a myriad of smart intuitive applications, such as building security, remote health monitoring of car drivers, breathing and heart rate of patients, and gesture recognition for man-machine interaction.

Radars are extremely promising as sensors for contactless, non-intrusive interaction in internet-of-things applications such as people detection & classification, vital signs monitoring and gesture interfacing. A wide adoption will only be possible if radars achieve a higher resolution, become much smaller, more power-efficient to run, and cheaper to produce and to buy. This is what imec’s research on 140GHz radar technology targets.

This low-power 140GHz radar solution comprises an imec proprietary two antenna SISO (Single Input Single Output) radar transceiver chip and a frequency modulated continuous wave phase-locked loop (FMCW PLL), off-the shelf ADCs and FPGA and a Matlab chain. The transceiver features on-chip antennas achieving a gain close to 3dBi. The excellent radar link budgets are supported thanks to the transmitter Effective Isotropic Radiated Power (EIRP)  that exceeds 9dBm and a receiver noise figure below 6.4dB. The total power consumption for transmitter and receiver remains below 500mW, which can be further reduced by duty cycling. The FMCW PLL  enables  fast slopes up to 500MHz/ms over a 10GHz bandwidth around 140GHz with a slope linearity error below 0.5% and has a power consumption below 50mW. The FPGA contains real-time implementation of basic radar processing functions such as FFTs (Fast Fourier Transforms) and filters, and is complemented by a Matlab chain for detections, CFAR (Constant False Alarm Rate), direction-of-arrival estimation and other advanced radar processing.

“With our prototype radar, we have demonstrated all critical specs for radar technology in 28nm standard CMOS technology,” said Wim Van Thillo, IoT program director at imec. “We are well advanced in incorporating multiple antenna paths in our most recent generation solution, which will enable a fine angular resolution of 1.5cm in a complete MIMO radar form factor of only a few square centimeters. We expect this prototype in the lab by the end of 2018, at which point our partners can start building their application demonstrators. First applications are expected to be person detection and classification for smart buildings, remote car driver vital signs monitoring (as cars evolve towards self-driving vehicles), and gesture recognition for intuitive man-machine interactions. Plenty more innovations will be enabled by this technology, once app developers start working with it.”

This imec 140GHz radar open innovation R&D collaborative program has been endorsed by Panasonic, and imec invites potential interested parties to join.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced worldwide sales of semiconductors reached $37.6 billion for the month of April 2018, an increase of 20.2 percent from the April 2017 total of $31.3 billion and 1.4 percent more than last month’s total of $37.1 billion. Monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, a newly released WSTS industry forecast projects annual global market growth of 12.4 percent in 2018 and 4.4 percent in 2019.

“The global semiconductor industry has posted consistently strong sales so far in 2018, and the global market has now experienced year-to-year growth of greater than 20 percent for 13 consecutive months,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Although boosted in part by impressive growth in the memory market, sales of non-memory products also grew by double digits in April on a year-to-year basis, and all major regional markets posted double-digit year-to-year gains. The global market is projected to experience significant annual growth this year, with more modest growth expected next year.”

Regionally, year-to-year sales increased in the Americas (34.1 percent), China (22.1 percent), Europe(21.4 percent), Japan (14.6 percent), and Asia Pacific/All Other (10.2 percent). Compared with last month, sales were up in China (3.2 percent), Japan (2.7 percent), Europe (1.4 percent), and the Americas (0.8 percent), but down slightly in Asia Pacific/All Other (-0.8 percent).

Additionally, SIA today endorsed the WSTS Spring 2018 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $463.4 billion in 2018. This would mark the industry’s highest-ever annual sales, a 12.4 percent increase from the 2017 sales total. WSTS projects year-to-year increases across all regional markets for 2018: the Americas (14.0 percent), Europe (13.4 percent), Asia Pacific (including China) (12.3 percent), and Japan (8.6 percent). In 2019, growth in the semiconductor market is expected to moderate, with sales increases of between 4-5 percent expected across each of the regions. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

For comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, consider purchasing the WSTS Subscription Package. For information about the global semiconductor industry and market, check out SIA’s free 2018 Factbook.

