Category Archives: Displays

BOE, a Chinese display maker, takes top position in terms of large TFT-LCD display unit shipments in January 2017, according to IHS Markit (Nasdaq: INFO). For the first time ever, a Chinese display maker, taking a total share of 22.3 percent in unit shipments, is displacing South Korea’s display makers, the historical leaders in shipment volumes.

large display shipment

“BOE has been aggressively attacking the IT display market in shipment volumes at a time when top-tier panel makers started to turn focus away from this segment,” said Robin Wu, principal analyst of large display at IHS Markit.

BOE now takes number one position in larger-than-9-inch displays for tablets, notebook PCs and monitors in terms of unit shipment. In particular, notebook PC displays showed BOE taking a 29 percent share further widening the gap with the number two supplier Innolux, which took a 20 percent share. Meanwhile, the number one supplier for TV application is still LG Display with 21.4 percent followed by Innolux with 16.3 percent and BOE with 15.9 percent.

However, the South Korean panel makers are still holding their lead in terms of area shipment with LG display taking top position with 24.8 percent share followed by Samsung Display and Innolux, according to the latest Large Area Display Market Tracker by IHS Markit.

“South Korean panel makers still retain their advantage in large-sized TVs, a higher-demand segment that has benefited from increasing UHD TV penetration and consumer migration to TVs with larger screens. IHS Markit expects South Korean panel makers, known for their operational and technical strengths in large-size TV display manufacturing, will stay ahead of their Chinese competitors in terms of area shipments for the time being,” Wu said.

“That said, 2017 could be the year the Chinese display makers begin focusing on enriching their product portfolio, and make a play into the Korea’s strong hold for large-size TV displays,” he said.

According to latest IHS Markit Large Area Display Market Tracker, shipments of large-area TV panels decreased by 11 percent month-on-month (m/m), but increased by 4 percent year-on-year (y/y) to 51.7 million units in January 2017.

Unit shipments for applications in January 2017 were as follows:

  • For larger-than-9-inch tablet panels, shipments decreased by 20 percent m/m and 9 percent y/y.
  • For notebook PC panels, shipments declined 8 percent m/m but increased by 20 percent y/y.
  • For monitor panels, shipments dropped 6 percent m/m and kept flat y/y.
  • For TV panels, shipments were down 6 percent m/m and 3 percent y/y.

On an area basis, large panel shipments decreased by 8 percent m/m, but increased by 11 percent y/y in January 2017. Shipment area for LCD TV panels declined 7 percent m/m, due to seasonality but rose 11 percent y/y.

Mergers & acquisitions in 2017


February 19, 2017

BY SEMI STAFF

At SEMI’s Industry Strategy Syposium this year, a merger’s and acquisitions panel, moderated by Robert Maire of Semiconductor Advisors, took a look at how the industry might look in the future. The panel consisted of:

• Patrick Ho, senior research analyst, Semiconductor Capital Equipment at Stifel Nicolaus
• John Ippolito, VP Corporate Development at MKS Instruments
• Israel Niv,former CEO of DCGS ystems
• Tom St.Dennis, chairman of the Board of FormFactor.

Will the huge deals of 2015 and 2016 continue?

Setting up the panel, Maire observed that 2015 and 2016 were huge in transaction size (over $100 billion announced in 2015), but while the values of the deals have jumped, the number of deals has remained fairly consistent over the past several years. Also, China has more significantly moved into the M&A market in 2015, in the range $4 to $5 billion.

It appears that M&A will continue, but not at the same pace as 2015 and 2016 due to increasing political, regulatory, and industry pushback. In the equipment space, while big deals such as Advantest and Verigy were possible in 2011, the current climate has seen big deals falter including Applied Materials and Tokyo Electron; Lam Research and KLA-Tencor; and Aixtron and Fujian Grand Chip.

