Category Archives: FPDs and TFTs

Developing materials suitable for use in optoelectronic devices is currently a very active area of research. The search for materials for use in photoelectric conversion elements has to be carried out in parallel with developing the optimal film formation process for each material, and this can take a few years for just one material. Until now there has been a trade-off, balancing electronic properties and material morphology. Researchers at Osaka University have developed a two-step process that can produce materials with good morphological properties in addition to excellent photoresistor performance. Their findings were published in the Journal of Physical Chemistry Letters.

The powder sample is insoluble, therefore fabrication of devices using wet processes is not possible. Credit: Osaka University

Bismuth sulfide, Bi2S3, belongs to a class of materials known as metal chalcogenides, which show significant promise owing to their optical and electronic properties. However, the performance of Bi2S3-based photoresponsive devices is dependent on the method used to process the film, and many of the reported approaches are hampered by low film crystallinity. Even when high crystallinity is achieved, the nature of the grains can have a negative effect on performance, therefore films with low surface roughness and large grain size are desirable.

“We searched more than 200 materials using a unique, ultra high-speed screening method that can evaluate performance, even when only powdered samples are available,” study corresponding author Akinori Saeki says. “We found that bismuth sulfide, which is inexpensive and less toxic than conventional inorganic solar cell materials, can be processed in a way that does not compromise its excellent photoelectrical properties.”

The technique used produces a 2D layered film in two treatment steps; solution spin-coating followed by crystallization. The photo response performance of the resulting film showed improvements of 6-100 times compared with those of films prepared using other processing methods. Owing to the non-toxic and abundant nature of bismuth and sulfur, the findings are expected to influence the development of commercial optoelectronic devices including solar cells.

“We demonstrated a facile processing technique that does not compromise material performance,” lead author Ryosuke Nishikubo says. “We believe that solution-processable bismuth-based semiconductors are viable alternatives to commercially available inorganic solar cells and show promise for widespread future use. The fact that they are non-toxic also sets them apart from other alternative optoelectronic materials, such as lead halide perovskites.”

Processing materials for device applications without compromising their electronic properties is important for making materials commercially relevant. The reported process has been used to successfully prepare other metal sulfide semiconductors such as lead sulfide, demonstrating the versatility of the approach.

Quantum dots are nanometer-sized boxes that have attracted huge scientific interest for use in nanotechnology because their properties obey quantum mechanics and are requisites to develop advanced electronic and photonic devices. Quantum dots that self-assemble during their formation are particularly attractive as tunable light emitters in nanoelectronic devices and to study quantum physics because of their quantized transport behavior. It is important to develop a way to measure the charge in a single self-assembled quantum dot to achieve quantum information processing; however, this is difficult because the metal electrodes needed for the measurement can screen out the very small charge of the quantum dot. Researchers at Osaka University have recently developed the first device based on two self-assembled quantum dots that can measure the single-electron charge of one quantum dot using a second as a sensor.

The device was fabricated using two indium arsenide (InAs) quantum dots connected to electrodes that were deliberately narrowed to minimize the undesirable screening effect.

This is a scanning electron micrograph of InAs self-assembled quantum dot transistor device. Credit: Osaka University

“The two quantum dots in the device showed significant capacitive coupling,” says Haruki Kiyama. “As a result, the single-electron charging of one dot was detected as a change in the current of the other dot.”

The current response of the sensor quantum dot depended on the number of electrons in the target dot. Hence the device can be used for real-time detection of single-electron tunneling in a quantum dot. The tunneling events of single electrons in and out of the target quantum dot were detected as switching between high and low current states in the sensor quantum dot. Detection of such tunneling events is important for the measurement of single spins towards electron spin qubits.

“Sensing single charges in self-assembled quantum dots is exciting for a number of reasons,” explains Akira Oiwa. “The ability to achieve electrical readout of single electron states can be combined with photonics and used in quantum communications. In addition, our device concept can be extended to different materials and systems to study the physics of self-assembled quantum dots.”

