Category Archives: Displays

By Inna Skvortsova, SEMI

Electromagnetic interference (EMI) is an increasingly important topic across the global electronics manufacturing supply chain.  Progressively smaller geometries of ICs, lower supply voltages, and higher data rates all make devices and processes more vulnerable to EMI. Electrical noise, EMI-induced signal generated by equipment, and factors such as power line transients affect manufacturing processes, from wafer handling to wire bonding to PCB assembly and test, causing millions of dollars in losses to the industry. Furthermore, conducted emission capable of causing electrical overstress (EOS) can damage sensitive semiconductor devices.  Intel consistently names EOS as the “number one source of damage to IC components.” (Intel® Manufacturing Enabling Guide 2001, 2010, 2016).

While EMC (Electromagnetic Compatibility) standards, such as the European EMC Directive and FCC Testing and Certification, etc. provide limits on allowed emission levels of equipment, once the equipment is installed along with other tools, the EMI levels in actual operating environments can be substantially different and therefore impact the equipment operation, performance, and reliability. For example, (i) Occasional transients induce “extra” pulses in rotary feedback of the servo motor which in time contributes to robotic arm’s erroneous position eventually damaging the wafer; (ii) Combination of high-frequency noise from servo motors and switched mode power supplies in the tool creates difference in voltage between the bonding wire/funnel and the device which causes high current and eventual electrical overstress to the devices; (iii) Wafer probe test provides inconsistent results due to high level of EMI on the wafer chuck caused by a combination of several servo motors in the wafer handler.  Field cases like these illustrate the gap between EMC test requirements and real-life EMI tolerance levels and its impact on semiconductor manufacturing and handling.

EMI on AC power lines

EMI on AC power lines

New standard, SEMI E176-1017, Guide to Assess and Minimize Electromagnetic Interference (EMI) in a Semiconductor Manufacturing Environment, developed by the NA Chapter of the Global Metrics Technical Committee bridges this gap. Targeted to IC manufacturers and anyone handling semiconductor devices, such as PCB assembly and integration of electronic devices, SEMI E176 is a practical guide as well as an educational document. SEMI E176 provides a concise summary of EMI origins, EMI propagation, measurement techniques and recommendations on mitigation of undesirable electromagnetic emission to enable equipment co-existence and proper operation as well as reduction of EOS in its intended usage environment. Specifically, E176 provides recommended levels for different types of EMI based on IC geometries.

“SEMI E176 is likely the only active Standard in the entire industry providing recommendations on both acceptable levels of EMI in manufacturing environments and the means of achieving and maintaining these numbers,” said Vladimir Kraz, co-Chair of the NA Metrics Technical Committee and president of OnFILTER, Inc. “E176 is also unique because it is not limited just to semiconductor manufacturing, but has application across other industries.  Back-end assembly and test, as well as PCB assembly are just as affected by EMI and can benefit from SEMI E176 implementation as there are strong similarities between handling of semiconductor devices in IC manufacturing and in PCB assemblies and prevention of defects is often shared between IC and PCBA manufacturers.”

The newly published SEMI E176 and recently updated SEMI E33-0217, Guide for Semiconductor Manufacturing Equipment Electromagnetic Compatibility (EMC),provide complete documentation for establishing and maintaining low EMI levels in the manufacturing environment.

Undesirable emission has operational, liability and regulatory consequences.  Taming it is a challenging task and requires a comprehensive approach that starts from proper system design practices and ends with developing EMI expertise in the field.  The new SEMI 176 provides practical guidance on reducing EMI to the levels necessary for effective high yield semiconductor manufacturing today and in the future.

SEMI Standards development activities take place throughout the year in all major manufacturing regions. To get involved, join the SEMI International Standards Program at: www.semi.org/standardsmembership.

 

The Semiconductor Industry Association (SIA) today announced worldwide sales of semiconductors reached $37.1 billion for the month of October 2017, an increase of 21.9 percent from the October 2016 total of $30.4 billion and 3.2 percent more than last month’s total of $36.0 billion. October marked the global industry’s largest-ever monthly sales total. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average. Additionally, the latest WSTS industry forecast was revised upward and now projects annual global market growth of 20.6 percent in 2017 and 7.0 percent in 2018.