Apr 2018

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

8.10

8.16

0.8%

Europe

3.58

3.63

1.4%

Japan

3.21

3.30

2.7%

China

11.98

12.36

3.2%

Asia Pacific/All Other

10.23

10.15

-0.8%

Total

37.09

37.59

1.4%

Year-to-Year Sales

Market

Last Year

Current Month

% Change

Americas

6.08

8.16

34.1%

Europe

2.99

3.63

21.4%

Japan

2.88

3.30

14.6%

China

10.12

12.36

22.1%

Asia Pacific/All Other

9.21

10.15

10.2%

Total

31.28

37.59

20.2%

Three-Month-Moving Average Sales

Market

Nov/Dec/Jan

Feb/Mar/Apr

% Change

Americas

8.63

8.16

-5.5%

Europe

3.40

3.63

6.6%

Japan

3.21

3.30

2.8%

China

12.01

12.36

2.9%

Asia Pacific/All Other

10.35

10.15

-1.9%

Total

37.60

37.59

0.0%

Worldwide industrial semiconductor revenues grew by 11.8 percent year over year, reaching $49.1 billion in 2017, according to the latest analysis from IHS Markit (Nasdaq: INFO). Industrial electronics equipment demand was broad-based, with continued growth in commercial and military aircraft, LED lighting, digital signage, digital video surveillance, climate control, smart meters, traction, photovoltaic (PV) inverters, human machine interface and various medical electronics like cardiac equipment, hearing aids, endoscopy and imaging systems. The industry is expected to grow at a compound annual growth rate (CAGR) of 7.1 percent through 2022.

Optical semiconductors delivered excellent performance, due to the continued strength of the general LED lighting market. Power discretes demand has ramped up in industrial motor drives, EV chargers, PV inverters, traction and lighting equipment. General purpose analog has a strong five-year growth in various industrial markets, especially in factory automation, power and energy, and lighting. Microcontrollers (MCUs) are also projected to experience broad-based growth in the long term, thanks to advances in power efficiency and integration features.

“The resilient economy in the United States, and strong demand in China, carried the lion’s share of industrial equipment demand in 2017,” said Robbie Galoso, associate director and principal analyst, industrial semiconductors, for IHS Markit. “A European resurgence also provided a strong tailwind for semiconductor growth.”

Global industrial semiconductor market share rankings

Strategic acquisitions continued to play a major role in shaping the overall semiconductor market rankings in key industrial semiconductor segments. All the following top 10 industrial semiconductor suppliers achieved revenue growth in 2017:

  1. Texas Instruments (TI) maintained its position as the largest industrial semiconductor supplier in 2017.
  2. The acquisition of Linear Technology catapulted Analog Devices into second position.  The combined Analog Devices and Linear Technology company generated $2.8 billion in industrial revenue in 2017. This acquisition boosted ADI’s industrial market shares in diversified segments within factory automation, military aerospace, video surveillance, test and measurement, medical, and power and energy applications.
  3. Intel ranked third, as the company’s Internet of Things (IoT) division continued to generate double-digit revenue growth attributed to innovation and strength in its factory automation, video surveillance and medical segments. Growth was also aided by the proliferation of smart and connected devices and a tremendous uplift in data analytics.
  4. Ranking fourth, Infineon’s strong revenue growth continued to be led by industrial applications, especially in factory automation, traction and various power and energy segments like PV, electric vehicle chargers and power supplies, where its leading discrete and power management devices are used.
  5. In fifth position, STMicroelectronics solid industrial revenue stream stems from a variety of applications, including factory and building automation, where its MCU, analog and discrete components are used.
  6. Micron’s organic revenue from industrial businesses continued to flourish in 2017, pushing the company into sixth place, driven by dynamic random-access memory (DRAM) growth in industrial IoT (IIoT) markets, spanning factory automation, video surveillance and transportation.
  7. Toshiba ranked seventh, with industrial electronics revenue growing to $1.5 billion in 2017. Growth was driven by power transistor discretes, MCU, optical and logic integrated circuit (IC) solutions in manufacturing and process automation, power and energy, and building and home control.
  8. Microchip Technology ranked eighth, and its revenue growth was primarily supported by MCU solutions in manufacturing and process automation, power and energy, and building and home control.
  9. ON Semiconductor was ranked ninth in 2017, driven by manufacturing and process automation, including machine vision, power and energy, building automation and hearing aids and other medical devices.
  10. NXP ranked tenth in the industrial market, with its strong presence in manufacturing and process automation, building and home control, medical electronics and other industrial applications.