An electronic device using self-assembled quantum dots to detect single-electron events is a novel strategy for increasing our understanding of the physics of quantum dots and to aid the development of advanced nanoelectronics and quantum computing.

Tight supplies of display panel materials and components, such as driver integrated circuit (IC), glass substrate and polarizer, are expected to slow the decline rate of liquid crystal display panel costs, according to IHS Markit (Nasdaq: INFO).

Supply of driver IC is forecast to tighten throughout 2018, estimated to exceed demand by 4 percent, per the new Display Driver IC Market Tracker by IHS Markit. Foundries have cut their production capacity of cheap driver ICs while increasing production of high-profit ICs and large-scale integrations (LSIs), mainly to satisfy orders from industries producing Internet of Things (IoT) and automotive technologies.

In addition, large panel driver ICs are mainly produced using 8-inch wafers but no foundries are making further investments into these wafer sizes as a generational transition is making its way into 12-inch wafers. “It seems that panel makers can secure driver IC supplies only by offering higher prices,” said Tadashi Uno, senior analyst at IHS Markit.

The average driver IC price increased by about 10 percent during the first half of 2018. Tight supply of driver ICs has impacted the prices of IT panels, such as desktop monitors, notebook PC and tablet PC panels, and has also extended into TV and smartphone panel prices since the third quarter of 2018.

Glass substrates are also in a tight supply situation since the beginning of  third quarter2018, according to the Display Glass Market Tracker by IHS Markit. The supply-demand glut in the third quarter has been below 5 percent, which is considered a tight supply threshold, while taking into account later delivery times.

“Major glass makers are investing in glass-melting tanks in China, but the higher glass consumption of Chinese panel makers’ means it exceeds more than double the glass production capacity of the country,” Uno said. “Chinese panel makers also import products from Japan, South Korea and Taiwan but they are stymied by glass production delays and delivery.”

According to the Display Optical Film Market Tracker by IHS Markit, polarizers have been in a tight supply situation since the third quarter. In July, film makers, such as Dai Nippon Printing and Nitto Denko, stopped operations for more than a week due to heavy rain in Japan. The production facilities are not damaged directly, but damaged infrastructures, such as roads, waterworks and electric facilities, have caused delivery delays.

Logistics issues remain even though operations have resumed. “Non-TAC polarizers, especially acryl polarizers, were already in tight supply but the recent floods have made the situation worse,” said Irene Heo, senior principal analyst at IHS Markit. Polarizer supply-demand glut is expected to be 4 percent in the third quarter, below the 5 percent balance bar.

The cash cost of a typical 32-inch high-definition (HD) open cell is expected to decline 1.4 percent in third quarter2018 compared to a year ago, according to the Large Area Display Cost Model. The contraction rate has slowed from 2.9 percent in the same period last year. “The main reason for the slow cost reduction is the increasing price of driver ICs,” Uno said. “However, glass substrate and polarizer price reductions have been relatively stable.”

Large thin-film transistor liquid crystal display (TFT LCD) panel shipments hit a record monthly high in July 2018 in terms of unit and area shipment. Unit shipments increased by 10 percent in July compared to a year ago to reach 64.3 million units, while area shipments jumped 19 percent during the same period to 17 million square meters, according to IHS Markit (Nasdaq: INFO).

“New facilities from China, such as BOE’s Gen 10.5, CHOT’s Gen 8.6 and CEC-Panda’s Gen 8.6, started mass production in the first half of this year. The production at the fabs has increased since the second quarter of 2018 as their glass inputs and production yield rates have improved,” said Robin Wu, principal analyst at IHS Markit. “Despite the growing production, panel makers have maintained the utilization rate and instead tried to push out panel shipments by lowering panel prices in the first half of 2018. That’s one of the reasons that panel shipments are continuously growing.”

The LCD TV panel contributed to the record high shipments of larger-than-9-inch LCD panels in July. Unit shipments of LCD TV panels increased by 15 percent in July year on year to 24.6 million units and area shipments jumped 21 percent to 13.3 million square meters, according to the Large Area Display Market Tracker by IHS Markit.

