Category Archives: Device Architecture

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $107.9 billion for the third quarter of 2017, marking the industry’s highest-ever quarterly sales and an increase of 10.2 percent compared to the previous quarter. Sales for the month of September 2017 were $36.0 billion, an increase of 22.2 percent over the September 2016 total of $29.4 billion and 2.8 percent more than the previous month’s total of $35.0 billion. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

highest ever sales

“Global semiconductor sales increased sharply year-to-year in September, and year-to-date sales through September are more than 20 percent higher than at the same point last year,” said John Neuffer, SIA president and CEO. “The industry posted its highest-ever quarterly sales in Q3, and the global market is poised to reach its highest-ever annual revenue in 2017.”

Regionally, year-to-year and month-to-month sales increased in September across all markets: the Americas (40.7 percent year-to-year/5.9 percent month-to-month), China (19.9 percent/2.5 percent), Europe (19.0 percent/1.8 percent), Asia Pacific/All Other (16.8 percent/1.9 percent), and Japan (11.9 percent/0.5 percent).

“The Americas market continued to stand out, notching its largest year-to-year sales increase in more than seven years,” Neuffer said. “Standouts among semiconductor product categories included memory products like DRAM and NAND flash, both of which posted major year-to-year growth in September, as well as Logic products, which enjoyed double-digit growth year-to-year.”

For the first time, researchers have used a single-step, laser-based method to produce small, precise hybrid microstructures of silver and flexible silicone. This innovative laser processing technology could one day enable smart factories that use one production line to mass-produce customized devices combining soft materials such as engineered tissue with hard materials that add functions such as glucose sensing.

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. Credit: Mitsuhiro Terakawa, Keio University

Using a one-step laser fabrication process, researchers created flexible hybrid microwires that conduct electricity. (a) An optical microscope image of the silver (black) and silicone (clear) microwires. (b) Scanning electron microscopy image of the same fabricated structure. Both scale bars are equal to 25 microns. Credit: Mitsuhiro Terakawa, Keio University

The metal component of the microstructures renders them electrically conductive while the elastic silicone contributes flexibility. This unique combination of properties makes the structures sensitive to mechanical force and could be useful for making new types of optical and electrical devices.

“These types of microstructures could possibly be used to measure very small movements or changes, such as a slight movement from an insect’s body or the subtle expression produced by a human facial muscle,” said research team leader Mitsuhiro Terakawa from Keio University, Japan. “This information could be used to create perfect computer-generated versions of these movements.”

As detailed in the journal Optical Materials Express, from The Optical Society (OSA), the researchers produced wire-like structures of silver surrounded by a type of silicone known as polydimethylsiloxane (PDMS). The researchers used PDMS because it is flexible and biocompatible, meaning that it is safer to use on or in the body.

They fabricated the structures, which measure as little as 25 microns wide, by irradiating a mixture of PDMS and silver ions with extremely short laser pulses that last just femtoseconds. In one femtosecond, light travels only 300 nanometers, which is just slightly larger than the smallest bacteria.

“We believe we are the first group to use femtosecond laser pulses to create a hybrid material containing PDMS, which is very useful because of its elasticity,” said Terakawa. “The work represents a step towards using a single, precision laser processing technology to fabricate biocompatible devices that combine hard and soft materials.”

Turning two laser processes into one

The one-step fabrication method used to make the hybrid microstructures combines the light-based chemical reactions known as photopolymerization and photoreduction, both of which were induced using femtosecond laser pulses. Photopolymerization uses light to harden a polymer, and photoreduction uses light to form microstructures and nanostructures from metal ions.

The fabrication technique resulted from a collaboration between Terakawa’s research group, which been studying two-photon photoreduction using soft materials, and a group at the German research organization Laser Zentrum Hannover, that has been advancing single-photon photopolymerization of PDMS.

To create the wire microstructures, the researchers irradiated the PDMS-silver mixture with light from femtosecond laser emitting at 522-nm, a wavelength that interacts efficiently with the material mixture. They also carefully selected silver ions that would combine well with PDMS.

