Category Archives: Displays

A major bottleneck in the commercialization of Micro LED displays is the mass transfer of micron-size LEDs to a display backplane. Research by LEDinside, a division of TrendForce, reveals that many companies across industries worldwide have entered the Micro LED market and are in a race to develop methods for the mass transfer process. However, their solutions have yet to meet the standard for commercialization in terms of production output (in unit per hour, UPH), transfer yield and size of LED chips (i.e. Micro LED is technically defined as LEDs that are smaller than 100 microns). These research findings can be found in LEDinside’s 3Q17 Micro LED Next Generation Display Industry Member Report: Analyses on Mass Transfer and Inspection/Repair Technologies.

Currently, entrants in the Micro LED market are working towards the mass transfer of LEDs sized around 150 microns. LEDinside anticipates that displays and projection modules featuring 150-micron LEDs will be available on the market as early as 2018. When the mass transfer for LEDs of this size matures, market entrants will then invest in processes for making smaller products.

Development of mass transfer solutions faces seven major challenges

“Mass transfer is one of the four main stages in the manufacturing of Micro LED displays and has many highly difficult technological challenges,” said Simon Yang, assistant research manager of LEDinside. Yang pointed out that developing a cost-effective mass transfer solution depends on advances in seven key areas: precision of the equipment, transfer yield, manufacturing time, manufacturing technology, inspection method, rework and processing cost.

LED suppliers, semiconductor makers and companies across the display supply chain will have to work together to develop specification standards for materials, chips and fabrication equipment used in Micro LED production. Cross-industry collaboration is necessary since each industry has its own specification standards. Also, an extended period of R&D is needed to overcome the technological hurdles and integrate various fields of manufacturing.

Mass transfer has to achieve five-sigma level before mass production of Micro LED displays is feasible

Using Six Sigma as the model for determining the feasibility of mass production of Micro LED displays, LEDinside’s analysis indicates that the yield of the mass transfer process must reach the four-sigma level to make commercialization possible. However, the processing cost and the costs related to inspection and defect repair are still quite high even at the four-sigma level. To have commercially mature products with competitive processing cost available for market release, the mass transfer process has to reach the five-sigma level or above in transfer yield.

As progress on mass transfer solutions continues, true Micro LED products are expected to first enter applications such as indoor displays and wearables

Even though no major breakthroughs have been announced, many technology companies and research agencies worldwide continue to invest in the R&D of mass transfer process. Some of the well-known international enterprises and institutions working in this area are LuxVue, eLux, VueReal, X-Celeprint, CEA-Leti, SONY and OKI. Comparable Taiwan-based companies and organizations include PlayNitride, Industrial Technology Research Institute, Mikro Mesa and TSMC.

There are several types of mass transfer solutions under development. Choosing one of them will depend on various factors such as application markets, equipment capital, UPH and processing cost. Additionally, the expansion of manufacturing capacity and the raising of the yield rate are important to product development.

According to the latest developments, LEDinside believes that the markets for wearables (e.g. smartwatches and smart bracelets) and large indoor displays will first see Micro LED products (LEDs sized under 100 microns). Because mass transfer is technologically challenging, market entrants will initially use the existing wafer bonding equipment to build their solutions. Furthermore, each display application has its own pixel volume specifications, so market entrants will likely focus on products with low pixel volume requirements as to shorten the product development cycle.

Thin film transfer is another away of moving and arranging micron-size LEDs, and some market entrants are making a direct jump to developing solutions under this approach. However, perfecting thin film transfer will take longer time and more resources because equipment for this method will have to be designed, built and calibrated. Such an undertaking will also involve difficult manufacturing related issues.

The global active-matrix organic light-emitting diode (AMOLED) panel market is forecast to surge 63 percent in 2017 from a year ago to $25.2 billion on growing demand for AMOLED panels in the smartphone and TV industries, according to IHS Markit (Nasdaq: INFO).

“Growing use of AMOLED panels in smartphones and rising sales of AMOLED TVs will mainly drive the growth of the AMOLED panel market,” said Ricky Park, director of display research at IHS Markit. “A steady rise in demand from head-mount displays and mobile PCs would also prop up the market.”

AMOLED_shipment_revenue_forecast_2

The demand for AMOLED displays has rapidly risen in the smartphone market in particular as the flexible substrate allows phones to be produced in various designs with a lighter and slimmer bodies. This year, leading smartphone makers have competitively rolled out premium phones that boast a very narrow bezel or nearly bezel-less designs.

“The AMOLED display market is also expected to get a boost from Apple’s decision to use an AMOLED screen in its iPhone series to be released later this year, and Chinese smartphone makers’ moving to newer applications of AMOLED panels,” Park said. “To meet the burgeoning demand, South Korean and Chinese display makers have been heavily investing in Generation 6 AMOLED fabs.”