However, Maire observed that the motivations for M&A continue; for instance, Intel needs to offset a declining PC market and ramp IoT, VR, and Cloud activity and will likely consider M&A as part of its approach. Similarly, opportunities for equipment companies to increase scale and size exist for process control companies and in the back-end segment where further consolidation appears necessary.

China becomes a player

China’s ambitions in M&A may have been complicated by recent events, but with a $150 billion investment fund there are likely more opportunities ahead. China has stated the intent to move from producing just 10 percent of its IC consumption to 70 percent in ten years and catching up technologically by 2030. While some see concerns given China’s investment and later pricing collapses in FPD, PV, and LED, others see China’s efforts to increase its indig- enous production of ICs as similar to what has happened as the industry spread from U.S. and Europe to Japan, Taiwan, and Korea.

The panel responded to questions from Maire, questions submitted from the audience, and live audience questions. Ho noted that big deals in semiconductor equipment appear, for the time being, to be difficult or over. However, there is still low-hanging fruit and smaller deals. There is a need to focus on scale and size because customers (IC manufac- turers) are bigger and fewer. For example, Form Factor’s combination with Cascade brought size and scale and enabled Form Factor to be more competitive.

The future for semiconductor equipment consolidation

Several questions revolved around where M&A would happen in the semiconductor equipment space. There was general consensus that M&A of any of the “big five” (not named, but likely ASML, Applied Materials, Lam Research, Tokyo Electron, and KLA-Tencor) were off the table in the short term due to both regulatory pressure and industry pushback given fears of overly strong supplier power. Niv thought there were opportunities for consolidation in the metrology and process control space. Ippolito thought there might be further consoli- dation opportunities in motion control. St. Dennis thought there were opportunities throughout the whole supply chain. He pointed out that the benefits of acquiring a good company were significant, including great talent (difficult and time consuming to develop organically), synergies in not just SG&A, but in technology and field organizations.

The role of private equity was raised. Ippolito noted that the private market and private equity have roles to play in consoli- dation opportunities, noting the success of Atlas Copco with Edwards Vacuum and Oerlikon Leybold as an example.

Several questions focused on China. Niv pointed out the industry needs to think about China similar to how they thought about Japan when Japan was emerging as an IC manufacturing power. Partnering with Japanese companies was an effective strategy for many and brought long-term success in that market. Ippolito thought that very large China deals might be off the table for a while, but smaller deals would likely go through. He noted that $150 billion (the China investment fund) is a lot of money and that tends to find a way forward.

Gadgets are set to become flexible, highly efficient and much smaller, following a breakthrough in measuring two-dimensional ‘wonder’ materials by the University of Warwick.

This is a heterostructure of two-dimensional 'wonder' materials. Credit: Gabriel Constantinescu

This is a heterostructure of two-dimensional ‘wonder’ materials. Credit: Gabriel Constantinescu

Dr Neil Wilson in the Department of Physics has developed a new technique to measure the electronic structures of stacks of two-dimensional materials — flat, atomically thin, highly conductive, and extremely strong materials – for the first time.

Multiple stacked layers of 2D materials — known as heterostructures — create highly efficient optoelectronic devices with ultrafast electrical charge, which can be used in nano-circuits, and are stronger than materials used in traditional circuits.

Various heterostructures have been created using different 2D materials — and stacking different combinations of 2D materials creates new materials with new properties.

Dr Wilson’s technique measures the electronic properties of each layer in a stack, allowing researchers to establish the optimal structure for the fastest, most efficient transfer of electrical energy.

The technique uses the photoelectric effect to directly measure the momentum of electrons within each layer and shows how this changes when the layers are combined.

The ability to understand and quantify how 2D material heterostructures work – and to create optimal semiconductor structures — paves the way for the development of highly efficient nano-circuitry, and smaller, flexible, more wearable gadgets.

Solar power could also be revolutionised with heterostructures, as the atomically thin layers allow for strong absorption and efficient power conversion with a minimal amount of photovoltaic material.

