Category Archives: Displays

In a flexible display, the backplane, frontplane, and any encapsulants are all made from flexible materials. To date, such displays have been used primarily because they are thinner, lighter, and more durable than comparable rigid displays, and to a lesser extent because they are conformable to rigid but non-flat surfaces in devices such as mobile phone handsets, automobile dashboards, and appliance control panels.

In 2017, key flexible display components achieved cost and performance parity with their rigid counterparts for the first time, thus removing a key market barrier and opening the door to rapid adoption in a variety of otherwise-rigid devices such as e-readers and wearables. Such displays may also be incorporated into truly flexible devices such as credit cards, shelving labels, and smart signage, and in the near future they may form the basis of rollable and foldable devices that define entirely new market categories.

According to a new report from Tractica, the four leading technologies in flexible displays are LED, LCD, OLED, and e-paper, and the main applications for these technologies are phones and tablets, wearables, shelving labels, signage, automotive dashboards, appliance control panels, TV and video displays, smart cards, e-writers, and e-readers. The market intelligence firm forecasts that flexible display shipments will increase from 169.9 million units in 2017 to 642.6 million units annually by 2022.

“The effect of flexible and conformable displays will be transformational,” says senior analyst Wil McCarthy. “They will literally change the appearance and function of our personal devices, our vehicles, our homes, and the built environment.”

Tractica’s report, “Flexible Displays”, examines the market trends and technology issues surrounding flexible displays and presents 6-year market forecasts, segmented by world region, for flexible display unit shipments, square meters, device pricing and revenue, and software applications during the period from 2017 through 2022. Flexible display applications are analyzed in depth, and the report also includes detailed profiles of 13 key industry players. An Executive Summary of the report is available for free download on the firm’s website.

Quantum dots are nanometre-sized semiconductor particles with potential applications in solar cells and electronics. Scientists from the University of Groningen and their colleagues from ETH Zürich have now discovered how to increase the efficiency of charge conductivity in lead-sulphur quantum dots. Their results will be published in the journal Science Advances on 29 September.

Quantum dots are clusters of some 1,000 atoms which act as one large ‘super-atom’. The dots, which are synthesized as colloids, i.e. suspended in a liquid like a sort of paint, can be organized into thin films with simple solution-based processing techniques. These thin films can turn light into electricity. However, scientists have discovered that the electronic properties are a bottleneck. ‘Especially the conduction of holes, the positive counterpart to negatively charged electrons’, explains Daniel Balazs, PhD student in the Photophysics and Optoelectronics group of Prof. Maria A. Loi at the University of Groningen Zernike Institute for Advanced Materials.

Stoichiometry

Loi’s group works with lead-sulphide quantum dots. When light produces an electron-hole pair in these dots, the electron and hole do not move with the same efficiency through the assembly of dots. When the transport of either is limited, the holes and electrons can easily recombine, which reduces the efficiency of light-to-energy conversion. Balazs therefore set out to improve the poor hole conductance in the quantum dots and to find a toolkit to make this class of materials tunable and multifunctional.

‘The root of the problem is the lead-sulphur stoichiometry’, he explains. In quantum dots, nearly half the atoms are on the surface of the super-atom. In the lead-sulphur system, lead atoms preferentially fill the outer part, which means a ratio of lead to sulphur of 1:3 rather than 1:1. This excess of lead makes this quantum dot a better conductor of electrons than holes.

Thin films

In bulk material, transport is generally improved by ‘doping‘ the material: adding small amounts of impurities. However, attempts to add sulphur to the quantum dots have failed so far. But now Balazs and Loi have found a way to do this and thus increase hole mobility without affecting electron mobility.

Many groups have tried to combine the addition of sulphur with other production steps. However, this caused many problems, such as disrupting the assembly of the dots in the thin film. Instead, Balazs first produced ordered thin films and then added activated sulphur. Sulphur atoms were thus successfully added to the surface of the quantum dots, without affecting the other properties of the film. ‘A careful analysis of the chemical and physical processes during the assembly of quantum dot thin films and the addition of extra sulphur were what was needed to get this result. That’s why our group, with the cooperation of our chemistry colleagues from Zürich, was successful in the end.’