According to Display Long-term Demand Forecast Tracker from IHS Markit, the TV industry, the second biggest market for AMOLED panels, will also play a major role in fostering the growth of the AMOLED panel market this year. LG Display, which currently dominates the AMOLED TV panel market, is set to embark on the operation of its second AMOLED TV panel line E4-2 with an aim to mass produce panels in the latter half of this year.

Bumped up by an increase in output, the AMOLED TV panel market is forecast to grow from 890,000 units last year to 1.5 million units this year. By 2021, the AMOLED panel market is projected to expand at a compound annual growth rate of 22 percent to exceed $40 billion.

As active-matrix organic light-emitting diode (AMOLED) displays quickly displace liquid crystal displays (LCDs) in smartphones, panel makers are rapidly adding new production capacity, accelerating the demand for the fine metal mask (FMM), a critical production component used to manufacture red-green-blue (RGB) AMOLEDs. The FMM market is forecast to grow at a compound annual growth rate (CAGR) of 38 percent from $234 million in 2017 to $1.2 billion in 2022, according to IHS Markit (Nasdaq: INFO).

 

AMOLED_FMM_revenue_forecast

In the AMOLED manufacturing process, FMM is a production component used to pattern individual red, green and blue subpixels. A heating source evaporates organic light-emitting materials, but vapor deposition can only be controlled precisely with the use of a physical mask. FMM — a metal sheet, only tens of microns thick, with millions of very small holes per panel — is the only production-proven method of accurately depositing RGB color components in high-resolution displays.

“FMM has become a bottleneck in the supply of AMOLED panels due to the manufacturing technology challenges posed by increasing resolutions and a limited supply base. As pixels per inch (PPI) increase, thinner FMMs with finer dimensions are required, which reduce mask production yield and useable lifetime,” said Jerry Kang, senior principal analyst of display research at IHS Markit.

Dai Nippon Printing (DNP) is the dominant FMM supplier, owing to its proprietary etching technology for very thin metal foils and mass production experience. Currently, DNP’s FMMs are used to fabricate the vast majority of AMOLED smartphone panels, and exclusively for high-end quad high definition (QHD) resolutions. “Most panel makers are now trying to procure DNP’s FMM in hopes of being able to quickly ramp new fabs to high yields,” Kang said.

The critical nature of FMM and rapid demand growth are encouraging a number of companies to develop alternative FMM technologies and enter the market. Panel makers are also encouraging new players as a second source to mitigate supply chain risk and create price competition. As the supply of FMM is a determinant factor in the AMOLED display market to meet its projected growth rates, and with the FMM market forecast to grow five times its current size by 2022, FMM is garnering intense interest from both set and panel makers alike and creating new opportunities for suppliers.

The AMOLED Shadow Mask Technology & Market – 2017 report from IHS Markit provides a comprehensive analysis of the latest technology and market trends for FMMs and open masks, as well as mask and panel supplier status updates, including forecasts of revenues, units, area and prices from 2014 to 2022.

 

Taiwan is the world’s largest consumer of semiconductor materials for the seventh consecutive year, bringing new opportunities in this increasingly critical sector.  SEMICON Taiwan (13-15 September), held at Taipei’s Nangang Exhibition Center, will feature over 1,700 booths and 700 exhibitors, and more than 45,000 attendees from the global electronics manufacturing supply chain. This year, in addition to the much-anticipated Executive Summit, themed “Transformation: A Key to Solution,” 27 international forums will be held, exploring major issues. Speakers from TSMC, UMC, Powerchip, NVIDIA, Micron and Amkor will share their insights on trends and strategies of the next-generation electronics industry.

According to the SEMI Material Market Data Report, Taiwan’s semiconductor materials consumption was US$9.8 billion in 2016 − the world’s largest. Global semiconductor manufacturing equipment billings reached US$13.1 billion in Q1 2017, exceeding the record quarterly high set in Q3 2000. These figures signal that application drivers will continue to drive the development of a supply chain feeding their manufacturing processes, equipment and materials.

“As SEMICON Taiwan celebrates its 22nd year, the exhibition area will be expanded to closely align with the four major trends of applications in the market, which include Internet of Things (IoT), Smart Manufacturing, Smart Transportation, and Smart Medtech,” said Terry Tsao, president of SEMI Taiwan. “This year, SEMICON Taiwan aims to increasingly connect the entire manufacturing ecosystem vertically and horizontally. In addition, it will provide an overview of market trends and leading technologies in the industry, with forums and business matching activities which will enable collaboration and new opportunities.”