The researchers found that just one laser scan formed wires that exhibit both the electrical conductivity of metal and the elasticity of a polymer. Additional scans could be used to produce thicker and more uniform structures. They also showed that the wire structures responded to mechanical force by blowing air over the structures to create a pressure of 3 kilopascal.

The researchers say that, in addition to making wires structures, the approach could be used to make tiny 3D metal-silicone structures. As a next step, they plan to study whether the fabricated wires maintain their structure and properties over time.

“Our work demonstrates that simultaneously inducing photoreduction and photopolymerization is a promising method for fabricating elastic and electrically conductive microstructures,” said Terakawa. “This is one step toward our long-term goal of developing a smart factory for fabricating many human-compatible devices in one production line, whether the materials are soft or hard.”

Microsemi Corporation (Nasdaq: MSCC), a provider of semiconductor solutions differentiated by power, security, reliability and performance, and Knowles Corporation (NYSE: KN), jointly announced today that Microsemi has entered into a definitive agreement to acquire the high performance timing business of Vectron International, a Knowles company, for $130 million.

Vectron is a world leader in the design, manufacture and marketing of frequency control, sensor and hybrid solutions using the very latest techniques in both bulk acoustic wave (BAW) and surface acoustic wave (SAW)-based designs from DC to microwave frequencies. Products include crystals and crystal oscillators; frequency translators; clock and data recovery products; SAW filters; SAW oscillators; crystal filters; SAW and BAW based sensors and components used in telecommunications, data communications, frequency synthesizers, timing, navigation, military, aerospace, medical and instrumentation systems.

“Microsemi is focused on building the industry’s most comprehensive portfolio of high value timing solutions,” said James J. Peterson, Microsemi’s chairman and CEO. “Vectron’s highly complementary technology suite expands our product offering with differentiated technology and allows Microsemi to sell more to its tier one customers in the aerospace and defense, communications and industrial markets while improving upon the operating performance of the combined model as we execute on significant synergy opportunities.”

Microsemi expects the acquisition to be immediately accretive once closed.  The transaction is subject to customary closing conditions and is currently expected to close in Microsemi’s fiscal first quarter ending December 2017.

As of this date, Microsemi remains comfortable with its July 28, 2017 non-GAAP guidance for its fourth fiscal quarter of 2017 ended Oct. 1, 2017. Microsemi currently intends to announce its fourth fiscal quarter results on Nov. 9, 2017.

Research by scientists at Swansea University has shown that improvements in nanowire structures will allow for the manufacture of more stable and durable nanotechnology for use in semiconductor devices in the future.

Dr. Alex Lord and Professor Steve Wilks from the Centre for NanoHealth led the collaborative research published in Nano Letters. The research team defined the limits of electrical contact technology to nanowires at atomic scales with world-leading instrumentation and global collaborations that can be used to develop enhanced devices based on the nanomaterials. Well-defined, stable and predictable electrical contacts are essential for any electrical circuit and electronic device because they control the flow of electricity that is fundamental to the operational capability.

Their experiments found for the first time, that atomic changes to the metal catalyst particle edge can entirely alter electrical conduction and most importantly reveal physical evidence of the effects of a long standing problem for electrical contacts known as barrier inhomogeneity. The study revealed the electrical and physical limits of the materials that will allow nanoengineers to select the properties of manufacturable nanowire devices.

One-of-a-kind multi-probe LT Nanoprobe at Swansea University used to obtain the electrical measurements of nanowires that were correlated to atomic resolution imaging. Credit: Swansea University

One-of-a-kind multi-probe LT Nanoprobe at Swansea University used to obtain the electrical measurements of nanowires that were correlated to atomic resolution imaging. Credit: Swansea University

Dr Lord, recently appointed as a Senior Sêr Cymru II Fellow part-funded by the European Regional Development Fund through the Welsh Government, said: “The experiments had a simple premise but were challenging to optimise and allow atomic-scale imaging of the interfaces. However, it was essential to this study and will allow many more materials to be investigated in a similar way.

“This research now gives us an understanding of these new effects and will allow engineers in the future to reliably produce electrical contacts to these nanomaterials which is essential for the materials to be used in the technologies of tomorrow.