Devices

Loi’s team is now able to add different amounts of sulphur, which enables them to tune the electric properties of the super-atom assemblies. ‘We now know that we can improve the efficiency of quantum dot solar cells above the current record of 11%. The next step is to show that this method can also make other types of functional devices such as thermoelectric devices.’ It underlines the unique properties of quantum dots: they act as one atom with specific electric properties. ‘And now we can assemble them and can engineer their electrical properties as we wish. That is something which is impossible with bulk materials and it opens new perspectives for electronic and optoelectronic devices.’

Intel Corporation today announced that Andrew Wilson, CEO of Electronic Arts Inc., has been elected to Intel’s board of directors. Wilson’s election brings Intel’s board membership to 12.

“Andrew understands first-hand how technology and data create opportunity with his transformation of EA from offline packaged goods to a leader in online digital services,” said Intel Chairman Andy Bryant. “In addition to his experience leading and growing a global, technology-driven company, Andrew possesses a combination of creativity and business acumen that will further strengthen Intel’s board.”

Wilson, 43, joined Electronic Arts (“EA”) in May 2000, and has served as the company’s chief executive officer and a director of EA since September 2013. During his tenure as CEO, EA has launched groundbreaking new games and services, reached record player engagement levels across its global franchises, and transformed into one of the world’s leading digital entertainment companies. Prior to his appointment as CEO, Wilson held several leadership positions at EA, including executive vice president of EA SPORTS. He also serves as chairman of the board for the World Surf League.

The large thin film transistor (TFT) display market is expected to continue to expand in 2017 despite slower end-market demand, according to IHS Markit (Nasdaq: INFO).

While unit shipments are expected to be up 1 percent in 2017 to 688 million units, compared to the previous year, area shipment forecasts show growth of 6 percent in the same period, to 180 million square meters.

Figure 1

Among displays of 9 inches or larger, tablet PC displays are on track to record the highest year-on-year growth in unit shipments in 2017, with 10 percent growth to 93 million units. “It is because first-tier set brands are increasing the number of tablet PC models with larger screens. The new 10.5-inch iPad pro is a good example,” said Peter Su, principal analyst at IHS Markit.

The second fastest-growing application is notebook PC displays, with a 4 percent year-on-year growth to about 175 million units. “Chinese panel makers are aggressively trying to expand in this market, while first-tier panel makers are actually retreating panel production,” Su said.

On the flip side, TV displays are showing a contraction in 2017 by 3 percent year on year, dropping to 257 million units due to slower end-market demand. “Prices of large displays, particularly TV panels, have stayed high for almost a year. TV brands started revising down their business plan, cutting their panel purchases,” Su said.

In terms of area shipments, however, large displays for all applications are forecast to see growth in 2017 as larger screens become more popular with consumers. TV display accounts for 78 percent of total large display shipments by area, and is expected to see a 5 percent growth in 2017.

“First-tier panel makers, especially South Korean companies, already started shifting their production to larger sizes — 49 inches or larger — while reducing production of smaller panels, with lower profitability, to achieve better financial performance,” Su said. “Chinese panel makers are following suit and started increasing production of larger TV displays to 43-inch or larger.”

For a panel manufacturer’s perspective, preparing for potential oversupply in the near future is another reason behind the TV size migration. New fabs are under construction in China, including 10.5 generation, and could increase supply significantly.  “One way for panel makers to overcome the oversupply is to increase area consumption via size migration,” Su said.

LG Display is expected to continue accounting for the largest market share in 2017 with 21 percent as measured by unit shipments. BOE, a Chinese display maker that has been increasing its shipments significantly, is forecast to take 20.7 percent, up 2 percentage points from 2016, gaining on LG Display.