Theme Pavilions and Region Pavilions Focus on Opportunities

In addition to the eight customary theme pavilions, five new pavilions are featured this year, and to promote cross-border collaboration, eight regional pavilions are offered. The 21 pavilions include:

Theme Pavilions
  • Automated Optical Inspection (AOI)
  • Chemical Mechanical Planarization (CMP)
  • High-Tech Facility
  • Materials
  • Precision Machinery
  • Secondary Market
  • Smart Manufacturing & Automation
  • Taiwan Localization

 

New Theme Pavilions
  • Circular Economy
  • Compound Semiconductor
  • Flexible Hybrid Electronics/Micro-LED
  • Laser
  • Opto Semiconductor

 

Regional Pavilions
  • Cross-Strait
  • German
  • Holland High-Tech
  • Korean
  • Kyushu (Japan)
  • Okinawa (Japan)
  • Silicon Europe
  • Singapore

Co-located with SEMICON Taiwan 2017, the SiP Global Summit will discuss three key system-in-package topics:

  • Package Innovation in Automotive
  • 3D IC, 3D interconnection for AI and High-end Computing
  • Innovative Embedded Substrate and Fan-Out Technology to Enable 3D-SiP Devices

Participants will share trends on 2.5D/3D IC technologies, and the evolution and challenges of embedded technologies and wafer level packaging.

This is the first year that the International Test Conference (ITC) will be co-located with SEMICON Taiwan 2017, also marking the first time that ITC is held in Asia. The conference will focus on the rapid growth of emerging applications like IoT and automotive electronics, and how testing technologies are challenged by rapid advancements of manufacturing processes, 3D stacking and SiP.

For more information about SEMICON Taiwan 2017, please visit www.semicontaiwan.org or follow us on Facebook.

By Michaël Tchagaspanian, Vice President of Sales and Marketing, Leti

Digital disruption begets innovation. Challenges equal opportunities. Those were clear messages during Leti Innovation Days recently in Grenoble, France. Over two days at the annual event, which this year coincided with Leti’s 50th anniversary, speakers and exhibitions highlighted challenges of the digital revolution and presented specific current-and-anticipated solutions for industry, healthcare and energy and the environment.

Coinciding with the launch of the administration of French President Emmanuel Macron, who has already talked of France becoming “a start-up nation”, Leti also noted the importance of creating and supporting startups that will help consumers, companies and countries address the challenges and opportunities of the digital revolution.

Citing challenges in the energy sector, Thierry Lepercq, executive vice president of research, technology and innovation at the international French energy company ENGIE, warned of potential energy blackouts and financial problems for traditional energy providers due to the growing penetration of alternative energy sources, the switch from fossil fuels – and energy sharing by households.

These developments, which ENGIE calls “Full 3D” – decarbonization, decentralization and digitalization – have destabilized traditional power systems and providers.

For example, a German residential battery-storage supplier allows residents to store energy at home and swap it on the grid, cutting out traditional electricity providers. Lepercq also noted that the rapid growth in the use of electric vehicles can load the grid with demand that was not anticipated even a few years ago. But the digital revolution also has prompted entrepreneurial responses. EV-Box, the Dutch company that has deployed more than 40,000 vehicle-charging stations in 20 countries, is gathering usage data, which will help officials understand the vehicles’ demands on the grid.

ENGIE acquired EV-Box this year as a strategic step towards operating in a completely new global energy paradigm.

Driving toward a new economy

Last month, Intel released a study that predicted autonomous vehicles will create a “Passenger Economy” – with mobility-as-a-service – that could grow to $800 billion in 2035 and to $7 trillion by 2050.

With autonomous vehicles, the car will no longer be a “stand-alone vehicle”, but “something that reacts with the environment”, said Mike Mayberry, corporate vice president and managing director of Intel Labs. Intel has opened advanced vehicle labs in the U.S. and Germany to explore the various requirements related to self-driving vehicles and the future of transportation. That includes sensing, in-vehicle computing, artificial intelligence, connectivity, and supporting cloud technologies and services.

When a panel discussion on driverless cars was asked when these vehicles will be in general use, Jean-François Tarabbia, CTO of Valeo, the automotive supplier to automakers worldwide, said “the better question is ‘why’”. And that depends in part on the industry’s ability to demonstrate vehicle safety. He said that traffic jams could be reduced by 30 percent with autonomous cars. Still, the cars will require a driver inside who will do something other than driving until he or she is needed to operate the vehicle.

Pierrick Cornet, brand incubator at Renault Nissan, said autonomous cars also will have to accommodate owners who occasionally want to drive their vehicles. For carmakers like Renault Nissan, the challenges are managing the cost and weight of the vehicles, which are loaded with batteries, as well as computing and sensing gear – and making them able to charge quickly.

