Category Archives: Displays

By Bettina Weiss, VP, Business Development, SEMI

The 2nd annual SEMI Vietnam Semiconductor Strategy Summit, co-organized with the Saigon Hi-Tech Park and with FabMax as the premier sponsor, was held September 16-17, 2014 in Ho Chi Minh City. This year’s conference drew over 160 attendees from Vietnam, Europe, U.S. and other Southeast Asian countries for a full day of presentations, panel discussions, networking opportunities and interactions with government, the Ho Chi Minh City Semiconductor Industry Association (HSIA) and the Saigon Hi-Tech Park (SHTP).

Fig 1

 

Building on the success of the inaugural Summit in September of 2013, attendees and speakers commented on the sense of progress and growing vitality of the emerging semiconductor manufacturing ecosystem in Vietnam. In his welcome remarks, Kai Fai Ng, president, SEMI Southeast Asia spoke to the importance of Vietnam in Southeast Asia, and SEMI’s plans to facilitate business interactions between Vietnamese and Southeast Asian companies, support efforts in workforce development and education, and continue to strengthen the relationship with key stakeholders in the country.

Of particular interest to the audience was the keynote presentation by Dr. Pham Ba Tuan, senior expert at CNS, the company tasked with executing the 200mm fab project in Saigon Hi-Tech Park that was announced last year. Tuan stressed the importance of domestically manufactured devices to satisfy a rapidly growing need in Vietnam thanks to the country’s young population and high university graduation rates. Tuan indicated that, depending on the product choice and the cost structure of the new wafer fab, at least 5,000 wafer starts per months would be needed. Fab capacity would be a function of product mix, so wafer starts need to be adjustable from 5,000 to 10,000 wafer starts per month. This would necessitate an investment of “a few million USD” to enable equipment purchases, fab construction and infrastructure readiness.

Source: Saigon Industry Corporation (CNS)

Source: Saigon Industry Corporation (CNS)

Tuan emphasized the fact that the choice of technology was a crucial factor for the wafer fab, since it influences investment volume, product portfolio, as well as the ability to develop a skilled workforce throughout the manufacturing process. The choice for the wafer fab in Saigon Hi-Tech Park is 180nm on 200mm wafers, a node and substrate size choice that will enable the production of a wide variety of products. According to CNS, revenue from all products made in technologies down to 180nm already account for US$1 billion.

Fig 3

The project timeline presented at the SEMI conference shows construction to begin in Q3 2015 and equipment move-in starting in Q2 2016.

Fig 4

The CNS presentation was followed by a brief company introduction to NXP delivered by Mr. Frederic Vincentini.

Kicking of the second session on Semiconductor Manufacturing in Vietnam, Ms. Sherry Boger, general manager, Intel Vietnam, provided an update on Intel’s plans to extend the production of flagship products to Vietnam — such as the Haswell microprocessor, which was recently announced. Intel’s Vietnam facility is the largest assembly and test facility in the global Intel network, employing over 3,000 Vietnamese employees when fully ramped.

Fab-Finder’s Todd Curtis shared his company’s learning experiences when they started doing business in Vietnam. He stated that the Fab-Finder management team brought over 100 years of semiconductor experience to the table — but 0 years in this country, making it imperative to rapidly get up to speed with respect to laws and taxes, cultural differences and sensitivities and different business practices. Mr. Curtis made a point of thanking his Vietnamese business partners, legal and tax advisors, HSIA and the Saigon Hi-Tech Park for the education they provided.

Prof. Cor Claeys of Imec presented Imec’s Open Innovation Model. Given the ever shrinking features, the complexity of new devices and applications and the rising cost in R&D, Claeys stressed the need for collaborative efforts in the semiconductor industry in order to keep up with the increasing need and speed of innovation.

Open Innovation

Source: Samsung

Source: Samsung

Contrasting Imec’s Open Innovation model with the traditional R&D approach – where most of the R&D is done in-house, no IP is shared and projects occur in silos –Claeys emphasized the need to share risk, cost, talent and IP among R&D partners in order to jointly reap the benefits of an accelerated, cost-effective RD activity.