Figure 2

Upbeat about the growth prospects of Taiwan’s electronics sector, more than 45,000 visitors are expected to attend SEMICON Taiwan 2017 which opens tomorrow at Taipei’s Nangang Exhibition Center.  SEMICON Taiwan (September 13-15), the premier tradeshow and event for the electronics manufacturing supply chain, aims to connect the electronics manufacturing ecosystem─ both vertically and horizontally. The event will provide an overview of market trends and leading technologies in the industry, with forums and business-matching activities which will enable collaboration and new opportunities. The three-day event features 700 exhibitors covering over 1,800 booths.

Taiwan is forecast to spend US$12.3 billion in 2017, making it the second largest fab equipment spending region, according to the SEMI World Fab Forecast report just issued.  Taiwan is home to the leading share of the world’s IC foundry, and has the largest share of installed capacity ─ more than 20 percent. With 2017’s large semiconductor equipment investment, Taiwan’s semiconductor industry is booming and is also the world’s largest consumer of semiconductor materials ($9.8 billion in 2016) for the seventh consecutive year, bringing new opportunities in this increasingly critical sector.

Covering the hottest electronics topics like smart manufacturing and automation, high-tech facility, materials, laser, and emerging semiconductor technology, more than 70 presentations will be given on TechXPOT stages, providing the latest technology updates plus opportunities to meet potential partners and customers. To further connect attendees and exhibitors, SEMICON Taiwan will facilitate a series of networking events, like the Materials, High-Tech Facility, Laser, and Smart Manufacturing “Get Togethers” and the Supplier Search Program, creating business opportunities.

This year SEMICON Taiwan has added new theme pavilions including Circular Economy, Compound Semiconductor, Laser, and Opto Semiconductor.  In addition, 12 theme pavilions and eight country/region pavilions are featured.

This is the first year that the International Test Conference (ITC) will be co-located with SEMICON Taiwan 2017, also marking the first time that ITC is held in Asia. The conference will focus on the rapid growth of emerging applications like IoT and automotive electronics, and how testing technologies are challenged by rapid advancements of manufacturing processes, 3D stacking and SiP.

Also co-located with SEMICON Taiwan 2017, the SiP Global Summit will discuss three key system-in-package topics:

  •  Package Innovation in Automotive
  •  3D IC, 3D interconnection for AI and High-end Computing
  •  Innovative Embedded Substrate and Fan-Out Technology to Enable 3D-SiP Devices

The Jing Jing Lucky Draw is always an anticipated show activity with excellent prizes like the Dyson 3-in-1 smart fan, iPad Pro, and Nintendo Switch.

For more information about SEMICON Taiwan 2017, please visit http://www.semicontaiwan.org.

The latest update to the World Fab Forecast report, published on September 5, 2017 by SEMI, again reveals record spending for fab equipment. Out of the 296 Front End facilities and lines tracked by SEMI, the report shows 30 facilities and lines with over $500 million in fab equipment spending.  2017 fab equipment spending (new and refurbished) is expected to increase by 37 percent, reaching a new annual spending record of about US$55 billion. The SEMI World Fab Forecast also forecasts that in 2018, fab equipment spending will increase even more, another 5 percent, for another record high of about $58 billion. The last record spending was in 2011 with about $40 billion. The spending in 2017 is now expected to top that by about $15 billion.

fab equipment spending

Figure 1: Fab equipment spending (new and refurbished) for Front End facilities

Examining 2017 spending by region, SEMI reports that the largest equipment spending region is Korea, which increases to about $19.5 billion in spending for 2017 from the $8.5 billion reported in 2016. This represents 130 percent growth year-over-year. In 2018, the World Fab Forecast report predicts that Korea will remain the largest spending region, while China will move up to second place with $12.5 billion (66 percent growth YoY) in equipment spending. Double-digit growth is also projected for Americas, Japan, and Europe/Mideast, while other regions growth is projected to remain below 10 percent.