Dr. Wilson comments on the work:

“It is extremely exciting to be able to see, for the first time, how interactions between atomically thin layers change their electronic structure. This work also demonstrates the importance of an international approach to research; we would not have been able to achieve this outcome without our colleagues in the USA and Italy.”

Dr Wilson worked formulated the technique in collaboration with colleagues in the theory groups at the University of Warwick and University of Cambridge, at the University of Washington in Seattle, and the Elettra Light Source, near Trieste in Italy.

Understanding how interactions between the atomic layers change their electronic structure required the help of computational models developed by Dr Nick Hine, also from Warwick’s Department of Physics.

Engineering researchers at Michigan State University have developed the first stretchable integrated circuit that is made entirely using an inkjet printer, raising the possibility of inexpensive mass production of smart fabric.

Imagine: an ultrathin smart tablet that can be stretched easily from mini-size to extra large. Or a rubber band-like wrist monitor that measures one’s heartbeat. Or wallpaper that turns an entire wall into an electronic display.

Chuan Wang, a Michigan State University engineering researcher, displays the stretchable electronic material he and colleagues developed in his lab. Credit: Michigan State University

Chuan Wang, a Michigan State University engineering researcher, displays the stretchable electronic material he and colleagues developed in his lab. Credit: Michigan State University

These are some of the potential applications of the stretchable smart fabric developed in the lab of Chuan Wang, assistant professor of electrical and computer engineering. And because the material can be produced on a standard printer, it has a major potential cost advantage over current technologies that are expensive to manufacture.

“We can conceivably make the costs of producing flexible electronics comparable to the costs of printing newspapers,” said Wang. “Our work could soon lead to printed displays that can easily be stretched to larger sizes, as well as wearable electronics and soft robotics applications.”

The smart fabric is made up of several materials fabricated from nanomaterials and organic compounds. These compounds are dissolved in solution to produce different electronic inks, which are run through the printer to make the devices.

From the ink, Wang and his team have successfully created the elastic material, the circuit and the organic light-emitting diode, or OLED. The next step is combining the circuit and OLED into a single pixel, which Wang estimates will take one to two years. There are generally millions of pixels just underneath the screen of a smart tablet or a large display.

Once the researchers successfully combine the circuit and OLED into a working pixel, the smart fabric can be potentially commercialized.

Conceivably, Wang said, the stretchable electronic fabric can be folded and put in one’s pocket without breaking. This is an advantage over current “flexible” electronics material technology that cannot be folded.

“We have created a new technology that is not yet available,” Wang said. “And we have taken it one big step beyond the flexible screens that are about to become commercially available.”

The flat-panel display (FPD) industry is in the midst of a historic wave of building new factories to manufacture active matrix organic light emitting diode (AMOLED) displays. This will drive $9.5 billion worth of AMOLED-specific production equipment purchases in 2017, according to IHS Markit (Nasdaq: INFO).

amoled equipment

According to the IHS Markit Display Supply Demand & Equipment Tracker, the equipment used for producing TFT backplanes will account for 47 percent of the total market in 2017, worth $4.4 billion in revenues. Organic light-emitting layer deposition and encapsulation tools will generate record revenues of $2.2 billion and $1.2 billion, respectively, this year.

“A variety of approaches can be used to deposit OLED materials. However, fine metal mask (FMM) evaporation tools, used for high-resolution mobile display production, account for the majority of the deposition equipment revenue in the current wave of new factory construction,” said Charles Annis, senior director at IHS Markit.

Evaporation machines are technically highly complicated, consisting of multiple cluster vacuum tools linked by robots. Each tool consists of evaporation sources and mask-docking capabilities, and requires substantial pumping systems. The tools are typically very large and can exceed 100 meters in length at a high-volume production factory. This subsequently requires significant capital outlays.

“The market for high-performance AMOLED deposition equipment is dominated by Canon Tokki, which accounted for over half of the market in 2016,” Annis said. “At least five other evaporation makers are rushing to take advantage of the explosive market opportunity. However, with strong panel maker interest in Canon Tokki’s unrivaled mass production experience, we expect the company to make further market share gains in 2017.”