Panel makers suffered from high TV panel inventories in the first half of 2018 due to growing production capacities. Panel prices have been weak for a year and panel makers’ profit margins have plunged. “Therefore, panel makers wanted to clear up the inventory before the third quarter, high-demand season, when they aim to raise the panel price back again,” Wu said. “That has led to the fast growth in TV panel shipments lately, which as a result pulled the total large panel shipments to a historical high in July.” As the panel makers hoped, LCD TV panel prices rebounded in July 2018.

Chinese panel maker BOE led the large TFT LCD market in July 2018 in terms of unit shipments with a stake of 24 percent, followed by LG Display with 19 percent. However, in terms of area shipments, South Korea’s LG Display continued to lead with a 20 percent share, followed by BOE with 18 percent.

Universal Display Corporation (Nasdaq: OLED), enabling energy-efficient displays and lighting with its UniversalPHOLED® technology and materials, announced today the recipients of the UDC Innovative Research Award in Organic Electronics and the UDC Pioneering Technology Award in Organic Electronics. These awards were presented at the 18th International Meeting of Information Display (IMID) conference on August 30, 2018 in Busan, Korea by Dr. Julie Brown, Senior Vice President and Chief Technology Officer of Universal Display.

“Universal Display Corporation is proud to sponsor and support the innovative and brilliant research work in the organic electronics industry,” said Steven V. Abramson, President and Chief Executive Officer. “As a leader in the OLED industry, we believe that it is important to encourage and foster the relentless pursuit of exploration, experimentation and education in the scientific community. We congratulate the award recipients, and commend all the researchers for the important role they play in the field of organic electronics.”

The UDC awards recognize outstanding individuals or teams that have demonstrated innovative ideas or research initiatives impacting the organic electronics industry. The winners were selected by IMID and KIDS (Korean Information Display Society). The recipients for 2018 are:

UDC Innovative Research Award in Organic Electronics

Byung-Jun Kang, Dong-Myung Lee, Chang-Jae Yu, E-Joon Choi (Kumoh National Institute of Technology, Korea), and Jae-Hoon Kim (Hanyang University, Korea)

UDC Pioneering Technology Award in Organic Electronics

Hwang-Beom Kim and Jang-Joo Kim (Seoul National University, Korea)

 

Most current displays do not always accurately represent the world’s colors as we perceive them by eye, instead only representing roughly 70% of them. To make better displays with true colors commonly available, researchers have focused their efforts on light-emitting nanoparticles. Such nanoparticles can also be used in medical research to light up and keep track of drugs when developing and testing new medicines in the body. However, the metal these light-emitting nanoparticles are based on, namely cadmium, is highly toxic, which limits its applications in medical research and in consumer products–many countries may soon introduce bans on toxic nanoparticles.

These are structures of silver indium sulfide/gallium sulfide core/shell quantum dots and pictures of the core/shell quantum dots under room light. Credit: Osaka University

It is therefore vital to create non-toxic versions of these nanoparticles that have similar properties: they must produce very clean colors and must do so in a very energy-efficient way. So far researchers have succeeded in creating non-toxic nanoparticles that emit light in an efficient manner by creating semiconductors with three types of elements in them, for example, silver, indium, and sulfur (in the form of silver indium disulfide (AgInS2)). However, the colors they emit are not pure enough–and many researchers declared that it would be impossible for such nanoparticles to ever emit pure colors.

Now, researchers from Osaka University have proven that it is possible by fabricating semiconductor nanoparticles containing silver indium disulfide and adding a shell around them consisting of a semiconductor material made of two different elements, gallium and sulfur. The team was able to reproducibly create these shell-covered nanoparticles that are both energy efficient and emit vivid, clean colors. The team have recently published their research in the Nature journal NPG Asia Materials.

“We synthesized non-toxic nanoparticles in the normal way: mix all ingredients together and heat them up. The results were not fantastic, but by tweaking the synthesis conditions and modifying the nanoparticle cores and the shells we enclosed them in, we were able to achieve fantastic efficiencies and very pure colors,” study coauthor Susumu Kuwabata says.

