Category Archives: Device Architecture

At this week’s 2018 IEEE International Interconnect Technology Conference (IITC 2018), imec will present 11 papers on advanced interconnects, ranging from extending Cu and Co damascene metallization, all the way to evaluating new alternatives such as Ru and graphene. After careful evaluation of the resistance and reliability behavior, imec takes first steps towards extending conventional metallization into to the 3nm technology node.

For almost two decades, Cu-based dual damascene has been the workhorse industrial process flow for building reliable interconnects. But when downscaling logic device technology towards the 5nm and 3nm technology nodes, meeting resistance and reliability requirements for the tightly pitched Cu lines has become increasingly challenging. The industry is however in favor of extending the current damascene technology as long as possible, and therefore, different solutions have emerged.

To set the limits of scaling, imec has benchmarked the resistance of Cu with respect to Co and Ru in a damascene vehicle with scaled dimensions, demonstrating that Cu still outperforms Co for wire cross sections down to 300nm2 (or linewidths of 12nm), which corresponds to the 3nm technology node. To meet reliability requirements, one option is to use Cu in combination with thin diffusion barriers such as tantalum nitride (TaN)) and liners such as Co or Ru. It was found that the TaN diffusion barrier can be scaled to below 2nm while maintaining excellent Cu diffusion barrier properties.

For Cu linewidths down to 15–12nm, imec also modeled the impact of the interconnect line-edge roughness on the system-level performance. Line-edge roughness is caused by the lithographic and patterning steps of interconnect wires, resulting in small variations in wire width and spacing. At small pitches, these can affect the Cu interconnect resistance and variability. Although there is a significant impact of line-edge roughness on the resistance distribution for short Cu wires, the effect largely averages out at the system level.

An alternative solution to extend the traditional damascene flow is replacing Cu by Co. Today Co requires a diffusion barrier – an option that recently gained industrial acceptance. A next possible step is to enable barrierless Co or at least sub-nm barrier thickness with careful interface engineering. Co has the clear advantage of having a lower resistance for smaller wire cross-secions and smaller vias. Based on electromigration and thermal storage experiments, imec presents a detailed study of the mechanisms that impact Co via reliability, showing the abscence of voids in barrierless Co vias, demonstrating a better scalability of Co towards smaller nodes.

The research is performed in cooperation with imec’s key nano interconnect program partners including GlobalFoundries, Huawei, Intel, Micron, Qualcomm, Samsung, SK Hynix, SanDisk/Western Digital, Sony Semiconductor Solutions, TOSHIBA Memory and TSMC.

SEMI, the global industry association representing the electronics manufacturing supply chain, today reported that worldwide semiconductor manufacturing equipment billings reached a historic quarterly high of US$17.0 billion for the first quarter of 2018, surging 59 percent in March to end the quarter with an all-time monthly high of $7.8 billion.

The US$17.0 billion in quarterly billings shatters the previous record set in the fourth quarter of 2017. First quarter 2018 billings are 12 percent higher than the previous quarter and 30 percent higher than the same quarter a year ago. The data are gathered jointly with the Semiconductor Equipment Association of Japan (SEAJ) from over 95 global equipment companies that provide data on a monthly basis.

The quarterly billings data by region in billions of U.S. dollars, quarter-over-quarter growth and year-over-year rates by region are as follows:

1Q2018
4Q2017
1Q2017
1Q18/4Q17
(Qtr-over-Qtr)
1Q18/1Q17
(Year-over-Year)
Korea
6.26
4.64
3.53
35%
78%
China
2.64
1.77
2.01
49%
31%
Taiwan
2.27
2.89
3.48
-22%
-35%
Japan
2.13
1.96
1.25
9%
70%
Europe
1.28
1.04
0.92
23%
39%
Rest of World
1.27
1.22
0.63
4%
103%
North America
1.14
1.58
1.27
-28%
-10%
Total
16.99
15.10
13.08
12%
30%

Source: SEMI (www.semi.org) and SEAJ, June 2018

 

The Equipment Market Data Subscription (EMDS) from SEMI provides comprehensive market data for the global semiconductor equipment market. A subscription includes three reports: the monthly SEMI Billings Report, which offers a perspective of the trends in the equipment market; the monthly Worldwide Semiconductor Equipment Market Statistics (WWSEMS), a detailed report of semiconductor equipment billings for seven regions and 24 market segments; and the SEMI Semiconductor Equipment Forecast, which provides an outlook for the semiconductor equipment market. For more information or to subscribe, please contact SEMI customer service at 1.877.746.7788 (toll free in the U.S.) or 1.408.943.6901 (International Callers). More information is also available online: www.semi.org/en/MarketInfo/EquipmentMarket.

