Category Archives: FPDs and TFTs

Entegris, Inc. (NASDAQ: ENTG), a provider of specialty chemicals and advanced materials solutions for the microelectronics industry, announced today that it acquired W. L. Gore & Associates’ water and chemical filtration product line for microelectronics applications in an asset purchase for approximately $20 million. Entegris expects the transaction to be accretive to earnings beginning in 2017.

Todd Edlund, Chief Operating Officer of Entegris, said: “We are excited to add these market-leading filtration solutions to our existing offerings for the microfiltration of high-purity water and bulk chemicals used in semiconductor, OLED and flat panel display manufacturing applications. The acquisition of these products complements our portfolio of advanced liquid filtration solutions. It also reflects our strategy to grow our served markets through the deployment of capital for strategic accretive acquisitions that augment our internal development initiatives.”

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

Scanning Electron Microscope Images of architectured carbon nanotube (CNT) textile made at Illinois. Colored schematic shows the architecture of self-weaved CNTs, and the inset shows a high resolution SEM of the inter-diffusion of CNT among the different patches due to capillary splicing. Credit: University of Illinois

Scanning Electron Microscope Images of architectured carbon nanotube (CNT) textile made at Illinois. Colored schematic shows the architecture of self-weaved CNTs, and the inset shows a high resolution SEM of the inter-diffusion of CNT among the different patches due to capillary splicing. Credit: University of Illinois

“The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including biological and structural health monitoring sensors,” explained Sameh Tawfick, an assistant professor of mechanical science and engineering at Illinois. “Aligned carbon nanotube sheets are suitable for a wide range of application spanning the micro- to the macro-scales including Micro-Electro-Mechanical Systems (MEMS), supercapacitor electrodes, electrical cables, artificial muscles, and multi-functional composites.

“To our knowledge, this is the first study to apply the principles of fracture mechanics to design and study the toughness nano-architectured CNT textiles. The theoretical framework of fracture mechanics is shown to be very robust for a variety of linear and non-linear materials.”

Carbon nanotubes, which have been around since the early nineties, have been hailed as a “wonder material” for numerous nanotechnology applications, and rightly so. These tiny cylindrical structures made from wrapped graphene sheets have diameter of a few nanometers–about 1000 times thinner than a human hair, yet, a single carbon nanotube is stronger than steel and carbon fibers, more conductive than copper, and lighter than aluminum.

However, it has proven really difficult to construct materials, such as fabrics or films that demonstrate these properties on centimeter or meter scales. The challenge stems from the difficulty of assembling and weaving CNTs since they are so small, and their geometry is very hard to control.

“The study of the fracture energy of CNT textiles led us to design these extremely tough films,” stated Yue Liang, a former graduate student with the Kinetic Materials Research group and lead author of the paper, “Tough Nano-Architectured Conductive Textile Made by Capillary Splicing of Carbon Nanotubes,” appearing in Advanced Engineering Materials. To our knowledge, this is the first study of the fracture energy of CNT textiles.

Beginning with catalyst deposited on a silicon oxide substrate, vertically aligned carbon nanotubes were synthesized via chemical vapor deposition in the form of parallel lines of 5μm width, 10μm length, and 20-60μm heights.

“The staggered catalyst pattern is inspired by the brick and mortar design motif commonly seen in tough natural materials such as bone, nacre, the glass sea sponge, and bamboo,” Liang added. “Looking for ways to staple the CNTs together, we were inspired by the splicing process developed by ancient Egyptians 5,000 years ago to make linen textiles. We tried several mechanical approaches including micro-rolling and simple mechanical compression to simultaneously re-orient the nanotubes, then, finally, we used the self-driven capillary forces to staple the CNTs together.”

“This work combines careful synthesis, and delicate experimentation and modeling,” Tawfick said. “Flexible electronics are subject to repeated bending and stretching, which could cause their mechanical failure. This new CNT textile, with simple flexible encapsulation in an elastomer matrix, can be used in smart textiles, smart skins, and a variety of flexible electronics. Owing to their extremely high toughness, they represent an attractive material, which can replace thin metal films to enhance device reliability.”

In addition to Liang and Tawfick, co-authors include David Sias and Ping Ju Chen.

Physicists at the Institute for Quantum Information and Matter at Caltech have discovered the first three-dimensional quantum liquid crystal — a new state of matter that may have applications in ultrafast quantum computers of the future.