Although not part of the top 10 ranking, China’s massive investments in LED manufacturing were especially noteworthy. Chinese firm MLS rose from 18th to 13th place, after posting 50 percent revenue growth and reaching $1 billion in 2017. MLS beat out other leading general lighting LEDs suppliers Nichia, Osram and Cree.

Ever shrinking transistors are the key to faster and more efficient computer processing. Since the 1970s, advancements in electronics have largely been driven by the steady pace with which these tiny components have grown simultaneously smaller and more powerful–right down to their current dimensions on the nanometer scale. But recent years have seen this progress plateau, as researchers grapple with whether transistors may have finally hit their size limit. High among the list of hurdles standing in the way of further miniaturization: problems caused by “leakage current.”

Leakage current results when the gap between two metal electrodes narrows to the point that electrons are no longer contained by their barriers, a phenomenon known as quantum mechanical tunnelling. As the gap continues to decrease, this tunnelling conduction increases at an exponentially higher rate, rendering further miniaturization extremely challenging. Scientific consensus has long held that vacuum barriers represent the most effective means to curtail tunnelling, making them the best overall option for insulating transistors. However, even vacuum barriers can allow for some leakage due to quantum tunnelling.

In a highly interdisciplinary collaboration, researchers across Columbia Engineering, Columbia University Department of Chemistry, Shanghai Normal University, and the University of Copenhagen have upended conventional wisdom, synthesizing the first molecule capable of insulating at the nanometer scale more effectively than a vacuum barrier. Their findings are published online today in Nature.

“We’ve reached the point where it’s critical for researchers to develop creative solutions for redesigning insulators. Our molecular strategy represents a new design principle for classic devices, with the potential to support continued miniaturization in the near term,” said Columbia Engineering physicist and co-author Latha Venkataraman, who heads the lab where researcher Haixing Li conducted the project’s experimental work. Molecular synthesis was carried out in the Colin Nuckolls Lab at Columbia’s Department of Chemistry, in partnership with Shengxiong Xiao at Shanghai Normal University.

The team’s insight was to exploit the wave nature of electrons. By designing an extremely rigid silicon-based molecule under 1 nm in length that exhibited comprehensive destructive interference signatures, they devised a novel technique for blocking tunnelling conduction at the nanoscale.

“This quantum interference-based approach sets a new standard for short insulating molecules,” said lead author Marc Garner, a chemist in the University of Copenhagen’s Solomon Lab, which handled the theoretical work. “Theoretically, interference can lead to complete cancellation of tunneling probability, and we’ve shown that the insulating component in our molecule is less conducting than a vacuum gap of same dimensions. At the same time, our work also improves on recent research into carbon-based systems, which were thought to be the best molecular insulators until now.”

Destructive quantum interference occurs when the peaks and valleys of two waves are placed exactly out of phase, annulling oscillation. Electronic waves can be thought of as analogous to sound waves–flowing through barriers just as sound waves “leak” through walls. The unique properties exhibited by the team’s synthetic molecule mitigated tunneling without requiring, in this analogy, a thicker wall.

Their silicon-based strategy also presents a potentially more factory-ready solution. While recent research into carbon nanotubes holds promise for industrial applications over the next decade or so, this insulator–compatible with current industry standards–could be more readily implemented.

“Congratulations to the team on this breakthrough,” said Mark Ratner, a pioneer in the field of molecular electronics and professor emeritus at Northwestern University who was not involved in the study. “Using interference to create an insulator has been ignored up to this date. This paper demonstrates the ability of interference, in a silicon-based sigma system, which is quite impressive.”