BISTel, a provider of intelligent, real-time data management, advanced analytics and predictive solutions for smart manufacturing announced today an innovative new Chamber Matching (CM) application that enables semiconductor manufacturers to better guard against events that negatively impact yield.

For semiconductor wafer manufacturers, optimizing wafer chamber performance is critical to ensuring high quality, high yield wafers. For customers to achieve this goal and maximize the performance of their fleet, analyzing variations in chamber performance and quickly recognizing which parameters are changing over time is critical to assuring the maximum possible yield from each chamber. BISTel’s new Chamber Matching (CM) application enables customers to quickly determine the best performing chamber – often referred to as the reference chamber or golden chamber. Customers can then compare the reference chamber to all other chambers to help maximize performance.

“CM is the second of four exciting new intelligent manufacturing solutions we have introduced to the market, and that will have an immediate impact on our customers wafer quality and yield,” noted W.K. Choi, Founder and CEO, BISTel. “With these advance new tools, we can perform real time monitoring and analysis to quickly identify the golden chamber and provide our customers the opportunity to maximize the performance of their equipment and processes.”

Key Features and Benefits

BISTel’s new Chamber Matching (CM) solution quickly identifies mis-matching and drifting sensors and it can analyze an unlimited number of chambers simultaneously. In addition, CM:

  • Provides real time monitoring to improve quality and yield.
  • Executes statistical analysis to quickly identify the best performing chamber or “Golden Chamber.”
  • Performs full trace analysis on all sensors and ranks chambers and parameters worse to best.
  • Enables customers to easily conduct time-based, chamber performance analysis.
  • Is completely FDC system independent

BISTel is a provider of real-time, intelligent manufacturing solutions that collect and manage big data, monitor the health of equipment, optimize process flows, analyze large data and quickly identify root cause failures to mitigate risk. BISTel solutions help customers reduce costs, improve quality, and increase yield. Founded in 2000, BISTel has more than 340 employees worldwide. The company is headquartered in South Korea, with offices in California, China, Singapore and Texas. BISTel has a deep customer following in semiconductor, FPD, and PCB/SMT manufacturing as well as automotive, Biotech and steel manufacturing. Its new A.I. based manufacturing intelligence platform will include new auto learning, predictive, self-healing, and continuous improvement features that accelerate smart manufacturing. For more information visit bistel.com

Consumer demand and government mandates for electronic systems that improve vehicle performance, that add comfort and convenience, and that warn, detect, and take corrective measures to keep drivers safe and alert are being added to new cars each year. This system growth, along with rising prices for memory components within them, are expected to raise the automotive IC market 18.5% this year to a new record high of $32.3 billion, surpassing the previous record of $27.2 billion set last year (Figure 1), according to IC Insights’ soon to be released Update to the 2018 IC Market Drivers report.  If the forecast holds, it would mark the third consecutive year of double-digit growth for the automotive IC market.

Figure 1

Over the past several years, the global automotive IC market has experienced some extraordinary swings in growth. After increasing 11.5% in 2014, the automotive IC market declined 2.5% in 2015, but then rebounded with solid 10.6% growth in 2016. It is worth noting that the sales decline experienced in 2015 was primarily the result of falling ASPs across all the key automotive IC product categories—microcontrollers, analog ICs, DRAM, flash, and general- and special-purpose logic ICs, which offset steady unit growth for automotive ICs that year.

IC Insights’ recently updated automotive IC market forecast shows the automotive IC market growing to $43.6 billion in 2021, which represents a compound annual growth rate (CAGR) of 12.5% from 2017 to 2021, highest among the six major end-use applications (Figure 2).