The World Fab Forecast report estimates that Samsung is expected to more than double its fab equipment spending in 2017, to $16-$17 billion for Front End equipment, with another $15 billion in spending for 2018. Other memory companies are also forecast to make major spending increases, accounting for a total of $30 billion in memory-related spending for the year. Other market segments, such as Foundry ($17.8 billion), MPU ($3 billion), Logic ($1.8 billion), and Discrete with Power and LED ($1.8 billion), will also invest huge amounts on equipment. These same product segments also dominate spending into 2018.

In both 2017 and 2018, Samsung will drive the largest level in fab spending the industry has ever seen. While a single company can dominate spending trends, SEMI’s World Fab Forecast report also shows that a single region, China, can surge ahead and significantly impact spending. Worldwide, the World Fab Forecast tracks 62 active construction projects in 2017 and 42 projects for 2018, with many of these in China.

For insight into semiconductor manufacturing in 2017 and 2018 with more details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage (www.semi.org/en/MarketInfo/FabDatabase) and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,200 facilities including over 80 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.

Flex Logix Technologies, Inc., the supplier of embedded FPGA IP and software, today announced that it has joined the TSMC IP Alliance Program included in TSMC’s Open Innovation Platform.

Flex Logix has worked closely with TSMC since Flex Logix was founded in 2014 and now has its EFLX Embedded FPGA IP and software tools available for TSMC 16FFC/FF+, TSMC 28HPM/HPC and TSMC 40ULP/LP. For each EFLX IP core in each process, Flex Logix has designed, fabricated and validated a validation chip to demonstrate full-speed, high utilization performance and power specs over the full temperature and voltage operating ranges. Flex Logix has worked with TSMC to ensure its documentation, design methodology, validation chip architecture and testing all meet TSMC’s rigorous standards to become an IP Alliance Member.

EFLX embedded FPGA arrays are available on these TSMC processes in a wide range of sizes from 100 LUTs to >100,000 LUTs with options for DSP/MAC and any type/size RAM. Flex Logix will implement EFLX embedded FPGA on any additional TSMC process node as TSMC customers request. Over time, Flex Logix expects EFLX to be available on every node from 180nm to 7nm.

“Flex Logix offers high density, high performance, scalable embedded FPGA,” said Suk Lee, TSMC Senior Director, Design Infrastructure Marketing Division. “We see good customer activity and interest in this emerging Semiconductor IP category and are pleased to have Flex Logix as an IP Alliance Member.”

Embedded FPGA is a new type of semiconductor IP enabling high-volume chip designers to incorporate reconfigurable logic to allow chips to be updated even in-system to adapt to new standards, new protocols, new algorithms and to customize chips for customers faster and more cost effectively than mask changes. Applications for embedded FPGA exist for networking, wireless base station, data center, deep learning, microcontroller, IoT, aerospace/defense and a range of other markets.

“We are proud to be joining the TSMC IP Alliance and appreciate TSMC’s support in helping us achieve membership,” said Geoff Tate, CEO of Flex Logix. “Our customers are in fab, in design, and in evaluation of EFLX embedded FPGA for a wide range of applications and our IP Alliance membership will enable us to support them even better going forward.”

FlexTech, a SEMI strategic association partner, will host a one-day Flexible Hybrid Electronics and Sensors Automotive Industry workshop in Detroit, Michigan on September 13, 2017 to explore how FHE adds functionality, decreases weight and impacts design. Automotive and electronics industry leaders will gather to discuss the market demands and challenges with automotive technology and present disruptive changes brought by flexible hybrid electronics (FHE) and sensors.

The forum will breakdown the topic into four key areas: OEM applications; market analysis and forecasts; challenges to integration; and solutions for Tier 2 and Tier 3 suppliers. Speakers include representatives from SBD Automotive, Fiat-Chrysler Group LLC, Velodyne LiDAR, Lumitex, Alpha Micron, NextFlex, Auburn University, Universal Instruments, Interlink Electronics, Georgia Institute of Technology, DuPont Photovoltaics & Advanced Materials and more.