This discussion provided a nice introduction into two presentations in the afternoon addressing technology transfers, IP creation and protection. Ms. Radhika Snirivasan, Ph.D., from IBM talked about the process by which technology transfers occur, and how opportunities and risks can be managed. Snirivasan described technology transfers as “quintessential” to any technology installation and shared IBM’s methodology, from preparation and training through installation and debug, qualification and yield learning to product qualification and ramp. She pointed to the added value when IP transfers are managed in highly customizable and flexible scenarios, providing protection and safeguards against risks such as the transfer infrastructure, adequacy of documentation and lack of technology readiness/maturity.

Fig 6

Dr. John Schmitz of NXP elaborated on the subject by presenting NXP’s view on the growing importance of Intellectual Property Rights (IPRs) since knowledge has become a critical driver in the economy. “IPRs are the economical manifestation of technical and business knowledge,” said Schmitz, stressing that IPRs provide a mechanism of protection against misuse. Speaking to current and future patent portfolios, he stated the requirement for future patents to be aligned with the overall company strategy, but stressed the inherent risk of having to look at least 5 years ahead — a mandate he contrasted with the product lifecycle of mobile phones, which is currently about 6 months.

The last formal presentation of the day was M+W Group’s “Integrated Approach for Semiconductor Wafer Fab Implementation,” presented by Mr. Andreas Authenrieth, M+W Group. His presentation focused on the prerequisites for a sustainable and cost-effective fab design, with particular emphasis on energy efficiency, environmental technology and the use of renewable energy. Authenrieth also included the use of secondary equipment in his presentation, explaining the importance of correlating tool specifications with technology requirements, paying close attention to consumables and spares and managing equipment testing and documentation. These considerations could be of particular importance for the CNS wafer fab project.

The 2nd annual SEMI Vietnam Semiconductor Strategy Summit concluded with two panel discussions: The first panel – investing and operating in the technology sector in Vietnam – was moderated by Eduard Hoeberichts, FabMax and included two presentations which addressed both the side of the operator and the side of the government. Johnny Choo of ON Semiconductor shared the experience as an operator of two back-end facilities in Vietnam and highlighted the very positive experience over the last several years as well as some of the areas for potential improvement.

This perspective was consistent with the observations that Sherry Boger of Intel made in the morning presentation. Dr. Le Hoai Quoc as president of Saigon High Tech Park presented the capabilities of the High Tech Park as well as the general government support in various areas for operators and new investors in Vietnam. The “two sides of the coin” perspective led to a lively discussion at the end of the panel session.

Fig 7

 

The second panel – Education and Workforce Development – was moderated by Ms. Bettina Weiss, SEMI, and included: Ms. Sherry Boger, Intel Vietnam; Dr. Carel von der Poel, Technical University Delft; Dr. Pham Ba Tuan, CNS; and Cao Nguyen, ON Semiconductor. The importance of developing a skilled talent pool in Vietnam was also a prominent topic in SEMI’s 2013 Vietnam Semiconductor Strategy Summit. Panelists engaged in a lively debate about the need to do more for women in high tech, partnerships with international universities and special programs like HEEAP (Higher Engineering Education Alliance Program) which Intel is very actively supporting, as well as the Technical University Delft/DIMES Center, which has been engaged with Vietnam’s Hanoi University of Technology, Hanoi University of Civil Engineering and the Ministry of Science and Technology in various programs. According to Dr. van der Poel, it would be fairly easy to extend these programs to the semiconductor space, as Vietnam starts focusing on workforce readiness in this sector.

At the networking reception, attendees and speakers alike commented on the sense of progress and excitement over the last 12 months. Local attendees in particular appreciated the rich presentations and perspectives from the conference speakers, and international companies, including our sponsors, left with a lot of new contacts and business opportunities in country — and the sense that Vietnam is very serious about becoming a stakeholder in the global semiconductor market.

SEMI is grateful for the support of the sponsoring companies who helped make this year’s Summit possible:  FabMax, CNS, M+W Group, Advantest, Fab-Finder, GES, Lam Research, NXP, QAM, and Surplus Global.

Intermolecular, Inc. announced this week that Dr. Bruce McWilliams has been appointed president and chief executive officer. David Lazovsky has resigned as president and chief executive officer and from the Board of Directors to pursue other interests.