This breakthrough grew out of the team’s larger project on silicon-based molecule electronics, begun in 2010. The group arrived at their latest discovery by bucking the trend. Most research in this field aims to create highly conducting molecules, as low conductance is rarely considered a desirable property in electronics. Yet insulating components may actually prove to be of greater value to future optimization of transistors, due to the inherent energy inefficiencies caused by leakage currents in smaller devices.

As a result, their work has yielded new understanding of the fundamental underlying mechanisms of conduction and insulation in molecular scale devices. The researchers will build on this insight by next clarifying the details of structure-function relationships in silicon-based molecular components.

“This work has been extremely gratifying for us, because in the course of it we have repeatedly discovered new phenomena,” said Venkataraman. “We have previously shown that silicon molecular wires can function as switches, and now we’ve demonstrated that by altering their structure, we can create insulators. There is a lot to be learned in this area that will help shape the future of nanoscale electronics.”

ROHM, a supplier of power semiconductors, and GaN Systems, a developer of GaN power semiconductors, today announced their collaboration in the GaN (gallium nitride) Power Semiconductor business, with the goal of contributing to the continuing evolution of power electronics.

This strategic partnership leverages GaN Systems’ industry leading capabilities in power GaN transistors along with ROHM’s comprehensive footprint in semiconductor and considerable resources in the design and manufacture of electronic components. The companies have agreed to jointly develop form-, fit-, and function-compatible products using GaN semiconductor dies in both GaN Systems’ GaNPX® packaging and ROHM’s traditional power semiconductor packaging. GaN Systems and ROHM customers will now have the advantage of having two possible sources for package-compatible GaN power switches, presenting the widest selection of dual-sourced GaN devices.

Customers will also benefit from greater access to GaN products and resources globally, especially in Asia, one of the fastest growing market for GaN. In addition, GaN Systems and ROHM will work together on GaN semiconductor research and development activities to propose ground-breaking solutions for the industrial, automotive, and consumer electronics fields. And to contribute to greater energy savings and increased power densities in the power electronics market, both companies will continue to collaborate to expand their line-up of GaN products and broaden the range of choices.

“GaN has rapidly made its ascent into power electronics applications and this partnership exemplifies how important GaN has become in a complete power electronics offering,” said Jim Witham, CEO of GaN Systems. “We’re proud to partner with ROHM, a company well-known for developing industry-leading technologies. By combining our joint expertise and capabilities, we’re enabling more businesses to access and experience the benefits of GaN in achieving higher power, more efficient, smaller, and lighter power electronics.”

“ROHM has targeted the power device business as one of our growth strategies. We offer leading-edge products such as SiC (Silicon Carbide) power devices and provide power solutions that integrate control technologies, including gate drivers that maximize device performance. We are also developing GaN for next-generation power devices. By leveraging the superior technologies and expertise of both companies, we are able to accelerate the development of high-performance solutions to solve the needs of the power market,” said Katsumi Azuma, Senior Managing Director of ROHM Semiconductor.

Applied Materials, Inc. today announced a breakthrough in materials engineering that accelerates chip performance in the big data and AI era.

In the past, classic Moore’s Law scaling of a small number of easy-to-integrate materials simultaneously improved chip performance, power and area/cost (PPAC). Today, materials such as tungsten and copper are no longer scalable beyond the 10nm foundry node because their electrical performance has reached physical limits for transistor contacts and local interconnects. This has created a major bottleneck in achieving the full performance potential of FinFET transistors. Cobalt removes this bottleneck but also requires a change in process system strategy. As the industry scales structures to extreme dimensions, the materials behave differently and must be systematically engineered at the atomic scale, often under vacuum.

To enable the use of cobalt as a new conducting material in the transistor contact and interconnect, Applied has combined several materials engineering steps – pre-clean, PVD, ALD and CVD – on the Endura® platform. Moreover, Applied has defined an integrated cobalt suite that includes anneal on the Producer® platform, planarization on the Reflexion® LK Prime CMP platform and e-beam inspection on the PROVision platform. Customers can use this proven, Integrated Materials Solution to speed time-to-market and increase chip performance at the 7nm foundry node and beyond.