These images show light patterns generated by a rhenium-based crystal using a laser method called optical second-harmonic rotational anisotropy. At left, the pattern comes from the atomic lattice of the crystal. At right, the crystal has become a 3-D quantum liquid crystal, showing a drastic departure from the pattern due to the atomic lattice alone. Credit:  Hsieh Lab/Caltech

These images show light patterns generated by a rhenium-based crystal using a laser method called optical second-harmonic rotational anisotropy. At left, the pattern comes from the atomic lattice of the crystal. At right, the crystal has become a 3-D quantum liquid crystal, showing a drastic departure from the pattern due to the atomic lattice alone. Credit: Hsieh Lab/Caltech

“We have detected the existence of a fundamentally new state of matter that can be regarded as a quantum analog of a liquid crystal,” says Caltech assistant professor of physics David Hsieh, principal investigator on a new study describing the findings in the April 21 issue of Science. “There are numerous classes of such quantum liquid crystals that can, in principle, exist; therefore, our finding is likely the tip of an iceberg.”

Liquid crystals fall somewhere in between a liquid and a solid: they are made up of molecules that flow around freely as if they were a liquid but are all oriented in the same direction, as in a solid. Liquid crystals can be found in nature, such as in biological cell membranes. Alternatively, they can be made artificially — such as those found in the liquid crystal displays commonly used in watches, smartphones, televisions, and other items that have display screens.

In a “quantum” liquid crystal, electrons behave like the molecules in classical liquid crystals. That is, the electrons move around freely yet have a preferred direction of flow. The first-ever quantum liquid crystal was discovered in 1999 by Caltech’s Jim Eisenstein, the Frank J. Roshek Professor of Physics and Applied Physics. Eisenstein’s quantum liquid crystal was two-dimensional, meaning that it was confined to a single plane inside the host material — an artificially grown gallium-arsenide-based metal. Such 2-D quantum liquid crystals have since been found in several more materials including high-temperature superconductors — materials that conduct electricity with zero resistance at around -150 degrees Celsius, which is warmer than operating temperatures for traditional superconductors.

John Harter, a postdoctoral scholar in the Hsieh lab and lead author of the new study, explains that 2-D quantum liquid crystals behave in strange ways. “Electrons living in this flatland collectively decide to flow preferentially along the x-axis rather than the y-axis even though there’s nothing to distinguish one direction from the other,” he says.

Now Harter, Hsieh, and their colleagues at Oak Ridge National Laboratory and the University of Tennessee have discovered the first 3-D quantum liquid crystal. Compared to a 2-D quantum liquid crystal, the 3-D version is even more bizarre. Here, the electrons not only make a distinction between the x, y, and z axes, but they also have different magnetic properties depending on whether they flow forward or backward on a given axis.

“Running an electrical current through these materials transforms them from nonmagnets into magnets, which is highly unusual,” says Hsieh. “What’s more, in every direction that you can flow current, the magnetic strength and magnetic orientation changes. Physicists say that the electrons ‘break the symmetry’ of the lattice.”

Harter actually hit upon the discovery serendipitously. He was originally interested in studying the atomic structure of a metal compound based on the element rhenium. In particular, he was trying to characterize the structure of the crystal’s atomic lattice using a technique called optical second-harmonic rotational anisotropy. In these experiments, laser light is fired at a material, and light with twice the frequency is reflected back out. The pattern of emitted light contains information about the symmetry of the crystal. The patterns measured from the rhenium-based metal were very strange–and could not be explained by the known atomic structure of the compound.

“At first, we didn’t know what was going on,” Harter says. The researchers then learned about the concept of 3-D quantum liquid crystals, developed by Liang Fu, a physics professor at MIT. “It explained the patterns perfectly. Everything suddenly made sense,” Harter says.

The researchers say that 3-D quantum liquid crystals could play a role in a field called spintronics, in which the direction that electrons spin may be exploited to create more efficient computer chips. The discovery could also help with some of the challenges of building a quantum computer, which seeks to take advantage of the quantum nature of particles to make even faster calculations, such as those needed to decrypt codes. One of the difficulties in building such a computer is that quantum properties are extremely fragile and can easily be destroyed through interactions with their surrounding environment. A technique called topological quantum computing–developed by Caltech’s Alexei Kitaev, the Ronald and Maxine Linde Professor of Theoretical Physics and Mathematics–can solve this problem with the help of a special kind of superconductor dubbed a topological superconductor.

“In the same way that 2-D quantum liquid crystals have been proposed to be a precursor to high-temperature superconductors, 3-D quantum liquid crystals could be the precursors to the topological superconductors we’ve been looking for,” says Hsieh.