“We are grateful to Dave for his many years of service in leading Intermolecular from its inception,” said Bruce McWilliams. “I have been on the board of Intermolecular since its earliest stages, and am excited about the opportunity to build on the foundation that Dave created. I know the Intermolecular team and technologies well, and am looking forward to working with our customers to realize the value of our unique R&D platform and capabilities.”

Dr. McWilliams has served on the Intermolecular board since 2005 and as the chairman of the Board of Directors since June 2014. He most recently served as the chief executive officer of SuVolta from June 2009, and was the chief executive officer of Tessera from 1999 to 2008. He has also worked in the fields of silicon chip-based display, multi-chip module manufacturing and solar heating technology. Dr. McWilliams holds B.S., M.S. and Ph.D. degrees in physics from Carnegie Mellon University.

Until now, if you want to print a greeting card for a loved one, you can use colorful graphics, fancy typefaces or special paper to enhance it. But what if you could integrate paper-thin displays into the cards, which could be printed at home and which would be able to depict self-created symbols or even react to touch? Those only some of the options computer scientists in Saarbrücken can offer.

They developed an approach that in the future will enable laypeople to print displays in any desired shape on various materials and therefore could change everyday life completely.

For example: A postcard depicts an antique car. If you press a button, the back axle and the steering wheel rim light up in the same color. Two segments on a flexible display, which have the same shape as those parts of the car, can realize this effect. Computer scientists working with Jürgen Steimle printed the post card using an off-the-shelf inkjet printer. It is electro-luminescent: If it is connected to electric voltage, it emits light. This effect is also used to light car dashboards at night.

Steimle is leader of the research group “Embodied Interaction” at the Cluster of Excellence “Multimodal Computing and Interaction”. Simon Olberding is one of his researchers. “Until now, this was not possible”, explains Olberding. “Displays were mass-produced, they were inflexible, they always had a rectangular shape.” Olberding and Steimle want to change that. The process they developed works as follows: The user designs a digital template with programs like Microsoft Word or Powerpoint for the display he wants to create. By using the methods the computer scientists from Saarbrücken developed, called “Screen Printing” and “Conductive Inkjet Printing”, the user can print those templates. Both approaches have strengths and weaknesses, but a single person can use them within either a few minutes or two to four hours. The printing results are relatively high-resolution displays with a thickness of only 0.1 millimeters. It costs around €20 to print on a DIN A4 page; the most expensive part is the special ink. Since the method can be used to print on materials like paper, synthetic material, leather, pottery, stone, metal and even wood, two-dimensional and even three-dimensional shapes can be realized. Their depiction can either consist of one segment (surface, shape, pattern, raster graphics), several segments or variously built-up matrixes. “We can even print touch-sensitive displays”, says Olberding.

The possibilities for the user are various: displays can be integrated into almost every object in daily life – users can print not only on paper objects, but also on furniture or decorative accessories, bags or wearable items. For example, the strap of a wristwatch could be upgraded so that it lights up if a text message is received. “If we combine our approach with 3D printing, we can print three-dimensional objects that display information and are touch-sensitive”, explains Steimle.

This week, AMD announced that its board of directors has appointed Dr. Lisa Su as president and chief executive officer and member of the board of directors, effective immediately. Dr. Su, 44, succeeds Rory Read, 52, who has stepped down as president and chief executive officer, and member of the board of directors, as part of a transition plan. Read will support the transition in an advisory role, remaining with the company through the end of 2014.

“Leadership succession planning has been a joint effort between Rory and the board and we felt that Lisa’s expertise and proven leadership in the global semiconductor industry make this an ideal time for her to lead the company,” said Bruce Claflin, chairman of AMD’s board of directors. “The board looks forward to continuing to work with Lisa and the rest of the senior management team to build on the company’s momentum. I would also like to thank Rory for his many accomplishments and contributions positioning AMD for long-term success by helping to create a strong foundation and clear path to re-establish the company’s growth and profitability.”

Commenting on her appointment, Dr. Su said, “I am deeply honored to have this opportunity to lead AMD during this important time of transformation. Our world-class technology assets combined with the incredible talent and passion of the AMD team provide us with a unique opportunity to shape the future of computing. I look forward to expanding on the strong foundation we have built under Rory’s leadership as we develop industry-leading technologies and products for a diverse set of markets to drive sustainable and profitable growth.”