“This forum is an excellent opportunity to discover the possibilities of flexible electronic systems incorporating advanced semiconductors, MEMS, and sensors, which will provide lightweight, sensor networks that conform, curve, and possibly more.  New automotive applications in this area will enable wholly new approaches for the in-cabin driving experience,” said Dr. Melissa Grupen-Shemansky, CTO for Flexible Electronics & Advanced Packaging at SEMI | FlexTech.

Company tours to Ford and a networking dinner are scheduled for September 12, 2017. For more information on the forum and how to register visit the event websiteat www.semi/org/en/FHE-forum-summary.

Leti today announced that the European R&D project known as PiezoMAT has developed a pressure-based fingerprint sensor that enables resolution more than twice as high as currently required by the U.S. Federal Bureau of Investigation (FBI).

The project’s proof of concept demonstrates that a matrix of interconnected piezoelectric zinc-oxide (ZnO) nanowires grown on silicon can reconstruct the smallest features of human fingerprints at 1,000 dots per inch (DPI).

“The pressure-based fingerprint sensor derived from the integration of piezo-electric ZnO nanowires grown on silicon opens the path to ultra-high resolution fingerprint sensors, which will be able to reach resolution much higher than 1,000 DPI,” said Antoine Viana, Leti’s project manager. “This technology holds promise for significant improvement in both security and identification applications.”

The eight-member project team of European companies, universities and research institutes fabricated a demonstrator embedding a silicon chip with 250 pixels, and its associated electronics for signal collection and post-processing. The chip was designed to demonstrate the concept and the major technological achievements, not the maximum potential nanowire integration density. Long-term development will pursue full electronics integration for optimal sensor resolution.

 

The project also provided valuable experience and know-how in several key areas, such as optimization of seed-layer processing, localized growth of well-oriented ZnO nanowires on silicon substrates, mathematical modeling of complex charge generation, and synthesis of new polymers for encapsulation. The research and deliverables of the project have been presented in scientific journals and at conferences, including Eurosensors 2016 in Budapest.

The 44-month, €2.9 million PiezoMAT (PIEZOelectric nanowire MATrices) research project was funded by the European Commission in the Seventh Framework Program. Its partners include:

  • Leti (Grenoble, France): A leading European center in the field of microelectronics, microtechnology and nanotechnology R&D, Leti is one of the three institutes of the Technological Research Division at CEA, the French Alternative Energies and Atomic Energy Commission. Leti’s activities span basic and applied research up to pilot industrial lines. www.leti-cea.com/cea-tech/leti/english 
  • Fraunhofer IAF (Freiburg, Germany): Fraunhofer IAF, one of the leading research facilities worldwide in the field of III-V semiconductors, develops electronic and optical devices based on modern micro- and nanostructures. Fraunhofer IAF’s technologies find applications in areas such as security, energy, communication, health, and mobility. www.iaf.fraunhofer.de/en
  • Centre for Energy Research, Hungarian Academy of Sciences (Budapest, Hungary):  The Institute for Technical Physics and Materials Science, one of the institutes of the Research Centre, conducts interdisciplinary research on complex functional materials and nanometer-scale structures, exploration of physical, chemical, and biological principles, and their exploitation in integrated micro- and nanosystems www.mems.hu, www.energia.mta.hu/en
  • Universität Leipzig (Leipzig, Germany): Germany’s second-oldest university with continuous teaching, established in 1409, hosts about 30,000 students in liberal arts, medicine and natural sciences. One of its scientific profiles is “Complex Matter”, and contributions to PIEZOMAT are in the field of nanostructures and wide gap materials. www.zv.uni-leipzig.de/en/
  • Kaunas University of Technology (Kaunas, Lithuania): One of the largest technical universities in the Baltic States, focusing its R&D activities on novel materials, smart devices, advanced measurement techniques and micro/nano-technologies. The Institute of Mechatronics specializes on multi-physics simulation and dynamic characterization of macro/micro-scale transducers with well-established expertise in the field of piezoelectric devices. http://en.ktu.lt/ 
  • SPECIFIC POLYMERS (Castries, France): SME with twelve employees and an annual turnover of about 1M€, SPECIFIC POLYMERS acts as an R&D service provider and scale-up producer in the field of functional polymers with high specificity (>1000 polymers in catalogue; >500 customers; >50 countries). www.specificpolymers.fr/
  • Tyndall National Institute (Cork, Ireland): Tyndall National Institute is one of Europe’s leading research centres in Information and Communications Technology (ICT) research and development and the largest facility of its type in Ireland. The Institute employs over 460 researchers, engineers and support staff, with a full-time graduate cohort of 135 students. With a network of 200 industry partners and customers worldwide, Tyndall generates around €30M income each year, 85% from competitively won contracts nationally and internationally. Tyndall is a globally leading Institute in its four core research areas of Photonics, Microsystems, Micro/Nanoelectronics and Theory, Modeling and Design. www.tyndall.ie/
  • OT-Morpho (Paris, France): OT-Morpho is a world leader in digital security & identification technologies with the ambition to empower citizens and consumers alike to interact, pay, connect, commute, travel and even vote in ways that are now possible in a connected world. As our physical and digital, civil and commercial lifestyles converge, OT-Morpho stands precisely at that crossroads to leverage the best in security and identity technologies and offer customized solutions to a wide range of international clients from key industries, including Financial services, Telecom, Identity, Security and IoT. With close to €3bn in revenues and more than 14,000 employees, OT-Morpho is the result of the merger between OT (Oberthur Technologies) and Safran Identity & Security (Morpho) completed in 31 May 2017. Temporarily designated by the name “OT-Morpho”, the new company will unveil its new name in September 2017. For more information, visit www.morpho.com and www.oberthur.com