“Five years ago, Applied anticipated an inflection in the transistor contact and interconnect, and we began developing an alternative materials solution that could take us beyond the 10nm node,” said Dr. Prabu Raja, senior vice president of Applied’s Semiconductor Products Group. “Applied brought together its experts in chemistry, physics, engineering and data science to explore the broad portfolio of Applied’s technologies and create a breakthrough Integrated Materials Solution for the industry. As we enter the big data and AI era, there will be more of these inflections, and we are excited to be having earlier and deeper collaborations with our customers to accelerate their roadmaps and enable devices we never dreamed possible.”

While challenging to integrate, cobalt brings significant benefits to chips and chip making: lower resistance and variability at small dimensions; improved gapfill at very fine dimensions; and improved reliability. Applied’s integrated cobalt suite is now shipping to foundry/logic customers worldwide.

Applied Materials, Inc. (Nasdaq:AMAT) is a leader in materials engineering solutions used to produce virtually every new chip and advanced display in the world.

Ease of use and design re-use across frequencies have not traditionally been associated with RF power solutions — until now. Today, NXP Semiconductors N.V. (NASDAQ:NXPI), a developer of RF power, introduces two new power blocks that promise to become a new standard for years to come.

The simplicity of these new devices lies in the availability of laterally diffused metal oxide semiconductor (LDMOS) technology for RF transistors in ubiquitous TO-247 and TO-220 power packages, that come with well established assembly processes. This is augmented with the simultaneous availability of very compact reference circuits that can be reused from 1.8 Megahertz (MHz) to 250 MHz. This results in considerable savings, fast time to market and optimized supply chain for most High Frequency (HF) and Very High Frequency (VHF) power systems.

Removing Barrier to Entry for RF Power
NXP’s new RF solutions include the MRF101AN 100 watt (W) transistor that is housed in the TO-220 package, and the MRF300AN 300 W transistor that is housed in the TO-247 package. While current plastic packages for high power RF require a precise solder reflow process, these transistors can be assembled to a printed circuit board (PCB) using a standard through-hole technology, reducing costs. Heatsinking is also simplified since the transistors can be mounted vertically to a chassis, or in more creative and versatile ways such as under the PCB. This opens many options for the mechanical design, contributing to lower the Bill of Materials (BoM) and reduce time to market.

“RF Power is moving increasingly into new applications, where the requirements for ease of use, high performance and versatility are essential,” said Pierre Piel, senior director and general manager for multi-market RF power at NXP. “We continue our mission to ease the use of RF Power by delivering solutions that minimize design requirements, reduce time to market and simplify the supply chain for our customers.”

Flexibility Without Compromise on Performance
At 40.68 MHz, the MRF300AN outputs 330 W Continuous Wave (CW), with 28 decibels (dB) of gain and 79 percent efficiency. As part of NXP’s series of extremely rugged transistors, the family is designed for use in unforgiving industrial applications and can withstand 65:1 Voltage Standing Wave Ratio (VSWR).

This performance is supported by 2 x 3 inch (5.1 x 7.1 centimeters) power block reference designs that use cost-effective PCB material. With only a change of coils and discrete components, and no change to the PCB layout, the board can be adapted to support any other frequency from 1.8 to 250 MHz. This ensures quick design cycle for RF designers to develop power amplifiers that address new markets.

For even more flexibility, each transistor comes in two configurations. For example, the MRF101BN mirrors the pin-out of the MRF101AN, enabling a compact push-pull layout to address wideband applications without compromise on efficiency.

The MRF101AN and MRF300AN target Industrial, Scientific and Medical (ISM) applications as well as HF and VHF communications. A new market is also expected with switch-mode power supply, since this technology enables switching at higher frequencies than existing solutions, reducing the size of other components of the BoM. The devices are part of NXP’s Product Longevity Program guaranteeing availability for 15 years.