“Rather than rely on serendipity to find topological superconductors, we may now have a route to rationally creating them using 3-D quantum liquid crystals” says Harter. “That is next on our agenda.”

Graphene Flagship researchers from AMBER at Trinity College Dublin have fabricated printed transistors consisting entirely of layered materials. Published today in the leading journal Science, the team’s findings have the potential to cheaply print a range of electronic devices from solar cells to LEDs with applications from interactive smart food and drug labels to next-generation banknote security and e-passports.

Led by Professor Jonathan Coleman from AMBER (the Science Foundation Ireland-funded materials science research centre hosted in Trinity College Dublin), in collaboration with the groups of Professor Georg Duesberg (AMBER) and Professor Laurens Siebbeles (TU Delft, Netherlands), the team used standard printing techniques to combine graphene flakes as the electrodes with other layered materials, tungsten diselenide and boron nitride as the channel and separator (two important parts of a transistor) to form an all-printed, all-layered materials, working transistor.

All of these are flakes are a few nanometres thick but hundreds of nanometres wide. Critically, it is the ability of flakes made from different layered materials to have electronic properties that can be conducting (in the case of graphene), insulating (boron nitride) or semiconducting (tungsten diselenide) that enable them to create the building blocks of electronics. While the performance of these printed layered devices cannot yet compare with advanced transistors, the team believe there is a wide scope to improve the performance of their printed TFTs beyond the current state-of-the-art.

Professor Coleman, who is an investigator in AMBER and Trinity’s School of Physics, said, “In the future, printed devices will be incorporated into even the most mundane objects such as labels, posters and packaging. Printed electronic circuitry will allow consumer products to gather, process, display and transmit information: for example, milk cartons will send messages to your phone warning that the milk is about to go out-of-date. We believe that layered materials can compete with the materials currently used for printed electronics.”

All of the layered materials were printed from inks created using the liquid exfoliation method previously developed by Professor Coleman and already licensed. Using liquid processing techniques to create the layered materials inks is especially advantageous in that it yields large quantities of high quality layered materials which helps to enable the potential to print circuitry at low cost.

Over 60,000 attendees are expected at SEMICON China opening tomorrow at Shanghai New International Expo Centre (SNIEC). SEMICON China (March 14-16) offers the latest in technology and innovation for the electronics manufacturing industry. FPD China is co-located with SEMICON China, providing opportunities in this related market. Featuring nearly 900 exhibitors occupying nearly 3,000 booths, SEMICON China is the largest gathering of its kind in the world.

Worldwide fab equipment spending is expected to reach an industry all-time record, to more than US$46 billion in 2017, according to the latest version of the SEMI (www.semi.org) World Fab Forecast. In 2018, the record may break again, with spending close to the $50 billion mark.  SEMI forecasts that China will be third ($6.7 billion) for regional fab equipment spending in 2017, but its spending in 2018 may reach $10 billion – which would be a 55 percent increase year-over-year, placing China in second place for worldwide fab equipment spending in 2018.

On March 14, keynotes at SEMICON China include SMIC chairman of the Board Zhou Zixue. ASE Group director and COO Tien Wu, ASML president and CEO Peter Wennink, Intel VP Jun He, Lam Research CEO Martin Anstice, TEL CTO Sekiguchi Akihisa and imec president and CEO Luc Van den hove.

SEMICON China programs expand attendees’ knowledge, networking reach, and business opportunities. Programs this year feature a broad and deep range:

  • CSTIC: On March 12-13, the China Semiconductor Technology International Conference (CSTIC) precedes SEMICON China. CSTIC is organized by SEMI and imec and covers all aspects of semiconductor technology and manufacturing.
  • Technical and Business Programs: 
    • March 14: China Memory Strategic Forum.
    • March 15: Building China’s IC Ecosystem, Green High-Tech Facility Forum, and Smart Manufacturing Forum, in addition Power & Compound Semiconductor Forum (Day 1).
    • March 16: Smart Automotive Forum, MEMS & Sensors Conference Asia, plus Power & Compound Semiconductor Forum (Day 2)
  • Tech Investment Forum: On March 15, an international platform to explore investment, M&A, and China opportunities.
  • Theme Pavilions:  SEMICON China also features six exhibition floor theme pavilions: IC Manufacturing, LED and Sapphire, ICMTIA/Materials, MEMS, Touch Screen and OLED.
  • Networking Events: SEMI Industry Gala, China IC Night, and SEMI Golf Tournament

For additional information on sessions and events at SEMICON China 2017, please visit www.semiconchina.org/en/4.