“The global semiconductor market continued to grow impressively in October, with sales surpassing the industry’s highest-ever monthly total and moving closer to topping $400 billion for 2017,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Market growth continues to be driven in part by high demand for memory products, but combined sales of all other semiconductor products were up substantially as well, showing the breadth of the market’s strength this year.”

Regionally, year-to-year sales increased in the Americas (40.9 percent), Europe (19.5 percent), China (19.1 percent), Asia Pacific/All Other (16.3 percent), and Japan (10.7 percent). Compared with last month, sales were up more modestly across all regions: the Americas (6.8 percent), China (2.6 percent), Europe (2.6 percent), Japan (1.8 percent), and Asia Pacific/All Other (1.5 percent).

Additionally, SIA today endorsed the WSTS Autumn 2017 global semiconductor sales forecast, which projects the industry’s worldwide sales will be $408.7 billion in 2017. This would mark the industry’s highest-ever annual sales, its first time topping $400 billion, and a 20.6 percent increase from the 2016 sales total. WSTS projects double-digit year-to-year increases across all regional markets for 2017: the Americas (31.9 percent), Asia Pacific (18.9 percent), Europe (16.3 percent), and Japan (12.6 percent). Beyond 2017, growth in the semiconductor market is expected to moderate across all regions. WSTS tabulates its semi-annual industry forecast by convening an extensive group of global semiconductor companies that provide accurate and timely indicators of semiconductor trends.

To find out how to purchase the WSTS Subscription Package, which includes comprehensive monthly semiconductor sales data and detailed WSTS Forecasts, please visit http://www.semiconductors.org/industry_statistics/wsts_subscription_package/. For detailed data on the global and U.S. semiconductor industry and market, consider purchasing the 2017 SIA Databook: https://www.semiconductors.org/forms/sia_databook/.

Oct 2017

Billions

Month-to-Month Sales                              

Market

Last Month

Current Month

% Change

Americas

7.99

8.54

6.8%

Europe

3.28

3.37

2.6%

Japan

3.14

3.20

1.8%

China

11.36

11.65

2.6%

Asia Pacific/All Other

10.18

10.33

1.5%

Total

35.95

37.09

3.2%

Year-to-Year Sales                         

Market

Last Year

Current Month

% Change

Americas

6.06

8.54

40.9%

Europe

2.82

3.37

19.5%

Japan

2.89

3.20

10.7%

China

9.78

11.65

19.1%

Asia Pacific/All Other

8.88

10.33

16.3%

Total

30.43

37.09

21.9%

Three-Month-Moving Average Sales

Market

May/Jun/Jul

Aug/Sep/Oct

% Change

Americas

6.94

8.54

23.0%

Europe

3.20

3.37

5.1%

Japan

3.04

3.20

5.2%

China

10.68

11.65

9.1%

Asia Pacific/All Other

9.77

10.33

5.8%

Total

33.63

37.09

10.3%

On October 27, SEMI China held a kickoff meeting for a new FlexTech Committee in Suzhou. FlexTech, a SEMI Strategic Association Partner, is devoted to fostering the growth, profitability and success of the flexible and printed electronics supply chain, and enabling the many smart products enabled by this new class of electronic intelligence. FlexTech offers collaboration opportunities among industry, academia, and research organizations working in the field.

Flexible, hybrid and printed electronics (FHE) are being designed into a wide range of products on the market today, in both consumer and industrial segments. These products include, components in today’s cell phones, human and health performance tools, security tags, sensor componentry in cars and airplanes, agricultural and environmental sensors, strain gauges in bridges and equipment, just to name a few.  Flexible electronic technology also intersects semiconductors, packaging, testing, materials, chemical, printed circuit boards, and display industries – for a total market size of one trillion yuan, and boosting the transformation of traditional industries in China.

China-FlexTech-photo1

Through group discussion at the meeting, Cui Zheng, researcher of SINANO of the Chinese Academy of Sciences, was elected Chairman of the committee. Zhang Jie, vice president of Changzhou Institute of Printed Electronics Industry, was elected Vice Chairman of the committee. SEMI FlexTech CTO Dr. Melissa Grupen-Shemansky gave the letter of appointment to the two appointees. Committee members hail from many different companies in the flexible, hybrid and printed electronics industry, including:

  • Applied Materials: Technology Director Sun Zhenghong
  • Beijing Institute of Graphic Communication: Professor Wang Wei
  • Beijing Sineva Technology Co., Ltd.: General Manager Zhang Mi
  • Guangdong Juhua Printing Display Technology Co., Ltd.: General Manager Fu Dong
  • Guangzhou OED Technologies Co., Ltd.: General Manager Wang Xidu
  • Guangzhou New Vision Opto-Electronic Technology Co., Ltd.: General Manager Wang Lei
  • Guangdong University of Technology:  Professor Cui Chengqiang
  • Royole Corporation: Marketing Department Director Dang Pangfeng
  • Semiconductor Institute of Chinese Academy of Sciences: Researcher Shen Guozhen
  • Shanghai Jiao Tong University: Professor Guo Xiaojun
  • Shenzhen Laibao Hi-Tech Co., Ltd.: Vice General Manager Wang Shimin
  • Sun Yat-Sen University: Professor Yang Boru

During the meeting, SEMI FlexTech CTO Dr. Melissa Grupen-Shemansky introduced FlexTech and its efforts in fostering an FHE eco-chain, including market research, R&D, and final pilot manufacturing. She expressed her optimism for strong FHE opportunities in China.

In the second half of the meeting, GM Wang Lei of Guangzhou New Vision Opto-Electronic Technology Co., Ltd. gave an introduction on the development trends of flexible OLED displays, researcher Shen Guozhen of the Semiconductor Institute of Chinese Academy of Sciences shared the research on soft sensor and multi-functional system based on low-dimensional semiconductor nanostructures, and Guangdong University of Technology Professor Cui Chengqiang presented applications for flexible packaging substrates in chip packaging.

The participants were also invited to visit the SINANO of the Chinese Academy of Sciences, where Dr. Zhang Dongyu gave a detailed introduction to the latest results of the research center.

The SEMI China FlexTech Committee will serve as an important tie between China and the global flexible hybrid and printed electronics industry.

For more information on SEMI China, visit http://www.semichina.org/index.html .

See-through electronic devices, such as transparent displays, smart windows and concealed circuits require completely translucent components if users are to digitally interact with their perceived surroundings and manipulate this information in real time. Now, KAUST researchers have devised a strategy that helps to integrate transparent conducting metal-oxide contacts with two-dimensional (2D) semiconductors into these devices.

Ultrathin semiconductor sheets that are composed of transition metals associated with chalcogen atoms, such as sulfur, selenium and tellurium, present exceptional electronic properties and optical transparency. However, to date, incorporating molybdenum sulphide (MoS2) monolayers into circuits has relied on silicon substrates and metal electrodes, such as gold and aluminum. The opacity of these materials has stalled attempts to develop fully transparent 2D electronic devices.

The KAUST team led by material scientists Xi-Xiang Zhang and Husam Alshareef has combined MoS2 monolayers with transparent contacts to generate a series of devices and circuits, such as transistors, inverters, rectifiers and sensors. The contacts consisted of aluminum-doped zinc oxide (AZO), a low-cost transparent and electrically conductive material that may soon replace the widely used indium-tin oxide. “We wanted to capitalize on the excellent electronic properties of 2D materials, while retaining full transparency in the circuits,” explains Alshareef.

According to Alshareef, the researchers grew the contacts over a large area by atomic-layer deposition, during which individual atom layers precisely accumulate on a substrate. Their main difficulty was to also form high-quality MoS2 monolayers on silicon-based substrates over a large area. “We overcame this by using an interfacial layer that promotes MoS2 growth,” says Alshareef.

The team also developed a water-based transfer process that moves the as-deposited large-area monolayers onto a different substrate, such as glass or plastic. The researchers then deposited the AZO contacts on the transferred 2D sheets before manufacturing the devices and circuits.

The resulting devices outperformed their equivalents equipped with opaque metal contacts, such as gate, source and drain electrodes, which demonstrates the high compatibility between transparent conducting metal-oxide contacts and MoS2 monolayers. “The transistors fabricated by the large-area process showed the lowest turn-on voltage of any reported MoS2 monolayer-based thin-film transistor grown by chemical vapor deposition,” says PhD student Zhenwei Wang, first author of the study.

“Additional circuits are planned that will help demonstrate that our approach is robust and scalable” says Alshareef.

Global demand for flat panel displays by area is forecast to grow 7.2 percent to 210 million square meters in 2018 compared to 2017, according to IHS Markit (Nasdaq: INFO). That will be the biggest annual growth since 2014.