Availability
The MRF300AN is available now. The MRF101AN is currently sampling, with production expected in September 2018. Reference circuits for the MRF300AN are available for 27 MHz, 40.68 MHz, 81.36 MHz and 230 MHz. For pricing or additional information, please contact your local NXP sales office or approved distributor.

Exagan, an innovator of gallium nitride (GaN) semiconductor technology enabling smaller and more efficient electrical converters, is accelerating the transition to greater power efficiency by launching its safe, powerful G-FET™ power transistors and G-DRIVE™ intelligent fast-switching solution, featuring an integrated driver and transistor in a single package. These GaN-based devices are easy to design into electronic products, paving the way for fast chargers that comply with the USB power delivery (PD) 3.0 type C standard while providing exceptional power performance and integration.

At this week’s PCIM Europe conference in Nuremberg, Exagan is showcasing the use of its high-power-density GaN-on-silicon semiconductors to create ultra-fast, efficient and smaller 45- to 65-watt chargers. The company’s exhibit demonstrates its electrical-converter expertise and how both G-FET and G-DRIVE can benefit new converter product designs and their applications.

“The market potential for our products is enormous including all portable electronic devices as well as homes, restaurants, hotels, airports, automobiles and more,” said Frédéric Dupont, president and CEO of Exagan. “In the near future, users will be able to quickly charge their smart phones, tablets, laptops and other devices simply by plugging a standard USB cable into a small, generic mobile charger.”

The ability of USB type C ports to serve as universal connections for the simultaneous transfer of electrical power, data and video is leading to tremendous growth. The number of devices with at least one USB type C port is forecasted to multiply from 300 million units in 2016 to nearly five billion by 2021, according to market research firm IHS Markit.

Exagan is working to accelerate the adoption of cost-effective GaN-based solutions for the charger market. The company uses 200-mm GaN-on-silicon wafers in its fabrication process, achieving highly cost efficient high-volume manufacturing.  Exagan is now sampling its fast, energy-efficient devices to key customers while ramping up production to begin volume shipments of G-FET and G-DRIVE products.

A new way of enhancing the interactions between light and matter, developed by researchers at MIT and Israel’s Technion, could someday lead to more efficient solar cells that collect a wider range of light wavelengths, and new kinds of lasers and light-emitting diodes (LEDs) that could have fully tunable color emissions.

The fundamental principle behind the new approach is a way to get the momentum of light particles, called photons, to more closely match that of electrons, which is normally many orders of magnitude greater. Because of the huge disparity in momentum, these particles usually interact very weakly; bringing their momenta closer together enables much greater control over their interactions, which could enable new kinds of basic research on these processes as well as a host of new applications, the researchers say.

The new findings, based on a theoretical study, are being published today in the journal Nature Photonics in a paper by Yaniv Kurman of Technion (the Israel Institute of Technology, in Haifa); MIT graduate student Nicholas Rivera; MIT postdoc Thomas Christensen; John Joannopoulos, the Francis Wright Davis Professor of Physics at MIT; Marin Soljacic, professor of physics at MIT; Ido Kaminer, a professor of physics at Technion and former MIT postdoc; and Shai Tsesses and Meir Orenstein at Technion.

While silicon is a hugely important substance as the basis for most present-day electronics, it is not well-suited for applications that involve light, such as LEDs and solar cells — even though it is currently the principal material used for solar cells despite its low efficiency, Kaminer says. Improving the interactions of light with an important electronics material such as silicon could be an important milestone toward integrating photonics — devices based on manipulation of light waves — with electronic semiconductor chips.

Most people looking into this problem have focused on the silicon itself, Kaminer says, but “this approach is very different — we’re trying to change the light instead of changing the silicon.” Kurman adds that “people design the matter in light-matter interactions, but they don’t think about designing the light side.”