Figure 2

Collectively, automotive ICs are forecast to account for only about 7.5% of the total IC market in 2018, although that share is forecast to increase to 9.3% in 2021.  Analog ICs—both general-purpose analog and application-specific automotive analog—are expected to account for 45% of the 2018 automotive IC market, with MCUs capturing 23% share. There are many suppliers of automotive analog devices but a rash of acquisitions among them in recent years has reduced the number of larger manufacturers. Some of the acquisitions that have impacted the automotive analog market include NXP, which acquired Freescale in 2015 and is now itself in the process of being acquired by Qualcomm; Analog Devices, which acquired Linear Technology in March 2017; and Renesas, which acquired Intersil.

Global sales of smartphones to end users returned to growth in the first quarter of 2018 with a 1.3 percent increase over the same period in 2017, according to Gartner, Inc. Compared to the first quarter of 2017 sales of total mobile phones stalled and reached 455 million units in the first quarter of 2018.

Nearly 384 million smartphones were sold in the first quarter of 2018, representing 84 percent of total mobile phones sold (see Table 1). “Demand for premium and high-end smartphones continued to suffer due to marginal incremental benefits during upgrade,” said Anshul Gupta, research director at Gartner. “Demand for entry-level smartphones (sub-$100) and low midtier smartphones (sub-$150) improved due to better-quality models.”

Continued weakness in Greater China’s mobile phone market also limited growth potential for the top global brands, including Chinese brands such as OPPO and Vivo, with over 70 percent of their sales coming from Greater China.

Table 1

Worldwide Smartphone Sales to End Users by Vendor in 1Q18 (Thousands of Units)

Vendor

1Q18

Units

1Q18 Market Share (%)

1Q17

Units

1Q17 Market Share (%)

Samsung

78,564.8

20.5

78,776.2

20.8

Apple

54,058.9

14.1

51,992.5

13.7

Huawei

40,426.7

10.5

34,181.2

9.0

Xiaomi

28,498.2

7.4

12,707.3

3.4

OPPO

28,173.1

7.3

30,922.3

8.2

Others

153,782.1

40.1

169,921.1

44.9

Total

383,503.9

100.0

378,500.6

100.0

Source: Gartner (May 2018)

Samsung Growth Slows, Apple Share Increases

Samsung’s midtier smartphones faced continued competition from Chinese brands, which led to unit sales contraction year on year. This is despite the earlier launch of its flagship Galaxy S9/S9+ compared to the S8/S8+ in 2017, and despite the Note 8 having a positive impact on Samsung sales in the first quarter of 2018. Samsung’s smartphone growth rate will remain under pressure through 2018, with Chinese brand’s growing dominance and expansion into Europe and Latin America markets. Samsung is challenged to   raise the average selling price (ASP) of its smartphones, while facing increasing competition from Chinese brands that are taking more market share.

The delayed sales boost for Apple from last quarter materialized. Apple’s smartphone unit sales returned to growth in the first quarter of 2018, with an increase of 4 percent year on year.

“Even though demand for Apple’s iPhone X exceeded that of iPhone 8 and iPhone 8 Plus, the vendor struggled to drive significant smartphone replacements, which led to slower-than-expected growth in the first quarter of 2018,” said Mr. Gupta. “With its exclusive focus on premium smartphones, Apple needs to significantly raise the overall experience of its next-generation iPhones to trigger replacements and lead to solid growth in the near future.”

Huawei and Xiaomi Remained the Big Winners

Huawei’s refreshed smartphone portfolio helped strengthen its No. 3 global smartphone vendor position.

“Achieving 18.3 percent growth in the first quarter of 2018 helped Huawei close the gap with Apple,” said Mr. Gupta. “However, its future growth increasingly depends on the vendor ramping up share in Emerging Asia/Pacific and resolving issues in the U.S. market, through the development of a stronger consumer brand. Huawei’s attempt to grow its premium smartphone portfolio with its recent launches of the P20, P20 Pro and Honor 10 helps raise its competitiveness and growth potential.”

Xiaomi was the clear winner of the first quarter, achieving a growth of 124 percent year on year. Xiaomi’s refreshed portfolio of smartphones and aggressive pricing strategy helped it hold the No. 4 spot in the first quarter of 2018. “This strategy led Xiaomi to achieve 330 percent growth in the Emerging Asia/Pacific region,” said Mr. Gupta.