AMOLEDs also require high-performance encapsulation to prevent sensitive organic light-emitting materials from environmental degradation. Encapsulation barriers are typically fabricated from metal, glass or stacks of thin films. However, a substantial share of the new AMOLED factories now under construction will target production of plastic, flexible displays, which rely on cost intensive, multi-layer thin film encapsulation (TFE).

“Flexible AMOLED makers have done an incredible job simplifying their TFE structures over the past several years. Even so, the productivity of depositing high-quality inorganic films and printing organic layers all in a closed environment remains a complicated challenge,” Annis said. “The requirement of a large number of deposition chambers and auxiliary tools make TFE lines one of the largest segments of the AMOLED equipment market.”

With an estimated $23 billion of expenditures on AMOLED production equipment between 2016 and 2018, equipment makers, particularly those offering deposition and encapsulation solutions, will be enjoying a historic sales opportunity.

The IHS Markit Display Supply Demand & Equipment Tracker covers metrics used to evaluate supply, demand and capital spending for all major FPD technologies and applications.

Intel Corporation yesterday announced plans to invest more than $7 billion to complete Fab 42, a project Intel had previously started and then left vacant. The high-volume factory is in Chandler, Ariz., and is targeted to use the 7 nanometer (nm) manufacturing process. The announcement was made by U.S. President Donald Trump and Intel CEO Brian Krzanich at the White House.

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

According to Intel’s official press release, the completion of Fab 42 in 3 to 4 years will directly create approximately 3,000 high-tech, high-wage Intel jobs for process engineers, equipment technicians, and facilities-support engineers and technicians who will work at the site. Combined with the indirect impact on businesses that will help support the factory’s operations, Fab 42 is expected to create more than 10,000 total long-term jobs in Arizona.

Mr. Trump said of the announcement: “The people of Arizona will be very happy. It’s a lot of jobs.”

There will be no incentives from the federal government for the Intel project, the White House said.

Context for the investment was outlined in an e-mail from Intel’s CEO to employees.

“Intel’s business continues to grow and investment in manufacturing capacity and R&D ensures that the pace of Moore’s law continues to march on, fueling technology innovations the world loves and depends on,” said Krzanich. “This factory will help the U.S. maintain its position as the global leader in the semiconductor industry.”

“Intel is a global manufacturing and technology company, yet we think of ourselves as a leading American innovation enterprise,” Krzanich added. “America has a unique combination of talent, a vibrant business environment and access to global markets, which has enabled U.S. companies like Intel to foster economic growth and innovation. Our factories support jobs — high-wage, high-tech manufacturing jobs that are the economic engines of the states where they are located.”

Intel is America’s largest high-technology capital expenditure investor ($5.1 billion in the U.S. 2015) and its third largest investor in global R&D ($12.1 billion in 20151). The majority of Intel’s manufacturing and R&D is in the United States. As a result, Intel employs more than 50,000 people in the United States, while directly supporting almost half a million other U.S. jobs across a range of industries, including semiconductor tooling, software, logistics, channels, OEMs and other manufacturers that incorporate our products into theirs.

The 7nm semiconductor manufacturing process targeted for Fab 42 will be the most advanced semiconductor process technology used in the world and represents the future of Moore’s Law. In 1968, Intel co-founder Gordon Moore predicted that computing power will become significantly more capable and yet cost less year after year.

The chips made on the 7nm process will power the most sophisticated computers, data centers, sensors and other high-tech devices, and enable things like artificial intelligence, more advanced cars and transportation services, breakthroughs in medical research and treatment, and more. These are areas that depend upon having the highest amount of computing power, access to the fastest networks, the most data storage, the smallest chip sizes, and other benefits that come from advancing Moore’s Law.