Fabio Marchiò, automotive digital general manager at STMicroelectronics, noted that cars are the least-used appliance/machine in the household. He agreed with Tarabbia that safety and consumer resistance are primary roadblocks for the vehicles, but added that government regulations could slow down their widespread use.

Moore’s Law obtains

Outlining some of Intel’s R&D programs, Mayberry brushed aside frequent predictions that Moore’s Law has run its course. He said Intel expects Moore’s Law to be in effect at least through the next decade, because of the industry’s continued evolution to smaller technology nodes with new IC technologies.

In addition to focusing on enabling Moore’s Law going forward, Intel’s research on components and hardware includes developing novel integration techniques. But Intel Labs also is focused on enabling future product capabilities and “imagining what’s next”.

As part of that effort, Intel Labs has partnered with Princeton University to decode digital brain data, which is scanned using functional magnetic resonance imaging (fMRI). The goal is to reveal how neural activity gives rise to learning, memory and other cognitive functions such as human attention, control and decision-making.

Leti and Intel agreed last year to collaborate on strategic research programs, including the Internet of Things, high-speed wireless communication, security technologies and 3D displays.

Quantum computing

Also peering into the more-distant future, Leti CEO Marie Semeria noted development of Leti’s Si-CMOS quantum-technology platform.

“The quantum topic has recently become central, thanks to the huge advances made in solid-state implementation, both in superconducting systems and in silicon technologies,” she said. “Interest in silicon-based technologies is huge because of their reliability and their capability to reproduce industrial standards along with the low-noise characteristics and low variability of CMOS devices.”

Noting that the University of New South Wales recently demonstrated a promising two-qubit logic gate based on the silicon-28 isotope, Semeria said Leti had demonstrated the compatibility of such circuits with state-of-the-art CMOS processes.

“From an architectural point of view, it is clear that the future quantum computer will be hybrid. It will combine a quantum engine with a classical digital computer,” she explained. “The program that will run on such a machine will need to combine at least two computing models: a classical part, to prepare data and process results, and a quantum one. A tight connection between the two programming models will be necessary.”

With its history of pioneering in technology and its culture of spinning out new companies to further develop and commercialize innovative technologies, Leti is poised to help France achieve Macron’s goal: “I want France to be a ‘start-up nation’, meaning both a nation that works with and for the start-ups, but also a nation that thinks and moves like a start-up.”

Leti has launched 64 startups, including 13 in the past four years.

Digital innovations in healthcare

Jai Hakhu, president & CEO of HORIBA International Corporation (U.S.), explained how the digital revolution is creating in vitro diagnostics business potential by enabling delivery of preventive healthcare services in even remote regions of the world. In one of HORIBA and Leti’s joint projects, they are developing a hematology, microfluidics-based, lensfree, point-of-care and home-testing system that can be used in underdeveloped countries.

The collaboration is helping realize HORIBA’s vision of providing preventive self-testing anywhere in the world.

Leti’s start-up Avalun has developed a portable medical device for multiple-measurement capabilities using point-of-care testing. Other recent healthcare-related startups include Diabeloop, which is in the final stages of testing an artificial pancreas, and Aryballe Technologies, which is developing olfactory and gustatory sensors.

Routes to innovation

Those new companies were among the presenters at Leti’s immersive exhibition, “Routes to Innovation”, which was the focus of day two of the event. Entrepreneurs and Leti scientists offered more than 60 demonstrations of patented technologies, to show with concrete examples how Leti’s technological know-how and industrial transfer expertise can help French and international companies innovate and become more competitive.

The three “Digital Revolution” topics included “Micro-Nano Pathfinding”, showing how the diversity of Leti’s digital technologies are available to all economic sectors; “Cyber Physical Systems”, and “Business-Model Disruption”.

The “Environmental Transition” demos covered “Sustainable Activities”, “Monitoring Our World’ and “More with Less”. The “New Frontiers for Healthcare” demos covered “Prevention, Independence, Well Being”, “New Therapies” and “Analysis & Diagnosis”. 

Collaborating for technological sovereignty

During the event, Semeria and Fraunhofer Group for Microelectronics Chairman Hubert Lakner announced a wide-ranging collaboration to develop innovative, next-generation microelectronics technologies to spur innovation in their countries and strengthen European strategic and economic sovereignty.

The two institutes will initially focus on extending CMOS and More-than-Moore technologies to enable next-generation components for applications in the Internet of Things, augmented reality, automotive, health, aeronautics and other sectors, as well as systems to support French and German industries.