In the smartphone operating system (OS) market, Google’s Android and Apple’s iOS achieved growth in units in the first quarter of 2018, but Android saw its share slightly contract (see Table 2).

Table 2

Worldwide Smartphone Sales to End Users by Operating System in 1Q18 (Thousands of Units)

Operating System

1Q18

Units

1Q18 Market Share (%)

1Q17

Units

1Q17 Market Share (%)

Android

329,313.9

85.9

325,900.9

86.1

iOS

54,058.9

14.1

51,992.5

13.7

Other OS

131.1

0.0

607.3

0.2

Total

383,503.9

100.0

378,500.6

100.0

Source: Gartner (May 2018)

TowerJazz, the global specialty foundry leader, and Gpixel, Inc., a fast-growing CMOS image sensor (CIS) provider focusing on professional applications, announced today that Gpixel’s GMAX0505, a new 25Mp global shutter sensor has been developed based on TowerJazz’s 2.5um global shutter pixel in a 1.1″ optical format with the highest resolution in C-mount optics. This type of lens mount is commonly found in closed-circuit television cameras, machine vision and scientific cameras. Gpixel’s new product is optimal for high resolution industrial, machine vision, intelligent transport systems (ITS) and surveillance applications. According to an IC Insights report, the industrial CMOS sensor market is growing at a CAGR of about 18% from $400M in 2015 to $910M in 2020.

TowerJazz’s new offering is the smallest in the world; the otherwise currently available smallest pixel for such high-end applications used in the market is 3.2um (65% larger) and demonstrates overall lower performances. TowerJazz’s 2.5um global shutter pixel is integrated with a unique light pipe technology, offers great angular response, more than 80dB shutter efficiency in spite of the extreme small size, and extremely low noise (one electron). Gpixel has started prototyping its GMAX0505 using TowerJazz’s state of the art, 65nm technology on a 300mm platform in its Uozu, Japan facility.

“TowerJazz has been an important and strategic fab partner of Gpixel for many years. We are very pleased with the support of great technology innovation from TowerJazz with our current global shutter sensor families, backside illuminated scientific CMOS sensor solutions and today, the next generation global shutter industrial sensor product family,” said Dr. Xinyang Wang, CEO of Gpixel, Inc. “The GMAX0505 is our second product after our first 2.8um pixel product that is already ramped up into production at TowerJazz’s Arai fab in Japan. We are very excited and looking forward to seeing more products using this pixel technology in the near future. The successful introduction of the new 25Mp product will bring our customers a unique advantage in the growing demand of machine vision applications.”

Dr. Avi Strum, TowerJazz Senior VP and General Manager of CMOS Image Sensor Business Unit, said, “We are very excited to be the first and only foundry in the world to offer this new technology – the smallest global shutter pixel available. Through our collaboration with Gpixel, we are able to create acompact package design which allows for miniature camera design. We are pleased with our long term relationship with Gpixel and with the way our technology combined with their excellent products allow us to target and gain market share in the growing high resolution industrial markets.”

GLOBALFOUNDRIES today announced that its 180nm Ultra High Voltage (180UHV) technology platform has entered volume production for a range of client applications, including AC-DC controllers for industrial power supplies, wireless charging, solid state and LED lighting, as well as AC adapters for consumer electronics and smartphones.

The increasing demand for highly cost-effective systems requires integrated circuits (ICs) that achieve significant area savings while reducing bill-of-materials (BOM) and printed circuit board (PCB) footprint by integrating discrete components onto the same die. GF’s 180UHV platform features a 3.3V LV CMOS baseline, with options for HV18, HV30 and 700V UHV, that delivers significant area savings for both digital and analog circuit blocks, compared to the traditional 5V bipolar CMOS DMOS (BCD) technologies.

“GF’s leadership in providing high voltage solutions makes the company a perfect strategic partner for On-Bright’s power supply technologies,” said Julian Chen, CEO of On-Bright, the leading market player in AC-DC switch mode power supply products. “GF’s new 180UHV process integrates UHV components into the same IC with 180nm digital and analog by incorporating On-Bright know-how in the design. The technology has reduced On-Bright’s switched-mode power supply cost and footprint to give our AC-DC switch mode power supply products additional system-level benefits.”