“The new concepts shown here provide interesting possibilities for bridged nanowire devices such as transient electronics and reactive circuit breakers that respond to changes in electrical signals or environmental factors and provide instantaneous reactions to electrical overload.”

The Swansea research team used specialist experimental equipment at the Centre for NanoHealth and collaborated with Professor Quentin Ramasse of the SuperSTEM Laboratory, Science and Facilities Technology Council1-3 and Dr Frances Ross of the IBM Thomas J. Watson Research Center, USA.3 The scientists were able to physically interact with the nanostructures and measure how atomic changes in the materials affected the electrical performance.

Dr. Frances Ross, IBM, USA, added: “”This research shows the importance of global collaboration, particularly in allowing unique instrumentation to be used to obtain fundamental results that allow nanoscience to deliver the next generation of technologies.”

Nanotechnology is the scaling down of everyday materials by scientists to the size of nanometres (one million times smaller than a millimetre on a standard ruler) and is seen as the future of electronic devices. Progressions in scientific and engineering advances are resulting in new technologies such as computer components for smart devices and sensors to monitor our health and the surrounding environment.

Nanotechnology is having a major influence on the Internet of Things which connects everything from our homes to our cars into a web of communication. All of these new technologies require similar advances in electrical circuits and especially electrical contacts that allow the devices to work correctly with electricity.

Last year at Arm TechCon, SoftBank Chairman and President Masayoshi Son laid out an ambitious vision of a trillion connected devices. It’s a vision ARM is aggressively pursuing by working with their ecosystem to invisibly enable those trillion devices to connect securely.

Connecting a trillion devices is no easy task of course but doing it securely is key. Especially when the tools and techniques used by attackers are rapidly evolving to go after every piece of system hardware from foundational SoCs to peripheral components. All are seen as an opportunity to access privileged data. With daily occurrences of cyber-attacks, it’s clear security across the entire device needs to be considered at the design stage, not as an afterthought.

At the SoC level, there are many classes of threats including those where attackers try to take advantage of the physical characteristics of the silicon implementation manifested during algorithmic execution. Today, ARM is announcing the availability of highly-efficient on-die threat mitigation technology designed to protect against threats including:

  • Simple and Differential Power Analysis (SPA/DPA), where an attacker is trying to compromise confidential information (e.g. a secret cryptographic key) through various analysis methods of the power consumed by an integrated circuit (IC) during operation
  • Simple and Differential Electromagnetic Analysis (SEMA/DEMA), where an attacker is trying to compromise confidential information (e.g. a secret cryptographic key) through various analysis methods of the electromagnetic field created during IC operation

The power and electromagnetic analysis mitigation technology relieves designers of the need to worry about this category of non-invasive attacks, while providing a solution that is easily scalable to cover changes in the protected logic. The resulting system benefit is addressing the leakage source directly and preventing sensitive data leakage through the IC power consumption and electromagnetic emission. From an implementation perspective, the mitigation technology is applicable across the full spectrum of silicon processes used in the semiconductor industry.

Trust between connected devices and their users is a critical factor in the continued growth of the IoT, particularly in applications making use of highly sensitive data, such as autonomous vehicles, mobile payment systems and connected health. Adding this technology to our security IP portfolio will enable the deployment of more secure devices as we drive toward our vision of a truly connected world.

To learn more about ARM security solutions, attend the security track at Arm TechCon, (Oct. 24-26 in Santa Clara, CA.)

Synopsys, Inc. (NASDAQ: SNPS) today announced that SiFive, the first fabless provider of customized, open-source-enabled semiconductors, has selected the Synopsys Verification Continuum platform as its verification solution. SiFive has deployed the Verification Continuum platform for simulation, verification IP, debug, static verification and formal coverage closure. Synopsys’ leadership position in these critical verification technology areas, combined with native integrations among these products, has enabled SiFive to meet aggressive goals for scalable verification of customized RISC-V processors and SoCs targeted for internet of things (IoT), edge computing, machine learning, storage and other applications.