BOE, a Chinese display maker, takes top position in terms of large TFT-LCD display unit shipments in January 2017, according to IHS Markit (Nasdaq: INFO). For the first time ever, a Chinese display maker, taking a total share of 22.3 percent in unit shipments, is displacing South Korea’s display makers, the historical leaders in shipment volumes.

large display shipment

“BOE has been aggressively attacking the IT display market in shipment volumes at a time when top-tier panel makers started to turn focus away from this segment,” said Robin Wu, principal analyst of large display at IHS Markit.

BOE now takes number one position in larger-than-9-inch displays for tablets, notebook PCs and monitors in terms of unit shipment. In particular, notebook PC displays showed BOE taking a 29 percent share further widening the gap with the number two supplier Innolux, which took a 20 percent share. Meanwhile, the number one supplier for TV application is still LG Display with 21.4 percent followed by Innolux with 16.3 percent and BOE with 15.9 percent.

However, the South Korean panel makers are still holding their lead in terms of area shipment with LG display taking top position with 24.8 percent share followed by Samsung Display and Innolux, according to the latest Large Area Display Market Tracker by IHS Markit.

“South Korean panel makers still retain their advantage in large-sized TVs, a higher-demand segment that has benefited from increasing UHD TV penetration and consumer migration to TVs with larger screens. IHS Markit expects South Korean panel makers, known for their operational and technical strengths in large-size TV display manufacturing, will stay ahead of their Chinese competitors in terms of area shipments for the time being,” Wu said.

“That said, 2017 could be the year the Chinese display makers begin focusing on enriching their product portfolio, and make a play into the Korea’s strong hold for large-size TV displays,” he said.

According to latest IHS Markit Large Area Display Market Tracker, shipments of large-area TV panels decreased by 11 percent month-on-month (m/m), but increased by 4 percent year-on-year (y/y) to 51.7 million units in January 2017.

Unit shipments for applications in January 2017 were as follows:

  • For larger-than-9-inch tablet panels, shipments decreased by 20 percent m/m and 9 percent y/y.
  • For notebook PC panels, shipments declined 8 percent m/m but increased by 20 percent y/y.
  • For monitor panels, shipments dropped 6 percent m/m and kept flat y/y.
  • For TV panels, shipments were down 6 percent m/m and 3 percent y/y.

On an area basis, large panel shipments decreased by 8 percent m/m, but increased by 11 percent y/y in January 2017. Shipment area for LCD TV panels declined 7 percent m/m, due to seasonality but rose 11 percent y/y.

The flat-panel display (FPD) industry is in the midst of a historic wave of building new factories to manufacture active matrix organic light emitting diode (AMOLED) displays. This will drive $9.5 billion worth of AMOLED-specific production equipment purchases in 2017, according to IHS Markit (Nasdaq: INFO).

amoled equipment

According to the IHS Markit Display Supply Demand & Equipment Tracker, the equipment used for producing TFT backplanes will account for 47 percent of the total market in 2017, worth $4.4 billion in revenues. Organic light-emitting layer deposition and encapsulation tools will generate record revenues of $2.2 billion and $1.2 billion, respectively, this year.

“A variety of approaches can be used to deposit OLED materials. However, fine metal mask (FMM) evaporation tools, used for high-resolution mobile display production, account for the majority of the deposition equipment revenue in the current wave of new factory construction,” said Charles Annis, senior director at IHS Markit.

Evaporation machines are technically highly complicated, consisting of multiple cluster vacuum tools linked by robots. Each tool consists of evaporation sources and mask-docking capabilities, and requires substantial pumping systems. The tools are typically very large and can exceed 100 meters in length at a high-volume production factory. This subsequently requires significant capital outlays.

“The market for high-performance AMOLED deposition equipment is dominated by Canon Tokki, which accounted for over half of the market in 2016,” Annis said. “At least five other evaporation makers are rushing to take advantage of the explosive market opportunity. However, with strong panel maker interest in Canon Tokki’s unrivaled mass production experience, we expect the company to make further market share gains in 2017.”

AMOLEDs also require high-performance encapsulation to prevent sensitive organic light-emitting materials from environmental degradation. Encapsulation barriers are typically fabricated from metal, glass or stacks of thin films. However, a substantial share of the new AMOLED factories now under construction will target production of plastic, flexible displays, which rely on cost intensive, multi-layer thin film encapsulation (TFE).