During the last three years, AMD has made significant progress in financial and operational performance. The company returned to non-GAAP profitability and materially diversified its business. Since 2012, AMD has reduced operating expenditures by approximately 30 percent and maintained cash at near an optimal level of $1 billion. AMD also improved its balance sheet by re-profiling its debt with no significant debt coming due until 2019.

Read stated, “I am grateful to have had the opportunity to lead such a talented team and proud of what we have accomplished during such an important chapter in the company’s history. Together, we have established the right strategy to enable AMD to continue to grow and transform. I am confident that Lisa is the right leader to drive AMD forward.”

Wearable electronics are going from geek to chic, as new smartwatches from the likes of Apple and Samsung have set a new standard for technological bling.

At IFA 2014 in Berlin last month, the European consumer electronics show highlighted new smartwatches meant to entice consumers with more fashion-forward designs. Smartwatch makers hope to eventually legitimize wearable products as a category by improving their usability, and the secret sauce in this effort is an upgrade in design centered on the use of flexible displays. 

The display panel market for all types of wearable electronic items is forecast to enjoy very rapid growth in the years to come. From a projected $300 million this year, industry revenue will climb more than 80 percent annually for at least four more years as high resolution and color displays are increasingly adopted in devices. By 2023, the market will be worth some $22.7 billion, as shown in the attached figure.

In terms of shipments, the market will surge to 800 million units in 2023, up from 54 million in 2014.

Samsung, LG, Sony, Asus and Motorola were on hand at IFA to introduce proprietary offerings—ostensibly to get a head start on Apple, which unveiled its own smartwatches a few days later after the show, in which it does not participate. 

Samsung introduced the Gear S smart watch, which features a curved screen and a 2-inch super active-matrix organic light-emitting diode (AMOLED) flexible display that is large enough to accommodate a keyboard for the smartwatch.

For its part, LG introduced the G Watch R that flaunts a completely circular screen. With a 1.3-inch diameter, this round display has 57 percent more area than a square screen. The sleek P-AMOLED panel is less than 0.6mm thick and features 320 x 320 resolution, 100-percent color gamut, 300-nits peak luminance and unlimited contrast ratio, typical of an organic light-emitting diode (OLED) display.

LG Display recently started mass production of its revolutionary circular plastic P-OLED screen, made possible by the company’s development of a circular mask and new production processes that improve deposition efficiency and employ highly precise laser cutting. LG Display’s power-save mode, which enables the screen to retain its resolution without a power supply, has also contributed to longer battery life for the watch.

Like the G Watch R, Motorola’s Moto 360 also comes with an attractive round screen. Both the LG and Motorola models are powered by Android Wear as extensions of the Android smartwatch ecosystem. Meanwhile, the Samsung Gear S employs Samsung’s Tizen operating system.

After months of rumors, Apple finally introduced the Apple Watch—fashionably late but highly anticipated. Set to be available at the beginning of 2015 with a starting price of $349, Apple Watch will use a square display. Detailed specs about the display are still not available, but the wearable timepieces will employ a flexible Retina display. According to Apple, the display is “not just a display but the focal point of the whole experience.” Its advertised flexibility, high-energy efficiency and very-high contrast mean it likely will use an OLED display.

And just like the iPhone, Apple Watch will have the solid advantage of application support from its entrenched ecosystem fully behind the product. 

Imperatives for wearable displays

Developments in flexible displays have opened up new opportunities for wearable devices, enabling the kind of design innovations seen in the latest group of smartwatch products at IFA.

“Wearables are best viewed as functional fashion accessories rather than as electronic goods,” said Sweta Dash, senior director for research and display at IHS. But because the fashion accessory market is determined by design rather than by simple function, wearable products such as smartwatches must be adaptable to various forms including squares, circles or even ovals.”

Displays used in wearables need three essential elements, Dash noted. These include outdoor visibility, low power consumption and flexibility in form factor and design. New forms of display, such as stretchable panels that are expected to come in the near future, can meet even more demanding designs in wearables, creating possibilities for exotic shapes and forms.

Also of significance in future wearables will be efficient, low-power flexible displays with longer battery lives that enable increased functionality in smaller form factors. Expected to dominate the wearable display market with improved capability and reduced costs is OLED, a self-emissive display technology with no backlight, excellent flexibility, faster response time and great video quality.