‘Smart everything everywhere’

Over the two days, a record number of guests, including CEOs, CTOs, journalists and special guests and speakers heard and saw examples of Leti’s advanced technology platforms, its commitment to research excellence and its vision for applying innovative technologies to challenges of the digital era.

Max Lemke, head of the Components and Systems Unit at the European Commission, noted that Leti’s contributions extend beyond microelectronics to cyber-physical systems, 5G, the Internet of Things, photonics and post-CMOS technologies. By supporting the digital transformation of industry, Leti plays a leading role in “smart everything everywhere”, Lemke said.

“Leti is excellently positioned to continue doing forward-looking research” on components and systems to build the foundation for Europe’s future competitiveness, and to play an instrumental role in supporting French and European industry in their digital transformation, he said.

By Dave Lammers

Keynote speakers Terry Higashi of Tokyo Electron Ltd. and Tom Caulfield of GlobalFoundries took the stage at the Yerba Buena Theater Tuesday morning to predict major changes in the goals and operations of the semiconductor industry.

higashi2013_11_600px_0 ThomasCaufieldSized

In many ways, 2017 has been marked by intense interest in the capabilities of neural networks and other forms of artificial intelligence (AI). Higashi, now a corporate director at TEL, predicted that AI and virtual reality are among the applications that will propel demand for semiconductors “almost without limit.” Neuromorphic processors, the veteran TEL executive said, “are one of the promising devices to enhance human creativity. They will be improved step by step, just as logic and memory devices were improved.”

Looking toward a future in which AI and human skills combine to resolve problems, Higashi predicted that today’s Von Neumann-based architectures and neuromorphic device will complement each other. “Artificial intelligence solutions will be proposed, and the challenges and problems will be solved by scientists and engineers. The combination of Von Neumann and neuromorphic computing gets us closer to true intelligence,” he said.

AI also will play a role in enhancing the immersive experiences promised by virtual reality, experiences which visionaries have predicted but which thus far mankind “has never fully experienced.”

Higashi said that by combining VR and AI, “we can attain a suspension of disbelief, and simply enjoy the experience. If we can provide the technologies, consumers will experience excitement and a form of happiness.”

Caulfield, the general manager of the Malta fab near Albany, agreed with Higashi’s assessment that that the semiconductor industry is seeing “new buds” that will bloom into large semiconductor markets.

However, Caulfield said that to achieve anything like the rate of technological progress seen over the first half century of the semiconductor industry, companies and customers will have to take collaboration to new levels. And he offered the collaboration between GlobalFoundries and AMD as an example.

“Collaboration, potentially, is the biggest thing we need to do. We need strategic partnerships, and not only among semiconductor manufacturers but also with equipment suppliers.”

At its Malta fab, GlobalFoundries builds all of AMD’s leading-edge discrete graphics engines and CPUs. “The AMD and GlobalFoundries engineering teams are so embedded with each other, one can hardly tell” which company an engineer works for, he said.

Noting the resurgence of AMD, Caulfield said “we are all proud to be part of that partnership.” And he pointed to another collaboration, between Samsung and GlobalFoundries, which allows customers to take the same 14nm design and choose whether to manufacture it at Samsung’s Austin fab or at Malta. “Customers can run photomasks in Austin or in Malta, New York and have the product look the same,” he said.

Government role

In such a collaboration-rich business environment, governments also have a role to play, Caulfield said.

“Public-private investments must imply a return to governments as well as to companies. Otherwise, they send the wrong message.” By investing several billion dollars in the Malta fab, GlobalFoundries and the state of New York put to work the well-educated young people who otherwise would have left the state in search of technology jobs. When Malta began operations, only 20 percent of the staff were educated in New York. Now, fully half of the workforce has benefited from a New York education.

“We were exporting talent. Now, the workforce has great opportunity within the state,” he said.

Both Higashi and Caulfield said major challenges face the industry. Higashi noted that innovation will be required to keep flash memory costs under control. “As data is captured by sensors and is transferred via the appropriate networks and stored in data centers, demand for NAND will be high. We must make huge efforts to reduce the overall cost, as the semiconductor industry is expected to provide enough volumes to support the Internet of Things.”

Caulfield said the performance of logic transistors has struggled to keep pace, even as density increases have continued. When the industry moved from 28nm to 14nm technologies, performance increased by fully 50 percent. But from 14nm to 10nm, speeds improved by about 18 percent, making shrinks primarily a cost improvement.

With the industry now focused on brining 7nm logic to the market, the question arises whether 5nm CMOS will provide enough performance to justify that node. While the jury on technology scaling is still out, Caulfield said the industry may have to move to gate all around (GAA) structures, or to non-silicon channel materials, in order to gain the kinds of performance improvements that customers expect from a new node.