Enclosing nanoparticles in semiconductor shells in nothing new, but the shells that are currently used have rigidly arranged atoms inside them, whereas the new particles are made of a more chaotic material without such a rigid structure.

“The silver indium disulfide particles emitted purer colors after the coating with gallium sulfide. On top of that, the shell parts in microscopic images were totally amorphous. We think the less rigid nature of the shell material played an important part in that–it was more adaptable and therefore able to take on more energetically favorable conformations,” first author Taro Uematsu says.

The team’s results demonstrate that it is possible to create cadmium-free, non-toxic nanoparticles with very good color-emitting properties by using amorphous shells around the nanoparticle cores.

Avegant Corp. (“Avegant”) announced today that the company closed $12M in Series AA funding from new investors Walden SKT Venture Fund and China Walden Venture Investments III, L.P., as well as previous investors.

Ed Tang, CEO of Avegant, said, “The consumer AR industry faces significant challenges developing displays that are high resolution, small form factor, large field-of-view, light field, and low power. The industry is excited about our unique solutions to these technical challenges, which will enable previously impossible AR experiences.”

Earlier this year, Avegant focused its operations on its next generation display technologies which are targeted for the consumer market. Avegant’s current research builds on its industry-first light field technologies and the high resolution, low latency, and high brightness retinal displays first used in Avegant’s Video Headset.

According to Dr. Om Nalamasu, President of Applied Ventures and Chief Technology Officer of Applied Materials, “Applied is excited to use its materials engineering technologies to enable new inflections like AR/VR, which require advanced displays, high-performance computing and lots of memory. We are working with Avegant to accelerate the development of their light field technology to create compelling AR applications.”

“Many companies are trying to solve multiple, very difficult technical problems to bring AR experiences to consumers,” said Andrew Kau, Managing Director of Walden International. “We chose to invest in Avegant because their solutions elegantly tackle these problems in creative ways that consider human factors without losing sight of manufacturability.”

Avegant is a well-funded, venture-backed technology company developing next-generation display technology to enable previously impossible augmented reality experiences. The company uses its deep scientific understanding of human sight and head-mounted display ergonomics together with its consumer electronics manufacturing experience to develop displays that enable realistic AR experiences for consumers. Avegant’s Light Field Technology enables a compelling, up-close, hands-on AR experience, and its Consumer AR Display Technology makes these experiences possible in a consumer wearable AR device. For more information visit avegant.com or follow Avegant on Facebook, LinkedIn and Twitter.

SEMI today announced that all legal requirements have been met for the ESD (Electronic Systems Design) Alliance to become a SEMI Strategic Association Partner.

Full integration of the Redwood City, California-based association representing the semiconductor design ecosystem is expected to be complete by the end of 2018. The integration will extend ESD Alliance’s global reach in the electronics manufacturing supply chain and strengthen engagement and collaboration between the semiconductor design and manufacturing communities worldwide.

As a SEMI Strategic Association Partner, the ESD Alliance will retain its own governance and continue its mission to represent and support companies in the semiconductor design ecosystem.

The ESD Alliance will lead its strategic goals and objectives as part of SEMI, leveraging SEMI’s robust global resources including seven regional offices, expositions and conferences, technology communities and activities in areas such as advocacy, international standards, environment, health and safety (EH&S) and market statistics.

With the integration, SEMI adds the design segment to its electronics manufacturing supply chain scope, connecting the full ecosystem. The integration is a key step in streamlining SEMI members’ collaboration and connection with the electronic system design, IP and fabless communities. The Strategic Association Partnership will also enhance collaboration and innovation across the collective SEMI membership as ESD Alliance members bring key capabilities to SEMI’s vertical application platforms such as Smart Transportation, Smart Manufacturing and Smart Data as well as applications including AI and Machine Learning.

“The addition of ESD Alliance as a SEMI Strategic Association Partner is a milestone in our mission to drive new efficiencies across the full global electronics design and manufacturing supply chain for greater collaboration and innovation,” said Ajit Manocha, president and CEO of SEMI. “This partnership provides opportunities for all SEMI members for accelerated growth and new business opportunities in end-market applications. We welcome ESD Alliance members to the SEMI family.”