Most of the next wave of wearable products will come from smartwatch computing, Dash remarked. This field of wearable technology will be diverse, ranging from gaming, to infotainment, to health monitoring.

On the downside, most current products—including smartwatches and smartglasses from Google and others—are not completely ready for mainstream consumer adoption. The smartwatch models shown at IFA and Apple’s offerings alike are all expensive and lack the kind of affordable pricing to make them universally appealing. Moreover, a clear value proposition is needed before consumers fully accept the design and available applications provided by these new timepieces to replace the trusty traditional watches of old.

Wearable devices will need to strike the correct combination of price, performance, form factor and usability to reach the consumer mainstream market, IHS believes. Until then, actual wearable products like smartwatches may take longer to gain traction before the market can take off. 

These findings can be found in the Displays research service of IHS Technology.

SEMI recently completed its annual silicon shipment forecast for the semiconductor industry. This forecast provides an outlook for the demand in silicon units for the period 2014-–2016. The results show polished and epitaxial silicon shipments totaling 9,410 million square inches in 2014; 9,840 million square inches in 2015; and 10,163 million square inches in 2016 (refer to table below). Total wafer shipments this year are expected to finally exceed the market high set in 2010 and are forecast to continue shipping at record levels in 2015 and 2016.

Silicon shipment levels are robust this year,” said Denny McGuirk, president and CEO of SEMI.  “We expect silicon shipment volume to set a record high this year, followed by two consecutive years of growth.”

2014 Silicon Shipment Forecast

Total Electronic Grade Silicon Slices* – Does not Include Non-Polished

(Millions of Square Inches)

 

Actual

Forecast

 

2012

2013

2014F

2015F

2016F

MSI

8,814

8,834

9,410

9,840

10,163

Annual Growth

0%

0%

7%

5%

3%

*Shipments are for semiconductor applications only and do not include solar applications

Silicon wafers are the fundamental building material for semiconductors, which in turn, are vital components of virtually all electronics goods, including computers, telecommunications products, and consumer electronics. The highly-engineered thin round disks are produced in various diameters (from one inch to 12 inches) and serve as the substrate material on which most semiconductor devices or “chips” are fabricated.

All data cited in this release is inclusive of polished silicon wafers, including virgin test wafers and epitaxial silicon wafers shipped by the wafer manufacturers to the end-users. Data do not include non-polished or reclaimed wafers.

The Silicon Manufacturers Group acts as an independent special interest group within the SEMI structure and is open to SEMI members involved in manufacturing polycrystalline silicon, monocrystalline silicon or silicon wafers (e.g., as cut, polished, epi, etc.). The purpose of the group is to facilitate collective efforts on issues related to the silicon industry including the development of market information and statistics about the silicon industry and the semiconductor market.

The Semiconductor Industry Association (SIA), representing U.S. leadership in semiconductor manufacturing and design, today announced that worldwide sales of semiconductors reached $28.4 billion for the month of August 2014, an increase of 9.4 percent from the August 2013 total of $26 billion and an uptick of 1.3 percent over the July 2014 total of $28.1 billion. Year-to-date sales through August are 10.1 percent higher than they were at the same point in 2013. All monthly sales numbers are compiled by the World Semiconductor Trade Statistics (WSTS) organization and represent a three-month moving average.

“The global semiconductor market continued to demonstrate broad and sustained strength in August, and sales remain well ahead of last year’s pace,” said Brian Toohey, president and CEO, Semiconductor Industry Association. “Demand is strong across nearly all semiconductor product categories, and the industry has now posted sequential monthly growth for six consecutive months, thanks in part to continued strength in the Americas market.”

Toohey also noted that continued U.S. semiconductor industry strength bodes well for the overall U.S. economy. He cited an SIA whitepaper released this week that found that the U.S. semiconductor industry is one of the top contributors to U.S. economic growth of any domestic manufacturing industry. To learn more, read the SIA whitepaper here.

Regionally, year-to-year sales increased in Asia Pacific (12.3 percent), Europe (10.9 percent), and the Americas (7 percent), but decreased slightly in Japan (-1.7 percent). Sales were up compared to the previous month in the Americas (2.3 percent) and Asia Pacific (1.7 percent), held flat in Japan, and decreased slightly in Europe (-1.3 percent). Sales increased across all regions for the three-month period from June to August compared to the previous three-month period from March to May.