Higashi said systems must get faster. “Real-time processing is crucial in the cyber world. And with robotic hands, there should be no delays in physical operations.”

“Memory, logic, and sensing make it possible for AI systems to solve problems much faster than a team of geniuses. We are now in a new era, one of super integration. In addition to improved specialty devices – based on logic, memory, and sensors – we must take these separate devices and put them together into fully integrated systems. It is time to make a pizza, with some of the best ingredients,” he said.

By Pete Singer

Luc Van den Hove, president and CEO of imec

Luc Van den Hove, president and CEO of imec

Speaking at imec’s International Technology Forum USA yesterday afternoon at the Marriott Marquis, Luc Van den Hove, president and CEO of imec, provided a glimpse of society’s future and explained how semiconductor technology will play a key role. From everything the IoT to early diagnosis of cancer through cell sorters, liquid biopsies and high-performance sequencing, technology will enable “endless complexity increase,” he said.

Other developments, almost all of which are being worked on at imec, include self-learning neuromorphic chips, brain implants, artificial intelligence, 5G, IoT and sensors, augmented and virtual reality, high resolution (5000 ppi) OLED displays, EOG based eye tracking and haptic feedback devices. He also acknowledged the critical importance of security issues, but suggested a solution. He noted that each chip has its own fingerprint due to nanoscale variability. That’s been a problem for the industry but we could “turn this limitation into an advantage,” he said, with an approach called PUFs — Physical Unclonable Functions (Figure 1).

Figure 1. Nanoscale variability has been a problem for the industry but we could be turned into an advantage with PUFs -- Physical Unclonable Functions.

Figure 1. Nanoscale variability has been a problem for the industry but we could be turned into an advantage with PUFs — Physical Unclonable Functions.

At the forum, imec also announced that its researchers, in collaboration with scientists from KU Leuven in Belgium and Pisa University in Italy, have performed the first material-device-circuit level co-optimization of field-effect transistors (FETs) based on 2D materials for high-performance logic applications scaled beyond the 10nm technology node. Imec also presented novel designs that would allow using mono-layer 2D materials to enable Moore’s law even below 5nm gate length. Additionally, imec announced that it demonstrated an electrically functional 5nm solution for Back-End-of-Line interconnects.

FETs based on 2D materials

2D materials, a family of materials that form two-dimensional crystals, may be used to create the ultimate transistor with a channel thickness down to the level of single atoms and gate length of few nanometers. A key driver that allowed the industry to follow Moore’s Law and continue producing ever more powerful chips was the continued scaling of the gate length. To counter the resulting negative short-channel effects, chip manufacturers have already moved from planar transistors to FinFETs. They are now introducing other transistor architectures such as nanowire FETs. The work reported by imec looks further, replacing the transistor channel material, with 2D materials as some of the prime candidates.

Figure 2. 2D materials, with the atomically-precise dimension control they enable, promise to become key materials for future innovations.

Figure 2. 2D materials, with the atomically-precise dimension control they enable, promise to become key materials for future innovations.

In a paper published in Scientific Reports, the imec scientists and their colleagues presented guidelines on how to choose materials, design the devices and optimize performance to arrive at circuits that meet the requirements for sub-10nm high-performance logic chips. Their findings demonstrate the need to use 2D materials with anisotropicity and a smaller effective mass in the transport direction. Using one such material, monolayer black-phosphorus, the researchers presented novel device designs that pave the way to even further extend Moore’s law into the sub-5nm gate length. These designs reveal that for sub-5nm gate lengths, 2D electrostatics arising from gate stack design become more of a challenge than direct source-to-drain tunneling. These results are very encouraging, because in the case of 3D semiconductors, such as Si, scaling gate length so aggressively is practically impossible.

“2D materials, with the atomically-precise dimension control they enable, promise to become key materials for future innovations. With advancing R&D, we see opportunities emerging in domains such as photonics, optoelectronics, (bio)sensing, energy storage, photovoltaics, and also transistor scaling. Many of these concepts have already been demonstrated in the labs,” says Iuliana Radu, distinguished member of technical staff at imec. “Our latest results presented in Scientific Reports, show how 2D materials could be used to scale FETs for very advanced technology nodes.”

5nm Solution for BEOL

The announced electrically functional solution for 5nm back-end-of-line (BEOL) is a full dual-damascene module in combination with multi-patterning and multi-blocking. Scaling boosters and aggressive design rules pave the way to even smaller dimensions.

As R&D progresses towards the 5nm technology node, the tiny Cu wiring schemes in the chips’ BEOL are becoming more complex and compact. Shrinking the dimensions also reduces the wires cross-sectional area, driving up the resistance-capacitance product (RC) of the interconnect systems and thus increasing signal delay. To overcome the RC delay challenge and enable further improvements in interconnect performance, imec explores new materials, process modules and design solutions for future chip generations.