As part of a modular platform based on the company’s 180nm process node, GF’s 180UHV process technology delivers a 10x increase in digital density compared to previous generations for integrated AC-DC conversion. For AC-DC conversion, the platform integrates high voltage transistors with precision analog and passive devices to control high input and output voltages of AC-DC SMPS circuits. The process is qualified up to 150°C to accommodate the high ambient temperatures of power supply and LED lighting products.

“GF continues to expand its UHV portfolio to provide competitive technology capabilities and manufacturing excellence that will enable our customers to play a critical role in bringing a new generation of highly integrated devices to real-world environments,” said Dr. Bami Bastani, senior vice president of business units at GF. “Our 180UHV is an ideal technology for customers that are looking to develop the highest-performing solutions for a new generation of integrated digital, analog and high voltage applications.”

As a part of the company’s analog and power platform, GF provides various types of HV, BCD, and UHV technologies, allowing customers to integrate power and high voltage transistors across a wide range of voltages, from 5V to 700V, to meet the diverse needs of low and high power applications. GF has a successful track record in manufacturing analog and power solutions in both its 200mm and 300mm production lines in Singapore.

Microsemi Corporation (Nasdaq: MSCC), a provider of semiconductor solutions differentiated by power, security, reliability and performance, today announced it will be expanding its Silicon Carbide (SiC) MOSFET and SiC diode product portfolios early next quarter, including samples of its next-generation 1200-volt (V), 25 mOhm and 80 mOhm SiC MOSFET devices; next-generation 700 V, 50 A Schottky barrier diode (SBD) and corresponding die. These SiC solutions, along with other recently announced devices in the SiC SBD/MOSFET product families, will be demonstrated June 5-7 in hall 6, booth 318 at PCIM Europe 2018, held at the Exhibition Centre in Nuremberg, Germany.

As Microsemi continues to expand development efforts for its SiC product family, it has become one of the few suppliers providing a range of Si/SiC power discrete and module solutions to the market. These next-generation SiC MOSFETs are ideally suited for a number of applications within the industrial and automotive markets, including hybrid electric vehicle (HEV)/EV charging, conductive/inductive onboard chargers (OBCs), DC-DC converters and EV powertrain/traction control. They can also be used for switch mode power supplies, photovoltaic (PV) inverters and motor control in medical, aerospace, defense and data center applications.

“Fast adoption of SiC solutions for applications such as EV charging, DC-DC converters, powertrain, medical and industrial equipment, and aviation actuation demand a high degree of efficiency, safety and reliability on components used in such systems,” said Leon Gross, vice president and business unit manager for Microsemi’s Power Discretes and Modules business unit. “Microsemi’s next-generation SiC MOSFET and SiC diode families will include AEC-Q101 qualifications, which will insure high reliability while ruggedness is demonstrated by high repetitive unclamped inductive switching (UIS) capability at rated current without degradation or failures.”

According to market research firm Technavio, the global SiC market for semiconductor applications is expected to reach nearly $540.5 million by 2021, growing at a compound annual growth rate (CAGR) of more than 18 percent. The firm also forecasts the global SiC market for automotive semiconductor applications at nearly 20 percent CAGR by 2021. Microsemi is well-positioned with these trends, with its SiC MOSFET and Schottky barrier diode devices avalanche-rated with a high short-circuit withstand rating for robust operation, and the capabilities necessary to enable these growing application trends.

Microsemi’s next-generation 1200 V, 25/40/80 mOhm SiC MOSFET devices and die as well as its next-generation 1200 V and 700 V SiC SBD devices offer customers attractive benefits in comparison to competing Si/SiC diode/MOSFET and IGBT solutions, including more efficient switching at higher switching frequencies as well as higher avalanche/UIS rating and higher short-circuit withstand rating for rugged and reliable operation. For example, SiC MOSFETs are developed with an ideal balance of specific on-resistance, low gate and thermal resistances, and low gate threshold voltage and capacitance for reliable operation. Designed for high yield processes and low parameter variation across temperature, they operate at higher efficiency (in comparison to Si and IGBT solutions) across high junction temperature (175 degrees Celsius) to extend battery systems like those in HEV/EV applications.