August 2014

Billions

Month-to-Month Sales

Market Last Month Current Month % Change
Americas

5.43

5.55

2.3%

Europe

3.27

3.23

-1.3%

Japan

2.99

2.99

0.0%

Asia Pacific

16.38

16.66

1.7%

Total

28.07

28.44

1.3%

Year-to-Year Sales

Market Last Year Current Month % Change
Americas

5.19

5.55

7.0%

Europe

2.91

3.23

10.9%

Japan

3.05

2.99

-1.7%

Asia Pacific

14.83

16.66

12.3%

Total

25.98

28.44

9.4%

Three-Month-Moving Average Sales

Market Mar/Apr/May June/July/August % Change
Americas

5.07

5.55

9.6%

Europe

3.13

3.23

3.4%

Japan

2.87

2.99

4.2%

Asia Pacific

15.71

16.66

6.0%

Total

26.78

28.44

6.2%

 

Graphene quantum dots created at Rice University grab onto graphene platelets like barnacles attach themselves to the hull of a boat. But these dots enhance the properties of the mothership, making them better than platinum catalysts for certain reactions within fuel cells.

The Rice lab of chemist James Tour created dots known as GQDs from coal last year and have now combined these nanoscale dots with microscopic sheets of graphene, the one-atom-thick form of carbon, to create a hybrid that could greatly cut the cost of generating energy with fuel cells.

The research is the subject of a new paper in the American Chemical Society journal ACS Nano.

The lab discovered boiling down a solution of GQDs and graphene oxide sheets (exfoliated from common graphite) combined them into self-assembling nanoscale platelets that could then be treated with nitrogen and boron. The hybrid material combined the advantages of each component: an abundance of edges where chemical reactions take place and excellent conductivity between GQDs provided by the graphene base. The boron and nitrogen collectively add more catalytically active sites to the material than either element would add alone.

“The GQDs add to the system an enormous amount of edge, which permits the chemistry of oxygen reduction, one of the two needed reactions for operation in a fuel cell,” Tour said. “The graphene provides the conductive matrix required. So it’s a superb hybridization.”

The Tour lab’s material outperformed commercial platinum/carbon hybrids commonly found in fuel cells. The material showed an oxygen reduction reaction of about 15 millivolts more in positive onset potential – the start of the reaction – and 70 percent larger current density than platinum-based catalysts.

The materials required to make the flake-like hybrids are much cheaper, too, Tour said. “The efficiency is better than platinum in terms of oxygen reduction, permitting one to sidestep the most prohibitive hurdle in fuel-cell generation — the cost of the precious metal,” he said.

Rice graduate student Huilong Fei is the paper’s lead author. Co-authors are graduate students Ruquan Ye, Gonglan Ye, Yongji Gong, Zhiwei Peng and Errol Samuel; research technician Xiujun Fan; and Pulickel Ajayan, the Benjamin M. and Mary Greenwood Anderson Professor in Mechanical Engineering and Materials Science and of chemistry and chair of the Department of Materials Science and NanoEngineering, all of Rice.

Tour is the T.T. and W.F. Chao Chair in Chemistry as well as a professor of materials science and nanoengineering and of computer science.

The Office of Naval Research Multidisciplinary University Research Initiative (MURI) program, the Air Force Office of Scientific Research and its MURI program supported the research.

Quantum Materials Corp today announced that it is scaling volume production of photoactive quantum dots for use in next-generation photovoltaic solar power technologies. While offering numerous advantages for solar power generation, the high cost and difficulty of producing large quantities of quantum dots with which to develop thin film solar cells has until now kept them from commercial utilization and acceptance. The company is also seeking partners for pilot thin-film quantum dot solar cell factories with Quantum Materials’ automated quantum dot production system supplying the material necessary to support daily runs of continuous roll-to-roll thin film production.

The environment for solar advances is reaching an investment capital ‘tipping point’ as highlighted by the recent pledge by the Rockefellers, who made their vast fortune on oil, to divest a total of $50 billion from fossil fuel investments and focus on supporting alternative energy solutions. They have joined some 650 individuals and 180 institutions, including 50 new foundations, which hold over $50 billion in total assets, that have pledged to divest from supporting fossil fuels over five years since the divestment movement launched three years ago.