One viable option is to extend the Cu-based dual-damascene technology – the current workhorse process flow for interconnects – into the next technology nodes. Imec has demonstrated that the 5nm BEOL can be realized with a full dual-damascene module using multi-patterning solutions. With this flow, trenches are created with critical dimensions of 12nm at 16nm. Metal-cuts (or blocks) perpendicular to the trenches are added in order to create electrically functional lines and then the trenches are filled with metal. Area scaling is further pushed through the introduction of fully self-aligned vias. Moreover, aggressive design rules are explored to better control the variability of the metal tip-to-tips (T2Ts).

Figure 3. Dense-pitch blocks enabled by a dual damascene flow and multi-patterning. The pattern is etched into the low-k and metallized.

Figure 3. Dense-pitch blocks enabled by a dual damascene flow and multi-patterning. The pattern is etched into the low-k and metallized.

Beyond 5nm, imec is exploring alternative metals that can potentially replace Cu as a conductor. Among the candidates identified, low-resistive Ruthenium (Ru) demonstrated great promise. The imec team has realized Ru nanowires in scaled dimensions, with 58nm2 cross-sectional area, exhibiting a low resistivity, robust wafer-level reliability, and oxidation resistance – eliminating the need for a diffusion barrier.

“The emergence of RC delay issues started several technology nodes ago, and has become increasingly more challenging at each node. Through innovations in materials and process schemes, new BEOL architectures and system/technology co-optimization, we can overcome this challenge as far as the 5nm node”, said Zsolt Tokei, imec’s director of the nano-interconnect program. “Imec and its partners have shown attainable options for high density area scaled logic blocks for future nodes, which will drive the supplier community for future needs.”

For the longer term, imec is investigating different options including but not limited to alternative metals, insertion of self-assembled monolayers or alternative signaling techniques such as low-energy spin-wave propagation in magnetic waveguides, exploiting the electron’s spin to transport the signal. For example, the researchers have experimentally shown that spin waves can travel over several micrometers, the distance required by short and medium interconnects in equivalent spintronic circuits.

A new type of semiconductor may be coming to a high-definition display near you. Scientists at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab) have shown that a class of semiconductor called halide perovskites is capable of emitting multiple, bright colors from a single nanowire at resolutions as small as 500 nanometers.

A 2-D plate showing alternating cesium lead chloride (blue) and cesium lead bromide (green) segments. Credit: Letian Dou/Berkeley Lab and Connor G. Bischak/UC Berkeley

A 2-D plate showing alternating cesium lead chloride (blue) and cesium lead bromide (green) segments. Credit: Letian Dou/Berkeley Lab and Connor G. Bischak/UC Berkeley

The findings, published online this week in the early edition of the Proceedings of the National Academy of Sciences, represent a clear challenge to quantum dot displays that rely upon traditional semiconductor nanocrystals to emit light. It could also influence the development of new applications in optoelectronics, photovoltaics, nanoscopic lasers, and ultrasensitive photodetectors, among others.

The researchers used electron beam lithography to fabricate halide perovskite nanowire heterojunctions, the junction of two different semiconductors. In device applications, heterojunctions determine the energy level and bandgap characteristics, and are therefore considered a key building block of modern electronics and photovoltaics.

The researchers pointed out that the lattice in halide perovskites is held together by ionic instead of covalent bonds. In ionic bonds, atoms of opposite charges are attracted to each other and transfer electrons to each other. Covalent bonds, in contrast, occur when atoms share their electrons with each other.

“With inorganic halide perovskite, we can easily swap the anions in the ionic bonds while maintaining the single crystalline nature of the materials,” said study principal investigator Peidong Yang, senior faculty scientist at Berkeley Lab’s Materials Sciences Division. “This allows us to easily reconfigure the structure and composition of the material. That’s why halide perovskites are considered soft lattice semiconductors. Covalent bonds, in contrast, are relatively robust and require more energy to change. Our study basically showed that we can pretty much change the composition of any segment of this soft semiconductor.”

In this case, the researchers tested cesium lead halide perovskite, and then they used a common nanofabrication technique combined with anion exchange chemistry to swap out the halide ions to create cesium lead iodide, bromide, and chloride perovskites.

Each variation resulted in a different color emitted. Moreover, the researchers showed that multiple heterojunctions could be engineered on a single nanowire. They were able to achieve a pixel size down to 500 nanometers, and they determined that the color of the material was tunable throughout the entire range of visible light.

The researchers said that the chemical solution-processing technique used to treat this class of soft, ionic-bonded semiconductors is far simpler than methods used to manufacture traditional colloidal semiconductors.