After the announcement, President Trump tweeted his thanks to Krzanich, calling the factory a great investment in jobs and innovation. In his email to employees, Krzanich said that he had chosen to announce the expansion at the White House to “level the global playing field and make U.S. manufacturing competitive worldwide through new regulatory standards and investment policies.”

“When we disagree, we don’t walk away,” he wrote. “We believe that we must be part of the conversation to voice our views on key issues such as immigration, H1B visas and other policies that are essential to innovation.”

During Mr. Trump’s presidential campaign, Krzanich had reportedly planned a Trump fundraiser event and then cancelled following numerous controversial statements from Trump regarding his proposed immigration policies. Intel has continued to be critical of the Trump administration’s immigration policies, joining over 100 other companies to file a legal brief challenging President Trump’s January 27 executive order which blocked entry of all refugees and immigrants from seven predominantly Muslim countries. Recently, Krzanich took to Twitter to criticize the order, voicing the company’s support of lawful immigration.

In 2012, Paul Otellini, then Intel’s CEO, made a similar promise about Fab 42 in the company of Obama, during a visit to Hillsboro, Oregon.

UniPixel, Inc. (NASDAQ: UNXL), a provider of high performance metal mesh capacitive touch sensors to the touchscreen and flexible display markets, announced today positive results from in-house testing conducted on its XTouch touch screen sensors for use in future flexible/foldable display devices such as smartphones, tablets, and wearable devices.

  • UniPixel conducted tests in which its XTouch sensors were folded and opened more than 200,000 times at a 2-millimeter radius at the fold.
  • During the tests, as well as at the conclusion of those tests, there was no damage to the XTouch sensors and no degradation to their performance capabilities.

Flexible displays will also need to have a thin and pliable cover lens that will bend consistently without damage.

  • UniPixel’s Diamond Guard scratch resistant cover lens technology is an excellent complement to XTouch sensors as it is applied in a very thin layer and will bend and seamlessly fold as it protects the underlying touch sensor metal mesh from abrasion damage.

Jalil Shaikh, chief operating officer of UniPixel, commented, “The results of our in-house testing were very positive. As flexible displays require thin and pliable touch sensors and cover lenses, our proprietary XTouch sensors and Diamond Guard are ideally suited for flexible display applications. We have already demonstrated to a major original equipment manufacturer (“OEM”) that our XTouch sensors deliver optimal performance with a lens coating as minute as five microns. As far as we are aware our XTouch sensors are the only sensors available that operate effectively with such a thin cover lens coating.

“We believe that as flexible technologies make their way to the market, our proprietary XTouch and Diamond Guard technologies can become staple components in a broad array of products. While foldable displays are in early consideration by OEMs, our products now meet the early specifications OEMs have targeted to create devices that work effectively with the necessary durability for broad market acceptance.”

Today, at the 2017 International Solid-State Circuits Conference in San Francisco, imec, the world-leading research and innovation hub in nanoelectronics and digital technologies, Holst Centre (established by imec and TNO) and Cartamundi demonstrate a world first thin-film tag on plastic, compatible with the near field communication (NFC) Barcode protocol, a subset of ISO14443-A, which is available as standard in many commercial smartphones. The innovative NFC tag is manufactured in a thin-film transistor technology using indium gallium zinc oxide thin-film transistors (IGZO TFT) on a plastic substrate.

Plastic electronics offers an appealing vision of low-cost smart electronic devices in applications where silicon chips were never imagined before. Item-level identification, smart food packaging, brand protection and electronic paper are just a few examples. Such new applications will require a continuous supply of countless disposable devices.  Imec’s IGZO TFT technology uses large-area manufacturing processes that allow for inexpensive production in large quantities – an ideal technology for ubiquitous electronic devices in the Internet-of-Everything.

“Making a plastic electronics device compatible to the ISO standard originally designed for silicon CMOS was a very challenging research and development expedition” stated Kris Myny, senior researcher at imec. “Our collaboration with Cartamundi enabled us to develop a truly industry-relevant solution”.