The newly sampling devices also offer excellent gate integrity and high gate yield as verified through high temperature reverse bias (HTRB) and time-dependent dielectric breakdown (TBBD) tests, which are part of its AEC-Q101 qualification in progress. Other key features include:

  • High UIS capability, offering 1.5x to 2x higher than competitive SiC MOSFETs and GaN devices for avalanche ruggedness;
  • High short-circuit rating ranging from 1.5x to 5x higher than competitor SiC MOSFET devices for more rugged operation;
  • Up to 10x lower failure-in-time (FIT) rate than comparable Si IGBTs at rated voltage for neutron susceptibility and with comparable performance against SiC competition pertaining to neutron irradiation; and
  • Higher SiC power density versus Si, enabling smaller magnetics/transformers/DC bus capacitors and less cooling elements for more compact form factor to lower overall system costs.

An international research team led by physicists at the Technical University of Munich (TUM) has developed molecules that can be switched between two structurally different states using an applied voltage. Such nanoswitches can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

A research team at the Technical University of Munich has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules. Credit: Yuxiang Gong / TUM / Journal of the American Chemical Society

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative effort, a team of physicists at the Technical University of Munich has successfully deployed a single molecule as a switching element for light signals.

“Switching with just a single molecule brings future electronics one step closer to the ultimate limit of miniaturization,” says nanoscientist Joachim Reichert from the Physics Department of the Technical University of Munich.

Different structure – different optical properties

The team initially developed a method that allowed them to create precise electrical contacts with molecules in strong optical fields and to control them using an applied voltage. At a potential difference of around one volt, the molecule changes its structure: It becomes flat, conductive and scatters light.

This optical behavior, which differs depending on the structure of the molecule, is quite exciting for the researchers because the scattering activity – Raman scattering, in this case – can be both observed and, at the same time, switched on and off via an applied voltage.

Challenging technology

The researchers used molecules synthesized by teams based in Basel and Karlsruhe. The molecules can change their structure in specific ways when they are charged. They are arranged on a metal surface and contacted using the corner of a glass fragment with a very thin metal coating as a tip..

This serves as an electrical contact, light source and light collector, all in one. The researchers used the fragment to direct laser light to the molecule and measure tiny spectroscopic signals that vary with the applied voltage.

Contacting individual molecules electrically is extremely challenging from a technical point of view. The scientists have now successfully combined this procedure with single-molecule spectroscopy, allowing them to observe even the smallest structural changes in molecules with great precision.

Competition for silicon

One goal of molecular electronics is to develop novel devices that can replace traditional silicon-based components using integrated and directly controllable molecules.

Thanks to its tiny dimensions, this nanosystem is suitable for applications in optoelectronics, in which light needs to be switched using variations in electrical potential.

SiFive, a provider of commercial RISC-V processor IP, today welcomed Brite Semiconductor, an ASIC service company invested by SMIC, to the growing DesignShare ecosystem.

The partnership enables Brite Semiconductor to offer DDR IP, which complies with DDR2/3/4 and LPDDR2/3/4, up to 2667MT/s. Brite Semiconductor’s DDR technology will make it easier for SiFive customers to speed data transfer rates on their RISC-V based SoCs within a reduced power envelope. Brite Semiconductor’s proven silicon will not only lower costs to designers, but also enable them to shorten production time.

“Brite is committed to promote innovation in ASIC business through collaboration and ecosystem development,” said Thomas Xu, CEO of Brite Semiconductor. “The demand for open-source hardware is increasing, and DesignShare offered by SiFive is a great platform to provide designers access to what they want.”

The availability of Brite Semiconductor’s DDR IP through the DesignShare program shortens the time to market and removes common barriers to entry that have historically blocked smaller companies from developing custom silicon. Companies like SiFive, Brite Semiconductor and other ecosystem partners provide low- or no-cost IP to emerging companies, reducing the upfront engineering costs required to bring a custom chip design to realization.

“Brite Semiconductor’s DDR IP makes it simpler for engineers to use RISC-V in their future designs.” said Shafy Eltoukhy, vice president of operations and head of DesignShare for SiFive. “We’re excited to see the innovations stemming from our DesignShare ecosystem.”

Since DesignShare launched in 2017, the program has grown to include a wide range of IP solutions, from debug and trace technology to embedded memory and reconfigurable FPGA. For more information on DesignShare and to see the complete list of technologies, visit www.sifive.com/designshare.