“Growth in demand for flat panel displays next year will be mainly driven by migration to large displays, declining panel prices, and high expectations for a recovery in the global economy,” said Ricky Park, director at IHS Markit.

171120_Flat_Panel_Demand

The rise in demand area is largely attributed to a fall in retail prices of applications along with a drop in panel prices, which is expected to spur consumers’ appetite for various display devices. The sharp fall in panel prices in the second half of 2017 should soon be reflected in the prices of consumer electronics goods in the upcoming peak shopping seasons later this year and in early 2018. The cheaper panel prices are also expected to bolster demand for larger display products. As Gen 10.5 fabs are due to start operation in the first half of 2018, supply of super large TV panels, including 65- and 75-inch products, is projected to grow, according to the Display Long-term Demand Forecast Trackerreport by IHS Markit.

Increasing adoption of bezel-less flexible organic light-emitting diode (OLED) display in smartphones will lead to a growth in the size of overall smartphone displays next year. “Launches of new smartphones with large screens should stimulate consumers’ demand to replace their old phones,” Park said.

The flat panel TV market is also expected to see a significant rise in replacement demand, following the transition into digital broadcasting from analogue signal that started in late 2000s. TV sales in markets where the digital transition was completed in late 2000s grew at 10 to 21 percent in 2009 and 2010, much faster than the compound annual growth rate of 3 percent between 2004 and 2014. “A consumer’s TV replacement cycle is usually about 10 years,” Park said. “A hike in replacement demand for the next few years is expected.”

The global flat panel market will also get a boost from higher demand for new and larger TVs ahead of the 2018 PyeongChang Winter Olympics scheduled in February and the 2018 FIFA World Cup in Russia in June. “Panel sales in even years when major world sports events were held had grown at a faster rate than in odd years,” Park said.

In addition, the ongoing recovery in the global economy bodes well for the panel demand. Global gross domestic product (GDP) is forecast to grow 3.2 percent in 2018, following 3.1 percent in 2017 and 2.5 percent in 2016, according to IHS Markit. In particular, the economic recovery in North America and emerging markets, such as India, Brazil and Russia, is expected to be stronger than the previous year. A rise in non-ferrous metal prices, often a precursor to an economic recovery, is another positive sign.

Unlike the strong gain in demand by area, the growth in the global flat panel market in value is, however, projected to be restrained by the fall in the panel price in the second half of 2017. The panel demand by value is forecast to rise 1 percent to $126 billion in 2018 from 2017, according to IHS Markit.

Researchers at the University of Liverpool have made a discovery that could improve the conductivity of a type of glass coating which is used on items such as touch screens, solar cells and energy efficient windows.

Coatings are applied to the glass of these items to make them electrically conductive whilst also allowing light through. Fluorine doped tin dioxide is one of the materials used in commercial low cost glass coatings as it is able to simultaneously allow light through and conduct electrical charge but it turns out that tin dioxide has as yet untapped potential for improved performance.

Compensating acceptor fluorine interstitials (light green) dramatically reduce electronic performance of tin dioxide transparent conducting glass coatings doped with fluorine atoms (dark green). Credit: University of Liverpool

Compensating acceptor fluorine interstitials (light green) dramatically reduce electronic performance of tin dioxide transparent conducting glass coatings doped with fluorine atoms (dark green). Credit: University of Liverpool

In a paper published in the journal Advanced Functional Materials, physicists identify the factor that has been limiting the conductivity of fluorine doped tin dioxide, which should be highly conductive because fluorine atoms substituted on oxygen lattice sites are each expected to give an additional free electron for conduction.

The scientists report, using a combination of experimental and theoretical data, that for every two fluorine atoms that give an additional free electron, another one occupies a normally unoccupied lattice position in the tin dioxide crystal structure.

Each so-called “interstitial” fluorine atom captures one of the free electrons and thereby becomes negatively charged. This reduces the electron density by half and also results in increased scattering of the remaining free electrons. These combine to limit the conductivity of fluorine doped tin dioxide compared with what would otherwise be possible.

PhD student Jack Swallow, from the University’s Department of Physics and the Stephenson Institute for Renewable Energy, said: “Identifying the factor that has been limiting the conductivity of fluorine doped tin dioxide is an important discovery and could lead to coatings with improved transparency and up to five times higher conductivity, reducing cost and enhancing performance in a myriad of applications from touch screens, LEDs, photovoltaic cells and energy efficient windows.”