The researchers developed a self-aligned TFT architecture with scaled devices optimized for low parasitic capacitance and high cut-off frequency. This allowed design of a clock division circuit to convert incoming 13.56 MHz carrier frequency into system clock of the plastic chip. Optimizations at logic gate and system level reduced power consumption down to 7.5mW, enabling readout by commercial smartphones. “These research innovations are the first major achievements of my ERC starting grant”, stated Kris Myny, principal investigator and holder of the prestigious ERC starting grant FLICs (716426).

 “This innovative hardware solution of plastic NFC tags opens up several new possibilities for NFC deployments,” stated Alexander Mityashin, program manager at imec. “Thanks to the nature of thin-film plastics, the new tags can be made much thinner and they are mechanically very robust. Moreover, the self-aligned IGZO TFT technology offers manufacturing of chips in large volumes and at low cost.

The results were presented in paper 15.2 (“A Flexible ISO14443-A Compliant 7.5mW 128b Metal-Oxide NFC Barcode Tag with Direct Clock Division Circuit from 3.56MHz Carrier”, by K. Myny, Y.-C Lai, N. Papadopoulos, F. De Roose, M. Ameys, M. Willegems, S. Smout, S. Steudel, W. Dehaene, J. Genoe, Feb. 7, 2017).

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing, design, and research, today announced the global semiconductor industry posted sales totaling $338.9 billion in 2016, the industry’s highest-ever annual sales and a modest increase of 1.1 percent compared to the 2015 total. Global sales for the month of December 2016 reached $31.0 billion, equaling the previous month’s total and bettering sales from December 2015 by 12.3 percent. Fourth quarter sales of $93.0 billion were 12.3 percent higher than the total from the fourth quarter of 2015 and 5.4 percent more than the third quarter of 2016. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“Following a slow start to the year, the global semiconductor market picked up steam mid-year and never looked back, reaching nearly $340 billion in sales in 2016, the industry’s highest-ever annual total,” said John Neuffer, president and CEO, Semiconductor Industry Association. “Market growth was driven by macroeconomic factors, industry trends, and the ever-increasing amount of semiconductor technology in devices the world depends on for working, communicating, manufacturing, treating illness, and countless other applications. We expect modest growth to continue in 2017 and beyond.”

2016 worldwide revenue

Several semiconductor product segments stood out in 2016. Logic was the largest semiconductor category by sales with $91.5 billion in 2016, or 27.0 percent of the total semiconductor market. Memory ($76.8 billion) and micro-ICs ($60.6 billion) – a category that includes microprocessors – rounded out the top three segments in terms of total sales. Sensors and actuators was the fastest growing segment, increasing 22.7 percent in 2016. Other product segments that posted increased sales in 2016 include NAND flash memory, which reached $32.0 billion in sales for a 11.0 percent annual increase, digital signal processors ($2.9 billion/12.5 percent increase), diodes ($2.5 billion/8.7 percent increase), small signal transistors ($1.9 billion/7.3 percent), and analog ($47.8 billion/5.8 percent increase).

Regionally, annual sales increased 9.2 percent in China, leading all regional markets, and in Japan (3.8 percent). All other regional markets – Asia Pacific/All Other (-1.7 percent), Europe (-4.5 percent), and the Americas (-4.7 percent) – saw decreased sales compared to 2015.

“A strong semiconductor industry is strategically important to U.S. economic growth, national security, and technological leadership,” said Neuffer. “We urge Congress and the new administration to enact polices in 2017 that spur U.S. job creation, and innovation and allow American businesses to compete on a more level playing field with our competitors abroad. We look forward to working with policymakers in the year ahead to further strengthen the semiconductor industry, the broader tech sector, and our economy.”