“Flexible AMOLED makers have done an incredible job simplifying their TFE structures over the past several years. Even so, the productivity of depositing high-quality inorganic films and printing organic layers all in a closed environment remains a complicated challenge,” Annis said. “The requirement of a large number of deposition chambers and auxiliary tools make TFE lines one of the largest segments of the AMOLED equipment market.”

With an estimated $23 billion of expenditures on AMOLED production equipment between 2016 and 2018, equipment makers, particularly those offering deposition and encapsulation solutions, will be enjoying a historic sales opportunity.

The IHS Markit Display Supply Demand & Equipment Tracker covers metrics used to evaluate supply, demand and capital spending for all major FPD technologies and applications.

Intel Corporation yesterday announced plans to invest more than $7 billion to complete Fab 42, a project Intel had previously started and then left vacant. The high-volume factory is in Chandler, Ariz., and is targeted to use the 7 nanometer (nm) manufacturing process. The announcement was made by U.S. President Donald Trump and Intel CEO Brian Krzanich at the White House.

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

Intel Corporation on Tuesday, Feb. 8, 2017, announced plans to invest more than $7 billion to complete Fab 42. On completion, Fab 42 in Chandler, Ariz., is expected to be the most advanced semiconductor factory in the world. (Credit: Intel Corporation)

According to Intel’s official press release, the completion of Fab 42 in 3 to 4 years will directly create approximately 3,000 high-tech, high-wage Intel jobs for process engineers, equipment technicians, and facilities-support engineers and technicians who will work at the site. Combined with the indirect impact on businesses that will help support the factory’s operations, Fab 42 is expected to create more than 10,000 total long-term jobs in Arizona.

Mr. Trump said of the announcement: “The people of Arizona will be very happy. It’s a lot of jobs.”

There will be no incentives from the federal government for the Intel project, the White House said.

Context for the investment was outlined in an e-mail from Intel’s CEO to employees.

“Intel’s business continues to grow and investment in manufacturing capacity and R&D ensures that the pace of Moore’s law continues to march on, fueling technology innovations the world loves and depends on,” said Krzanich. “This factory will help the U.S. maintain its position as the global leader in the semiconductor industry.”

“Intel is a global manufacturing and technology company, yet we think of ourselves as a leading American innovation enterprise,” Krzanich added. “America has a unique combination of talent, a vibrant business environment and access to global markets, which has enabled U.S. companies like Intel to foster economic growth and innovation. Our factories support jobs — high-wage, high-tech manufacturing jobs that are the economic engines of the states where they are located.”

Intel is America’s largest high-technology capital expenditure investor ($5.1 billion in the U.S. 2015) and its third largest investor in global R&D ($12.1 billion in 20151). The majority of Intel’s manufacturing and R&D is in the United States. As a result, Intel employs more than 50,000 people in the United States, while directly supporting almost half a million other U.S. jobs across a range of industries, including semiconductor tooling, software, logistics, channels, OEMs and other manufacturers that incorporate our products into theirs.

The 7nm semiconductor manufacturing process targeted for Fab 42 will be the most advanced semiconductor process technology used in the world and represents the future of Moore’s Law. In 1968, Intel co-founder Gordon Moore predicted that computing power will become significantly more capable and yet cost less year after year.

The chips made on the 7nm process will power the most sophisticated computers, data centers, sensors and other high-tech devices, and enable things like artificial intelligence, more advanced cars and transportation services, breakthroughs in medical research and treatment, and more. These are areas that depend upon having the highest amount of computing power, access to the fastest networks, the most data storage, the smallest chip sizes, and other benefits that come from advancing Moore’s Law.

After the announcement, President Trump tweeted his thanks to Krzanich, calling the factory a great investment in jobs and innovation. In his email to employees, Krzanich said that he had chosen to announce the expansion at the White House to “level the global playing field and make U.S. manufacturing competitive worldwide through new regulatory standards and investment policies.”

“When we disagree, we don’t walk away,” he wrote. “We believe that we must be part of the conversation to voice our views on key issues such as immigration, H1B visas and other policies that are essential to innovation.”

During Mr. Trump’s presidential campaign, Krzanich had reportedly planned a Trump fundraiser event and then cancelled following numerous controversial statements from Trump regarding his proposed immigration policies. Intel has continued to be critical of the Trump administration’s immigration policies, joining over 100 other companies to file a legal brief challenging President Trump’s January 27 executive order which blocked entry of all refugees and immigrants from seven predominantly Muslim countries. Recently, Krzanich took to Twitter to criticize the order, voicing the company’s support of lawful immigration.