The researchers now intend to address the challenge of finding alternative novel dopants that avoid these inherent drawbacks.

Kateeva, a developer of inkjet deposition equipment solutions for OLED display manufacturing, today formally introduced a suite of YIELDjet inkjet equipment for red, green and blue (RGB) pixel deposition to enable the development and pilot production of large-size OLED displays, including televisions (TVs). The new YIELDjet family, which consists of the EXPLORE and EXPLORE PRO systems, provides display manufacturers with an industry-proven inkjet deposition platform to help bring the next generation of OLED TVs and other large-size displays to market. This year so far, Kateeva has shipped four systems from the EXPLORE family. The company expects to ship three additional systems by the second quarter of 2018.

The EXPLORE family broadens Kateeva’s product line and deepens the company’s penetration of the OLED display sector. The YIELDjet FLEX system already leads the inkjet deposition market for OLED mobile displays, with multiple systems deployed in mass production for OLED thin film encapsulation (TFE). The YIELDjet EXPLORE and EXPLORE PRO tools contain the same demonstrated core technologies found in the YIELDjet platform, with system designs that are optimized for rapid development of RGB pixel printing. Both tools, for instance, feature Kateeva’s unique nitrogen printing capability, which provides an oxygen- and- moisture-free enclosure for inkjet deposition. This capability is known to greatly increase OLED device lifetime.

The new products aim to help customers compress their in-house development- to- pilot-production cycle for printed RGB OLED displays, including TVs. To achieve this, the systems are designed for flexibility and scalability. The EXPLORE processes small panels (up to 200 mm square) for initial development, while the EXPLORE PRO targets mid-size panels (up to 55-in. display) for development through pilot production. As many as nine inks can be loaded into each tool at the same time. This enables accelerated evaluation of multiple materials during critical phases of process development.

The products offer an alternative to the traditional RGB pixel deposition approach of vacuum thermal evaporation (VTE) with a fine metal mask (FMM). Instead, printing is used to form the active layers within the pixels that generate the red, green and blue light emitted from the OLED device. Manufacturers are interested in using inkjet printing to overcome the scalability limitations of VTE with FMM.

VTE with FMM is currently used for small displays to fabricate patterned RGB active layers. However, the approach has not been successfully scaled to enable production of large displays such as those required for premium TVs. White OLED (WOLED) TV works around the issue by using VTE to form an un-patterned white OLED layer. This eliminates the need for FMM and creates the red, green, and blue light using three separate color filters (similar to the structure of a liquid crystal display). Although WOLED TVs are considered the best on the market, RGB OLED TVs fabricated using inkjet deposition can potentially offer superior performance. Moreover, manufacturing costs could be 20 percent lower, according to a recent analysis.

The potential of inkjet-fabricated RGB OLED TVs, coupled with the enabling capabilities of the YIELDjet EXPLORE products, have generated excitement among OLED display manufacturers, according to Kateeva’s President and COO, Dr. Conor Madigan. “There is increasing enthusiasm among our customers to develop RGB OLED TVs and we believe our new systems will help them accelerate their initiatives,” he said. “These companies are innovating rapidly and pioneering novel processes to mass-produce differentiated displays. Our products let them utilize Kateeva’s unique technologies as part of their inkjet RGB pixel printing programs. We are excited to work with them to move this approach closer to mass production.”

The YIELDjet Inkjet Advantage

Kateeva’s inkjet solution for RGB pixel deposition R&D utilizes core disruptive features found in the company’s YIELDjet platform. This OLED production equipment solution has already helped display manufacturers transition to flexible OLED mass production with high yields and low costs. Now, the same features, coupled with additional innovations for RGB pixel printing, promise to enable a similar transition to RGB OLED TV mass production by addressing customers’ yield and productivity priorities. Key YIELDjet technical features and advantages include:

  • Pure process environment: Trace amounts of oxygen and moisture, as well as large particles, can degrade OLED device performance and reduce yield. The same impurities are known to degrade OLED device lifetime. Processing in a clean, high-purity environment, therefore, is a central requirement for OLED front-plane manufacturing equipment. The YIELDjet solution features a specially designed nitrogen-purged enclosure that delivers an ultra-pure printing environment and enables fast recovery after maintenance. The result is longer OLED lifetime, higher yields, and higher uptime.
  • Superior uniformity: Non-uniform deposition of the printed layer can create “mura”. Mura, which refers to visibly noticeable non-uniformities in the finished display, will reduce yield. Print non-uniformity can be caused by inherent variations in the nozzles contained in the print array. The YIELDjet platform addresses the issue by combining two proprietary technologies—ultra-fast print head monitoring and Smart Mixing™ software. A remote drop inspection (RDI) system measures the drop characteristics for every nozzle in the print array on a continuous basis so that the state of the print array is known at all times. The nozzle data is used to calibrate the proprietary Smart Mixing software, which determines the optimized nozzle mixing for each sub-pixel during the print. The result is a system that delivers displays that are free of print mura in mass production.
  • High resolution: To achieve the resolution required for a product like an 8K TV, a key printing imperative is ink drop placement accuracy. This requires high stage accuracy. To enable high stage accuracy for all glass sizes, Kateeva pioneered the use of a “floating stage” for inkjet printers. With this capability, the glass floats on a thin cushion of nitrogen, which flows from a specially designed stationary stage. As the glass is scanned at high speed over the nitrogen cushion, proprietary stage-error correction technology is deployed to ensure the high accuracies needed for RGB pixel printing.

In addition to RGB pixel printing, the EXPLORE tools can be configured to process OLED TFE. This allows customers who are interested in both applications to conduct R&D or pilot production with the same EXPLORE or EXPLORE PRO tool.

Kateeva, a developer of OLED production equipment solutions, today appointed Dr. Homer Antoniadis to the newly created role of Executive Vice President of Technology. With decades of technical and executive leadership in OLED displays and printed electronics, Dr. Antoniadis will drive the company’s technology development programs, and help customers optimize Kateeva’s YIELDjet systems for their OLED mass-production lines.

“Homer is among the early pioneers that brought OLED-enabled products into the mainstream,” said Kateeva’s President and COO, Dr. Conor Madigan. “A skilled technologist, he is particularly knowledgeable in OLED and printed electronics, with a talent for developing and productizing breakthrough technologies. His technical expertise will help us continue driving forward our applications programs in thin film encapsulation and RGB pixel deposition, and his broad technology vision will help ensure that Kateeva’s existing and new applications pipeline remains robust and focused on meeting our customers’ current and future needs. We’re thrilled to welcome Homer on board.”

“At Kateeva, I can fulfill my ambition to proliferate OLED technology while working with extraordinarily talented technologists,” said Dr. Antoniadis. “I’m excited to take a leadership role at the company.”

Dr. Antoniadis joins Kateeva from DuPont Silicon Valley Technology Center, where he served as CTO of the DuPont Photovoltaic Solutions Group following the company’s acquisition of Innovalight in 2011. Previously, he was CTO and VP of Engineering at Innovalight, a developer of silicon inks for the photovoltaic industry.

Before Innovalight, he held positions with Osram Opto Semiconductors, Hewlett-Packard Labs, and Xerox. At Osram, he led the worldwide OLED product development efforts, bringing a variety of display products from  R&D through engineering and into production. In addition, he raised funds and directed the company’s Department of Energy (DOE) Lighting Award program. Prior to Osram, he steered HP Labs’ OLED program to accomplishments that earned international recognition.

Widely recognized as an authority in the OLED and photovoltaics fields, Dr. Antoniadis is a frequent lecturer and conference chair at leading industry events. He served on the board of the International Photovoltaic Quality Assurance Task Force, as well as the PV Cell Tech Conference. In 2016, he was appointed to the National Research Energy Laboratory (NREL) External Advisory Council, and in March 2017, he was awarded the title of NextFlex Fellow.

Dr. Antoniadis has more than 70 publications in OLED displays, polymer materials, crystalline and amorphous silicon photovoltaics, and is a named inventor on more than 30 issued U.S. patents.

A native of Greece, he received his B.S. in physics from Ioannina University in Greece, and his M.S. and Ph.D. in physics from Syracuse University.

YIELDjet is a trademark of Kateeva, Inc.

With flexible active-matrix organic light-emitting diode (AMOLED) panel fabs building at a quicker pace than global demand, supply capacity of flexible AMOLED panels is forecast to be 44 percent higher than global demand in 2018, according to IHS Markit (Nasdaq: INFO).