(Note: This is Part 2 of a two-part article; Part 1 is here)

By Denny McGuirk, president and CEO, SEMI

“Do not go where the path may lead, go instead where there is no path and leave a trail,” was how I started last week’s article.  In that article we looked back on 2016 and the incredible progress of the industry and how it continually cuts new trail and keeps moving at the speed of Moore’s Law.  In this week’s follow up, I would like to talk about where the industry is going and how SEMI is changing to keep up with it.  As not everyone is aware of all SEMI does, the following is a quick reminder on how SEMI works to represent the industry before looking ahead to 2017, specifically, and beyond.

SEMI, the global non-profit association connecting and representing the worldwide electronics manufacturing supply chain, has been growing with the industry for 47 years.  SEMI has evolved over the years, but it has remained as the central point to connect.  Whether connecting for business, connecting for collective action, or connecting to synchronize technology, SEMI connects for member growth and prosperity.

Our industry is in the midst of a vast change.  To deal with the escalating complexity (making a semiconductor chip now uses the great majority of the periodic table of the elements) and capital cost, many companies have had to combine, consolidate, and increasingly collaborate along the length of the electronics manufacturing supply chain.

Some companies have broadened their businesses by investing in adjacent segments such as Flexible Hybrid Electronics (FHE), MEMS, Sensors, LEDs, PV, and Display.  Lines are blurring between segments – PCBs have morphed into flexible substrates, SiP is both a device and a system.  Electronics integrators are rapidly innovating and driving new form factors, new requirements, and new technologies which require wide cooperation across the length of the electronics manufacturing supply chain and across a breadth of segments.

The business is changing and SEMI’s members are changing.  When SEMI’s members change, SEMI must change, too – and SEMI has, and is.  SEMI developed a transformation plan, SEMI 2020, which I wrote about at the beginning of 2016.  We’re well on our way on this path and I’d like to update you on what we’ve accomplished and what’s to come.

SEMI 2020: “The Only Time You Should Look Back is to See How Far You’ve Come”

SEMI organized its SEMI 2020 transformation into three basic pillars of the SEMI 2020 strategy.  First, “reenergizing the base,” where SEMI focuses on enriching delivered value for the present day needs of its traditionally engaged membership base.  Second, “building communities and collaboration,” where SEMI works to develop specific forums and groups to meet specific needs and focus on specific technologies and products.  Third, “evolving SEMI value propositions for 2020,” which is the work of changing and innovating SEMI products and services for the needs of the industry in the future.

To date, SEMI has made great progress on these three pillars, here are a few examples:

1. Reenergize Base

  • Grew membership to ~2,000 global SEMI member companies
  • Growth in SEMICON expositions:
    • 248,738 global exhibition visitors in 2016 (up 8 percent year-over-year)
    • 4,410 global exhibitors in 2016 (up 5 percent in m2 of exhibition space sold)
  • Realignment of SEMI with organization changes in Americas, China, Europe, and HQ

2. Build Communities and Collaboration

 

  • FlexTech joined SEMI as Strategic Association Partner: SEMI FLEX conferences and programs are now in America, Europe, Korea, SEA and Japan
  • MEMS and Sensors Industry Group (MSIG) joined SEMI as Strategic Association Partner
  • SEMI Special Interest Groups developed and globalized — Chemical and Gases Manufacturers Group (CGMG), SEMI integrated Packaging and Test (SiPAT), Semiconductor Components, Instruments & Subsystems (SCIS), etc. — integrating broad areas of the supply chain
  • Development of SEMI Collaborative Technology Platforms with initial activities in Interconnect, Heterogeneous Integration Roadmap (partnered with IEEE CPMT, EDS, & Photonics Societies), etc.
  • Introduction and co-sponsoring of special interest programs such as FUTURECAR and regional SMC conferences

 

3. Evolve SEMI Value Propositions for 2020

  • SEMI (automation) Standards adapted for Smart Manufacturing (Industry 4.0)
  • Improved channels: new SEMI Global Update, new website, social media (follow SEMI on LinkedIn and Twitter), infographics
  • New data products such as 200mm reportpackaging report, mobile version of fab database (FabView)
  • New programs such as SEMI European MEMS conference
  • SEMI Foundation widening scope on Workforce Development
  • Advocacy activities leveraging collective action on trade, industry funding, export control, taxation, and sustainable manufacturing (including regulation of safety, materials, and environmental impact).