“SiFive was founded by the creators of the free and open RISC-V architecture with an innovative approach that brings the power of open source, agile hardware design and verification to the semiconductor industry,” said Renxin Xia, vice president of engineering at SiFive. “In Synopsys, we found an innovative partner with leading verification technologies that provide our team with the productivity and flexibility required to deliver our customized processor IP and silicon solutions.”

With the exponential growth of verification complexity, achieving verification closure requires a broad set of technologies including advanced simulation, verification IP, advanced debug, static and formal verification, low-power verification and coverage closure. To address this substantial complexity, Synopsys continues to have the largest R&D investment in verification spanning the entire verification flow. This includes industry-leading VCS® simulation, VC verification IP, Verdi® advanced debug, SpyGlass® RTL signoff solutions as well as next-generation VC Formalverification solutions. The native integration of these solutions further enables design teams to achieve faster performance, lower power and higher productivity for accelerated verification closure.

“Synopsys is addressing the need for faster time-to-market with our leading portfolio of verification software technologies,” said Ajay Singh, senior vice president of R&D in the Synopsys Verification Group. “Our collaboration with SiFive demonstrates the performance benefits of our Verification Continuum platform required for their RISC-V processors and custom SoCs.”

Strategy Analytics reports revenue for RF GaAs devices increased by slightly less than 1 percent in 2016. An anticipated drop in cellular revenue nearly offset gains in other market segments, but GaAs device revenue still managed to surpass $7.5 billion for the first time. “RF GaAs Device Forecast and Outlook: 2016 – 2021,” from Strategy Analytics’ Advanced Semiconductor Applications (ASA) service, forecasts that gigabit LTE and emerging 5G applications will drive GaAs device revenue past $9 billion in 2021.

“The RF GaAs device market is so dependent on cellular terminals that declining growth rates in smartphone sales has put the brakes on total revenue growth,” commented Eric Higham, Director of the Advanced Semiconductor Applications (ASA) service. “The good news for the industry is that growing adoption of gigabit LTE networks and devices, coupled with emerging 5G opportunities will restart the GaAs growth engine.”

“We are seeing new platforms and major program upgrades starting to ramp toward production and these developments will maintain the growth of GaAs device revenue in the defense sector,” noted Asif Anwar, Director of the Advanced Defense Systems (ADS) service.

The 2017 GLOBALFOUNDRIES Technology Conference (GTC) was held today in Shanghai, with GF executives, customers, partners and leaders in the Chinese semiconductor industry gathering to discuss the technologies that will enable a new era of connected intelligence. At the event, GF senior executives shed light on the company’s technologies, design solutions, and manufacturing services. The company also highlighted growing momentum around its differentiated 22FDX® technology, including customer adoption by several leading Chinese chip designers.

Mike Cadigan, GF’s senior vice president for global sales and business development, delivered a keynote speech, emphasizing GF’s expectations to become a strong leader in the Chinese semiconductor market. “Along with the rapid growth of customers, markets and applications in this region of the world, we are also continuously developing new technologies for enabling connected intelligence,” Cadigan said. “China is definitely one of our most important markets, and we will keep bringing advanced and differentiated technologies here to help our customers grow and succeed.”

At the event, GF revealed three Chinese customers that will be adopting its new 22FDX technology for next-generation wireless, battery-powered applications. Shanghai Fudan Microelectronics Group will adopt the 22FDX platform to design and develop highly reliable servers, AI and smart IoT intelligent products in 2018. Rockchip will apply 22FDX technology in the design of ultra-low power WiFi smart hardware SoC and high-performance AI processers. Hunan Goke Microelectronics is planning to adopt 22FDX in its next generation of IoT chips.

China is a key region for GF’s future growth plans. The company is building an advanced 300mm semiconductor fab in Chengdu, where a “truss-hoisting” ceremony was recently held to commemorate a major milestone in the construction of the facility, which will be called Fab 11. The construction of the fab is progressing at a fast pace and is on track to be completed in early 2018.