In 2012, Paul Otellini, then Intel’s CEO, made a similar promise about Fab 42 in the company of Obama, during a visit to Hillsboro, Oregon.

UniPixel, Inc. (NASDAQ: UNXL), a provider of high performance metal mesh capacitive touch sensors to the touchscreen and flexible display markets, announced today positive results from in-house testing conducted on its XTouch touch screen sensors for use in future flexible/foldable display devices such as smartphones, tablets, and wearable devices.

  • UniPixel conducted tests in which its XTouch sensors were folded and opened more than 200,000 times at a 2-millimeter radius at the fold.
  • During the tests, as well as at the conclusion of those tests, there was no damage to the XTouch sensors and no degradation to their performance capabilities.

Flexible displays will also need to have a thin and pliable cover lens that will bend consistently without damage.

  • UniPixel’s Diamond Guard scratch resistant cover lens technology is an excellent complement to XTouch sensors as it is applied in a very thin layer and will bend and seamlessly fold as it protects the underlying touch sensor metal mesh from abrasion damage.

Jalil Shaikh, chief operating officer of UniPixel, commented, “The results of our in-house testing were very positive. As flexible displays require thin and pliable touch sensors and cover lenses, our proprietary XTouch sensors and Diamond Guard are ideally suited for flexible display applications. We have already demonstrated to a major original equipment manufacturer (“OEM”) that our XTouch sensors deliver optimal performance with a lens coating as minute as five microns. As far as we are aware our XTouch sensors are the only sensors available that operate effectively with such a thin cover lens coating.

“We believe that as flexible technologies make their way to the market, our proprietary XTouch and Diamond Guard technologies can become staple components in a broad array of products. While foldable displays are in early consideration by OEMs, our products now meet the early specifications OEMs have targeted to create devices that work effectively with the necessary durability for broad market acceptance.”

Today, at the 2017 International Solid-State Circuits Conference in San Francisco, imec, the world-leading research and innovation hub in nanoelectronics and digital technologies, Holst Centre (established by imec and TNO) and Cartamundi demonstrate a world first thin-film tag on plastic, compatible with the near field communication (NFC) Barcode protocol, a subset of ISO14443-A, which is available as standard in many commercial smartphones. The innovative NFC tag is manufactured in a thin-film transistor technology using indium gallium zinc oxide thin-film transistors (IGZO TFT) on a plastic substrate.

Plastic electronics offers an appealing vision of low-cost smart electronic devices in applications where silicon chips were never imagined before. Item-level identification, smart food packaging, brand protection and electronic paper are just a few examples. Such new applications will require a continuous supply of countless disposable devices.  Imec’s IGZO TFT technology uses large-area manufacturing processes that allow for inexpensive production in large quantities – an ideal technology for ubiquitous electronic devices in the Internet-of-Everything.

“Making a plastic electronics device compatible to the ISO standard originally designed for silicon CMOS was a very challenging research and development expedition” stated Kris Myny, senior researcher at imec. “Our collaboration with Cartamundi enabled us to develop a truly industry-relevant solution”.

The researchers developed a self-aligned TFT architecture with scaled devices optimized for low parasitic capacitance and high cut-off frequency. This allowed design of a clock division circuit to convert incoming 13.56 MHz carrier frequency into system clock of the plastic chip. Optimizations at logic gate and system level reduced power consumption down to 7.5mW, enabling readout by commercial smartphones. “These research innovations are the first major achievements of my ERC starting grant”, stated Kris Myny, principal investigator and holder of the prestigious ERC starting grant FLICs (716426).

 “This innovative hardware solution of plastic NFC tags opens up several new possibilities for NFC deployments,” stated Alexander Mityashin, program manager at imec. “Thanks to the nature of thin-film plastics, the new tags can be made much thinner and they are mechanically very robust. Moreover, the self-aligned IGZO TFT technology offers manufacturing of chips in large volumes and at low cost.

The results were presented in paper 15.2 (“A Flexible ISO14443-A Compliant 7.5mW 128b Metal-Oxide NFC Barcode Tag with Direct Clock Division Circuit from 3.56MHz Carrier”, by K. Myny, Y.-C Lai, N. Papadopoulos, F. De Roose, M. Ameys, M. Willegems, S. Smout, S. Steudel, W. Dehaene, J. Genoe, Feb. 7, 2017).