 

SEMI 2020: “The Road to Success is Always Under Construction”

 

SEMI continues to conduct surveys, uses multiple means of gathering the voice of the customer, and constantly aligns with guidance from its various committees, regional advisory boards, and International Board of Directors.  Despite its name, SEMI 2020 is a journey and not a destination.  SEMI will continue to evolve, develop, and add critical communities, services, products, and industry advocacy as SEMI’s members evolve.

While many of the SEMI activities captured above will continue, the following provides a sampling of activities more specific to SEMI’s work in 2017.

1. Reenergize Base

  • Increase frequency and depth of SEMI outreach and grow SEMI’s global membership and engagement
  • Launch SEMICON Europa 2017 co-location with productronica in Munich to connect to electronics manufacturing supply chain while preserving SEMI’s core community within its own show
  • Launch new engagement and experiential components at SEMICON West and SEMICON Japan
  • Move HQ headquarters to more member-suited, collaborative, efficient, and smaller building in Milpitas

 

2. Build Communities and Collaboration

 

  • Develop four vertical application collaborative forums:  World of IoT, Smart Automobile, Smart Manufacturing, and Smart MedTech
  • Fully integrate FlexTech and MSIG into SEMI’s global infrastructure and develop regional communities and events for these distinct adjacent communities
  • Provide association services to the Fab Owners Association as a SEMI Strategic Association Partnership
  • Continue to develop and increase global participation in SEMI Special Interest Groups such as SCIS, CGMG, and SiPAT to provide the specific and current needs of SEMI’s members

 

3. Evolve SEMI Value Propositions for 2020

  • Provide greater inbound and outbound member visibility and member services for fast-developing China region
  • Further develop SEMI Standards for Smart Manufacturing including a focus on big data and security
  • Advocate for funding for SEMI member pre-competitive projects in all global regions
  • Develop and improve industry training and education capabilities in all regions
  • Raise visibility for SEMI in securing unrestricted trade for semiconductor manufacturing and extended supply chain

“Roads Were Made for Journeys, Not Destinations”  

This quotation, generally attributed to Confucius, ties the themes of the road of this year’s annual update to my personal journey.  As you may know, at the end of 2016, I announced my intention to retire and while I’ll remain until a successor is identified, this will be my last SEMI update.

My personal journey has definitely not been a straight line and that’s made it all the more interesting – and, I hope, made me a “more skillful driver.”  Instead of the road, the sky used to be my home (although, with trips to Asia and Europe, sometimes it still feels like I’m still there!), with many years flying with the United States Air Force.  After that, my path led to the world of non-profit leadership and eventually, prior to SEMI, leading IPC, the interconnect trade association.  As the industry has blurred the borders of PC boards and substrates and semiconductor packages, maybe it was natural that I would also shift from IPC to SEMI.

I’ve been at SEMI for over five years and have constantly been amazed by the speed of the industry, the exceptional professionals and their astounding innovations, and the tight global cooperation and support.  When I started, there was a flashpoint in the potential jump to pursue the 450mm wafer size.  I got to know our industry and our members very quickly!  But, I almost immediately learned, this is a unique industry where collaboration across the electronics manufacturing supply chain is critical, where global stakeholders are well connected, and where – with Moore’s Law as precedent – industry leaders are used to working together, no matter if collaborators or competitors, for the good of the industry.

I am grateful to call many in our industry friends.  It is with regret that I won’t be seeing these friends as frequently as before, certainly.  However, I am pleased to be leaving behind a sound a valued SEMI organization with the professionals and plans in place to carry SEMI 2020 forward and deliver more valued services, products, and above all connections for its members.  I am happy for my time at SEMI and am grateful to the SEMI staff, SEMI International Board of Directors, and SEMI Members for the opportunity to serve the amazing association