“For conventional semiconductors, fabricating the junction is quite complicated and expensive,” said study co-lead author Letian Dou, who conducted the work as a postdoctoral fellow in Yang’s lab. “High temperatures and vacuum conditions are usually involved to control the materials’ growth and doping. Precisely controlling the materials composition and property is also challenging because conventional semiconductors are ‘hard’ due to strong covalent bonding.”

To swap the anions in a soft semiconductor, the material is soaked in a special chemical solution at room temperature.

“It’s a simple process, and it is very easy to scale up,” said Yang, who is also a professor of chemistry at UC Berkeley. “You don’t need to spend long hours in a clean room, and you don’t need high temperatures.”

The researchers are continuing to improve the resolution of these soft semiconductors, and are working to integrate them into an electric circuit.

BY PETE SINGER, Editor-in-Chief

What if the automotive industry had achieved the incredible pace of innovation as the semiconductor industry during the last 52 years? A Rolls Royce would cost only $40, go around the world eight times on a gallon of gas, and have a top speed of 2.4 million miles per hour.

That point was made by Subi Kengeri speaking at The ConFab in May. Kengeri is vice president, CMOS Business Unit, at GlobalFoundries. He also noted that if one of today’s high performance graphics chips were produced using 1960 vs state-of-the-art “it would be the size of a football field.”

Clearly, no other industry can match the pace of innovation of the semiconductor industry. “The transistor count per square inch in 1965 was roughly 100. In 52 years, if you follow Moore’s Law of 2 years per innovation cycle, that gives 26 innovation cycles. That’s 100 millionX improvement (2X26),” Kengeri noted.

Of course, there has been plenty of innovation in the automotive industry. Interestingly, most of the exciting new innovations such as backup cameras, collision avoidance, navigation/ infotainment, self-parking, and anti-lock brakes are only possible because of semiconductor technology.

Kengeri said that Moore’s Law scaling will continue – “there’s no question about it,” he said – but there’s a growing need for new innovation to address the increasingly diverse array of semicon- ductor applications. These are driven by growth in mobile computing, development in IoT computing, the emergence of intelligent computing and augmented/virtual reality.

“Leading edge innovation will continue and all the leading manufacturers continue to invest, whether it is litho scaling in terms of EUV, or device archicture,” Kengeri said. “What is really important is how do we continue to innovate, how do we continue to get the value at competitive costs? Trying to get the scaling at any cost is not what is needed in the majority of the markets. It’s still okay at the very high end, for CPUs and servers, but in all markets, managing cost is really critical.”

“On top of all of that, we have to continue to deliver on time. Because of the complexity, things aren’t getting slower. We’re doing everything we can do continue to keep the same pace as we used to,” he added.

Kengeri said continued advances mean changing the way we think about innovation. It will require continued technical Innovation (materials and processes, device architecture and design-technology co-optimization), but – perhaps more importantly – business model innovation. This includes new thinking about long-term R&D focus/ investment, shared investments/learning/reuse, and consolidation and collaboration.

Pixelligent Technologies, a developer of high-index advanced materials (PixClear) for displays, solid state lighting and optical components, announces that it has been named the 2017 Manufacturer of the Year by Frost & Sullivan. It won this award in the small/midsize company category for companies with revenues under $1B, for its PixClearProcess that is revolutionizing chemical composite technology. The winner for the large company 2017 Manufacturer of the Year was Dow Chemical.

Over the past five years, Pixelligent has invested over $20 million in designing and building its advanced product development and manufacturing platform, the PixClearProcess. This proprietary platform has enabled Pixelligent to scale from a manufacturing capacity of grams-per-year, to one of the most sophisticated and highly capital efficient manufacturing lines in the world, capable of mass production volumes in the tons.

“We are deeply honored to be named the 2017 Manufacturer of the Year by Frost & Sullivan. It’s especially gratifying as we competed against some of the most respected high-tech manufacturers in the world. This award is also a great recognition of what we are most proud of, namely the balanced approach we have executed in developing both one of the most innovative materials in the world alongside one of the most advanced manufacturing lines in the world,” remarked Craig Bandes, CEO, Pixelligent Technologies.

The Company’s breakthrough PixClearProcess allows its customers to more efficiently tune and magnify the desired optical, mechanical, and electrical properties of their formulations with unprecedented levels of precision. Depending on product performance requirements, incorporating PixClear can deliver the highest possible light extraction, near perfect transmission, increased mechanical strength, and dramatic improvements in overall operating efficiencies. We enable our customers to deliver unprecedented levels of performance for OLED and HD displays, LED and OLED lighting devices, and optical components.