One way to do that is by slowing down, or shrinking, the light enough to drastically lower the momentum of its individual photons, to get them closer to that of the electrons. In their theoretical study, the researchers showed that light could be slowed by a factor of a thousand by passing it through a kind of multilayered thin-film material overlaid with a layer of graphene. The layered material, made of gallium arsenide and indium gallium arsenide layers, alters the behavior of photons passing through it in a highly controllable way. This enables the researchers to control the frequency of emissions from the material by as much as 20 to 30 percent, says Kurman, who is the paper’s lead author.

The interaction of a photon with a pair of oppositely charged particles — such as an electron and its corresponding “hole” — produces a quasiparticle called a plasmon, or a plasmon-polariton, which is a kind of oscillation that takes place in an exotic material such as the two-dimensional layered devices used in this research. Such materials “support elastic oscillations on its surface, really tightly confined” within the material, Rivera says. This process effectively shrinks the wavelengths of light by orders of magnitude, he says, bringing it down “almost to the atomic scale.”

Because of that shrinkage, the light can then be absorbed by the semiconductor, or emitted by it, he says. In the graphene-based material, these properties can actually be controlled directly by simply varying a voltage applied to the graphene layer. In that way, “we can totally control the properties of the light, not just measure it,” Kurman says.

Although the work is still at an early and theoretical stage, the researchers say that in principle this approach could lead to new kinds of solar cells capable of absorbing a wider range of light wavelengths, which would make the devices more efficient at converting sunlight to electricity. It could also lead to light-producing devices, such as lasers and LEDs, that could be tuned electronically to produce a wide range of colors. “This has a measure of tunability that’s beyond what is currently available,” Kaminer says.

“The work is very general,” Kurman says, so the results should apply to many more cases than the specific ones used in this study. “We could use several other semiconductor materials, and some other light-matter polaritons.” While this work was not done with silicon, it should be possible to apply the same principles to silicon-based devices, the team says. “By closing the momentum gap, we could introduce silicon into this world” of plasmon-based devices, Kurman says.

Because the findings are so new, Rivera says, it “should enable a lot of functionality we don’t even know about yet.”

Dow Performance Silicones further enhanced design flexibilities and processing options for consumer device and display OEMs today with the addition of DOWSIL™ SE 9100 and DOWSIL™ SE 9160 Adhesives to its portfolio of one-part, room-temperature cure (RTV) silicone solutions. In addition to offering versatile processing options, the two new silicone adhesives bond well to most substrates, deliver excellent rework ability with no residue, exhibit high flow to fill narrow gaps, and enable cure-in-place-gaskets (CIPG) that offer effective seals compatible with IPX7-rated water resistance.

DOWSIL™ SE 9100 Adhesive is a one-part silicone formulation that achieves fast tack-free processing at room temperature with the option to accelerate cure with the application of heat. It demonstrates low (< 1 percent) shrinkage by volume after cure to minimize internal stress for optimal sealing, and offers cost-effective processing and repairability during the assembly of mobile and display modules and other consumer devices.

DOWSIL™ SE 9160 Adhesive exhibits many of these same properties, yet its dual-cure formulation offers the option of faster in-line processing through irradiation with ultraviolet (UV) energy at densities as low as 4,000mJ/cm2 to component assembly to continue within seconds. Higher densities (10,000mJ/cm2) enable the material to quickly achieve full, deep section cure. In addition, in designs where the silicone adhesive is partially “in shadow” from the UV lamp, Dow’s new innovative silicone adhesive will still secure rapid moisture cure.

DOWSIL™ SE 9160 Adhesive is suitable for sealing small- to medium-sized consumer devices such as smart phones, tablets and displays. It is particularly effective at sealing air gaps or holes between LCD or OLED display panels and their plastic cover frames.

“Consumer device manufactures are under constant pressure to make their products more reliable, more profitable and packed with ever more features,” said Jayden Cho, global marketing segment leader, Consumer Devices at Dow Performance Silicones. “These two highly innovative silicone adhesives aim to help our global customers successfully address all three of these challenges as they push the boundaries of their next-generation device designs.”

Dow’s two new adhesives are available globally under the new DOWSIL™ label, which builds on seven decades of innovation and proven performance from the heritage Dow Corning silicone technology platform.