The company is also working closely with the Chengdu municipality to expand the FD-SOI ecosystem, with an investment of more than $100 million to make Chengdu a center of excellence for FDX IC design and IP development. Several leading semiconductor companies have already committed to supporting the ecosystem initiative, including Invecas, GF’s advanced IP development partner. Invecas has established a strong presence in China, including a recently expanded engineering team in Shanghai and Shenzhen and a commitment to set up an R&D center in Chengdu to develop and support advanced IP and designs for FD-SOI systems.

Graphene – a one-atom-thick layer of the stuff in pencils – is a better conductor than copper and is very promising for electronic devices, but with one catch: Electrons that move through it can’t be stopped.

Until now, that is. Scientists at Rutgers University-New Brunswick have learned how to tame the unruly electrons in graphene, paving the way for the ultra-fast transport of electrons with low loss of energy in novel systems. Their study was published online in Nature Nanotechnology.

“This shows we can electrically control the electrons in graphene,” said Eva Y. Andrei, Board of Governors professor in Rutgers’ Department of Physics and Astronomy in the School of Arts and Sciences and the study’s senior author. “In the past, we couldn’t do it. This is the reason people thought that one could not make devices like transistors that require switching with graphene, because their electrons run wild.”

Now it may become possible to realize a graphene nano-scale transistor, Andrei said. Thus far, graphene electronics components include ultra-fast amplifiers, supercapacitors and ultra-low resistivity wires. The addition of a graphene transistor would be an important step towards an all-graphene electronics platform. Other graphene-based applications include ultra-sensitive chemical and biological sensors, filters for desalination and water purification. Graphene is also being developed in flat flexible screens, and paintable and printable electronic circuits.

Graphene is a nano-thin layer of the carbon-based graphite that pencils write with. It is far stronger than steel and a great conductor. But when electrons move through it, they do so in straight lines and their high velocity does not change. “If they hit a barrier, they can’t turn back, so they have to go through it,” Andrei said. “People have been looking at how to control or tame these electrons.”

Her team managed to tame these wild electrons by sending voltage through a high-tech microscope with an extremely sharp tip, also the size of one atom. They created what resembles an optical system by sending voltage through a scanning tunneling microscope, which offers 3-D views of surfaces at the atomic scale. The microscope’s sharp tip creates a force field that traps electrons in graphene or modifies their trajectories, similar to the effect a lens has on light rays. Electrons can easily be trapped and released, providing an efficient on-off switching mechanism, according to Andrei.

“You can trap electrons without making holes in the graphene,” she said. “If you change the voltage, you can release the electrons. So you can catch them and let them go at will.”

The next step would be to scale up by putting extremely thin wires, called nanowires, on top of graphene and controlling the electrons with voltages, she said.

North America-based manufacturers of semiconductor equipment posted $2.03 billion in billings worldwide in September 2017 (three-month average basis), according to the September Equipment Market Data Subscription (EMDS) Billings Report published today by SEMI.

SEMI reports that the three-month average of worldwide billings of North American equipment manufacturers in September 2017 was $2.03 billion.The billings figure is 6.9 percent lower than the final August 2017 level of $2.18 billion, and is 36.0 percent higher than the September 2016 billings level of $1.49 billion.

“Global semiconductor equipment billings of North American headquartered suppliers for September were $2.0 billion, down 12 percent from the peak level set in June of this year,” said Ajit Manocha, president and CEO of SEMI. “Total billings through the first three quarters of this amazing year have surpassed total billings for all of 2016.”

The SEMI Billings report uses three-month moving averages of worldwide billings for North American-based semiconductor equipment manufacturers. Billings figures are in millions of U.S. dollars.

Billings
(3-mo. avg)
Year-Over-Year
April 2017
$2,136.4
46.3%
May 2017
$2,270.5
41.8%
June 2017
$2,300.3
34.1%
July 2017
$2,269.7
32.9%
August 2017 (final)
$2,181.8
27.7%
September 2017 (prelim)
$2,031.1
36.0%

Source: SEMI (www.semi.org), October 2017
SEMI publishes a monthly North American Billings report and issues the Worldwide Semiconductor Equipment Market Statistics (WWSEMS) report in collaboration with the Semiconductor Equipment Association of Japan (SEAJ). The WWSEMS report currently reports billings by 24 equipment segments and by seven end market regions.