The net area capacity of flexible AMOLED panels is expected to reach 4.4 million square meters in 2018, up 100 percent from 2017. However, demand for flexible AMOLED panels is increasing slower than suppliers’ expectation, at 69.9 percent to 2.4 million square meters in 2018, according to the AMOLED & Flexible Display Intelligence Service by IHS Markit.

171114_flexible_AMOLED_supply_capacity_and_demand_balance_forecast

“Panel makers had expected that flexible AMOLED panels would penetrate into the smartphone market fast,” said Jerry Kang, principal analyst of display research at IHS Markit. “But, this year, most smartphone brands have focused on LCD or rigid AMOLED wide-screens with an 18:9 or higher aspect ratio rather than curved screens using flexible AMOLED panels because the price of flexible AMOLED module is still much higher.”

According to the OLED Display Cost Model by IHS Markit, it costs 1.5 times more to produce flexible OLED panels in the Gen 6 production line than to make rigid OLED panels in the same Gen 6 line.

“The wide-screen smartphone is expected to maintain its competiveness against one with curved edge screen for a while,” Kang said.

Due to the high cost, smartphone brands use the flexible AMOLED panels for their highest-end product segment, making it more difficult for the second-tier flexible AMOLED panel suppliers to meet the product qualification. “This may result in seriously low fab utilization at the second-tier panel suppliers,” Kang said.

The AMOLED & Flexible Display Intelligence Service covers the latest trend and forecast of the AMOLED display industries (including shadow mask and PI substrates), technology and capacity analysis, and panel suppliers’ business strategies by region.

The OLED Display Cost Model provides more detailed cost analysis of OLED panels, including details of boards, arrays, luminescent materials, encapsulants, direct materials such as driver ICs. The report also covers overheads such as occupancy rate, selling, general and depreciation costs. In addition, this report analyzes OLED panels in a wide range of sizes and applications.

AKHAN Semiconductor, a technology company specializing in the fabrication and application of lab-grown, electronics-grade diamond, announced today the issuance by the Japan Patent Office of a patent covering a method for the fabrication of diamond semiconductor materials, core to applications in automotive, aerospace, consumer electronics, military, defense, and telecommunications systems, amongst others.

“We are ecstatic to be awarded this key patent in Japan. Its issuance protects our proprietary interests in diamond semiconductor in one of the nations leading the globe in diamond research,” said Adam Khan, Founder & Chief Executive Officer, AKHAN Semiconductor, Inc. “Following this year’s issuances of a Taiwan diamond semiconductor patent, and a major US diamond transparent electronics patent, the Japan patent issuance is a further testament to AKHAN’s leadership in the diamond semiconductor space.”

Japan, which has actively funded millions of dollars into diamond electronics research since 2002, earlier this year announced marked progress in the development of diamond semiconductor device performance. The AKHAN granted and issued patent, JP6195831 (B2), is a foreign counterpart of other issued and pending patents owned by AKHAN Semiconductor, Inc. that are used in the company’s Miraj Diamond Platform products. As a key landmark patent, the claims protect uses far beyond the existing applications, including microprocessor applications. Covering the base materials common to nearly all semiconductor components, the intellectual property can be realized in everything from diodes, transistors, and power inverters, to fully functioning diamond chips such as integrated circuitry.

AKHAN’s flagship Miraj Diamond Glass for mobile display and camera lens is 6x stronger, 10x harder, and runs over 800x cooler than leading glass competitors like Gorilla Glass by coating standard commercial glass such as aluminosilicate, BK7, and Fused Silica with lab-grown nanocrystalline diamond. Diamond-based technology is capable of increasing power density as well as creating faster, lighter, and simpler devices for consumer use. Cheaper and thinner than its silicon counterparts, diamond-based electronics could become the industry standard for energy efficient electronics.

“This patent adds to the list of other key patents in the field of Diamond Semiconductor that are owned by the company, including the ability to fabricate transparent electronics, as well as the ability to form reliable metal contacts to diamond semiconductor systems,” said Carl Shurboff, President and Chief Operating Officer, AKHAN Semiconductor, Inc. “This patent bolsters the supporting evidence of AKHAN’s leadership in manufacturing diamond semiconductor products, and supports ongoing efforts with our major defense, aerospace and space system development partners.”