“Cost-effective volume production of photoactive quantum dots will create the foundation for invigorating capital investment and adoption of solar energy technologies as thin-film photovoltaics drive down relative cost-per-watt ratios,” said Quantum Materials Founder and CEO Stephen Squires. “Without subsidies solar energy has not been an attractive investment for business and residential markets and as a result adoption in countries that have not aggressively subsidized solar, like the United States, has been stillborn since 2008. With our recent patent award and patent acquisitions we now have the IP protection underlying our high volume photoactive quantum dots production processes that will drive significant cost reductions for thin film solar cells and increase non-subsidized solar energy adoption.”

The recent issuance of Quantum Materials’ Republic of China (Taiwan) patent – ‘Hybrid Organic Solar Cells with Photoactive Semiconductor Nanoparticles Enclosed in Surface Modifiers’ – combined with other recent patents acquired from Bayer AG provide Quantum Materials the robust intellectual property protection needed to bring their optimized photoactive quantum dot solar cell materials to market. The Bayer patents incorporate broad descriptions of materials, fundamental design of quantum dot solar cells and processes for manufacturing them and enhance Quantum Material’s technology portfolio in printing Quantum Dot displays, solar cells and other printed electronic devices by gravure or high-speed roll-to-roll. The company is seeking partners with which to utilize proprietary materials and processes to drive next generation thin-film solutions.

Today, SEMI opens registration for the SEMICON Japan 2014 exposition and programs through its website at www.semiconjapan.org. SEMICON Japan 2014, Japan’s largest exhibition for the microelectronics manufacturing supply chain, will take place at Tokyo Big Sight in the Tokyo metropolitan area on December 3-5. For the first time, SEMICON Japan will feature a show-within-a-show  “World of IoT” to showcase applications and technologies of companies enabling the IoT revolution, including Toyota Motor, Intel, IBM, Toshiba and Cisco.

“Japan is a key region for the semiconductor industry, with the largest installed fab capacity globally, according to the recent SEMI Fab Forecast report,” said Osamu Nakamura, president of SEMI Japan. “With more than fifty 200mm production fabs for MCU, MEMS, analog and power devices, and with a strong supply chain producing over 50 percent of global semiconductor materials and approximately 35 percent of the global semiconductor equipment, Japan is at the forefront of semiconductor technology. Japan is a major platform for the promising new Internet of Things (IoT) technology, leveraging its strength that will help drive our industry’s growth over the next decade.”

While IoT technologies have begun to emerge in the market, the most exciting technologies are yet to come, but will require collaboration across the electronics supply chain to make them a reality. World of IoT will facilitate the communication across the IoT ecosystem from silicon to applications. The growth of IoT applications presents new opportunities for existing fabs, as well as materials, metrology, secondary equipment, productivity solutions, components and sub-systems, test, and packaging technologies.

SEMICON Japan 2014 will also expand its programming for visitors with four stages on the show floor — TechSTAGE North and South,TechXPOT East and West, and SEMICON Japan SuperTHEATER in the conference tower — to provide more than 100 hours of technical and business sessions.  The sessions on the stages and the theater are free for pre-registered SEMICON Japan 2014 exposition attendees.

Programs on SEMICON Japan SuperTHEATER will include:

  • Semiconductor Executive Forum – Toshiba and Applied Materials will present their perspectives on technology and business innovations.
  • IT Forum – Microsoft, Line and Google will discuss the future in terms of big data and IoT.
  • IoT Forum – CISCO, Sony and Intel will present their business and technology strategies for the IoT era.
  • 2.5D/3D IC Forum – ASE, Xilinx and Toshiba will discuss the 2.5D/3D architectures.
  • Manufacturing Innovation Forum – Intel, IBM and NGR will discuss the innovations required for sub-10nm chip manufacturing.

Japanese-English simultaneous translation will be available for the sessions on SEMICON Japan SuperTHEATER.

SEMICON Japan 2014 is the place for the latest industry insights and networking opportunities. SEMICON Japan 2014 also provides exhibitors an excellent opportunity to meet major device and equipment companies —  Advantest, Ebara, Dainippon Screen Mfg., Disco, Tokyo Electron, Nikon, Texas Instruments, Hitachi High-Tech, Murata Machinery and TowerJazz Panasonic Semiconductor — through the Supplier Search Program.