BY PETE SINGER, Editor-in-Chief

At a SEMICON West press conference, SEMI released its Mid-year Forecast. Worldwide sales of new semiconductor manufacturing equipment are projected to increase 19.8 percent to total $49.4 billion in 2017, marking the first time that the semiconductor equipment market has exceeded the market high of $47.7 billion set in 2000. In 2018, 7.7 percent growth is expected, resulting in another record-breaking year—totaling $53.2 billion for the global semiconductor equipment market.

“It’s really an exciting time for the industry in the terms of technology, the growth in information and data and that’s all going to require semiconductors to enable that growth,” said Dan Tracy, senior director, IR&S at SEMI.

The average of various analysts forecast the semiconductor industry in general 12% growth for the year. “It’s a very good growth year for the industry,” Tracy said. “In January, the consensus was about 5% growth for the year and with the improvement in the market and the firmer pricing for memory we see an increase in the outlook for the market.”

The SEMI Mid-year Forecast predicts wafer processing equipment is anticipated to increase 21.7 percent in 2017 to total $39.8 billion. The other front-end segment, which consists of fab facilities equipment, wafer manufacturing, and mask/reticle equipment, will increase 25.6 percent to total $2.3 billion. The assembly and packaging equipment segment is projected to grow by 12.8 percent to $3.4 billion in 2017 while semiconductor test equipment is forecast to increase by 6.4 percent, to a total of $3.9 billion this year.

“Based on the May outlook, we are looking at a record year in terms of tracking equipment spending. This is for new equipment, used equipment, and spending related to the facility that installed the equipment. It will be about a $49 billion market this year. Next year, it’s going to grow to $54 billion, so we have two years in a row of back to back record spending,” Tracy said.

In 2017, South Korea will be the largest equipment market for the first time. After maintaining the top spot for five years, Taiwan will place second, while China will come in third. All regions tracked will experience growth, with the exception of Rest of World (primarily Southeast Asia). South Korea will lead in growth with 68.7 percent, followed by Europe at 58.6 percent, and North America at 16.3 percent.

SEMI forecasts that in 2018, equipment sales in China will climb the most, 61.4 percent, to a total of $11.0 billion, following 5.9 percent growth in 2017. In 2018, South Korea, Taiwan, and China are forecast to remain the top three markets, with South Korea maintaining the top spot to total $13.4 billion. China is forecasted to become the second largest market at $11.0 billion, while equipment sales to Taiwan are expected to reach $10.9 billion.