“Our members are excited about becoming part of SEMI’s broad community that spans the electronics manufacturing supply chain,” said Bob Smith, executive director of the ESD Alliance. “Global collaboration between design and manufacturing is a requirement for success with today’s complex electronic products. Our new role at SEMI will help develop and strengthen the connections between the design and manufacturing communities.”

All ESD Alliance member companies, including global leaders ARM, Cadence, Mentor, a Siemens business, and Synopsys, will join SEMI’s global membership of more than 2,000 companies while retaining ESD Alliance’s distinct self-governed community within SEMI.

Amid growing demand for active matrix organic light-emitting diode (AMOLED) panels for smartphones, shipments of flexible AMOLED panels are expected to account for more than 50 percent of total AMOLED panel shipments by 2020.

According to IHS Markit (Nasdaq: INFO), a world leader in critical information, analytics and solutions, shipments of flexible AMOLED panels are expected to reach 335.7 million units by 2020, topping those of rigid AMOLED panels at 315.9 million units. Flexible AMOLED panels are predicted to make up 52.0 percent of total AMOLED panel shipments, up from 38.9 percent in 2018.

“Growth in demand for smartphones with flexible AMOLED panels has accelerated since 2016 as demand increased for curved form or full screen displays,” said Jerry Kang, senior principal analyst of display research at IHS Markit. “Major smartphone brands have been promoting flexible AMOLED screens for their premium products, which allow a differentiated form factor from ones with rigid AMOLED and low-temperature polycrystalline silicon (LTPS) liquid crystal display (LCD) panels.”

Apple has applied flexible AMOLED panels first in 2017 to the iPhone X. It is expected to launch its second phone with a flexible AMOLED panel, slightly larger than the first one, in 2018. Demand for the new iPhone is expected to contribute to boost the shipments of flexible AMOLED panels.

“Another factor is that high-end smartphone brands are now planning to launch foldable applications using flexible AMOLED panels, which is not possible using rigid AMOLED or LTPS LCD panels. Foldable AMOLED panels will be key in changing the demand situation from mobile devices in the foreseeable future,” Kang said.

Shipments of flexible AMOLED panels are expected to reach 157.6 million units in 2018, more than triple compared to 46.5 million units in 2015, with a compound annual growth rate of 50 percent.

By Jay Chittooran, Public Policy Manager, SEMI 

Two months after opposing $34 billion in U.S. trade tariffs on behalf of the U.S. semiconductor manufacturing industry, Jonathan Davis, global vice president of industry advocacy at SEMI, this week spoke out against an additional $16 billion duties on Chinese goods. Testifying before the same U.S. interagency panel mulling the merits of the tariffs, Davis called for the removal of 29 tariff lines covering items critical to semiconductor manufacturing including machines and spare parts used to make, wafers, flat panel displays and masks.

In his testimony to the panel, Davis stressed that while SEMI supports stronger protections against the theft of valuable intellectual property (IP), tariffs do little to address U.S. concerns over IP loss. Over the past month, SEMI has also submitted written comments and opposed the tariffs in public testimony. The panel includes representatives from the U.S. Trade Representative (USTR), Departments of Treasury, Commerce, State and Defense, and the Council of Economic Advisers.

Also testifying, Joe Pon, corporate vice president at Applied Materials, explained that the proposed tariffs will harm small and midsized companies and other U.S. business interests. Describing the tariffs as a tax on exports of high-value U.S. goods, Pon said the duties give non-U.S. firms an unfair competitive advantage.

In a parallel push to Davis’s testimony, SEMI, with more than 10 representatives from six member companies, met with 16 congressional offices this week to underscore the damage the tariffs would wreak on the U.S. semiconductor industry. The fallout would include higher operating costs, fewer exports and slower innovation. The tariffs would also curb industry growth and put thousands of high-paying, high-skill jobs at risk. SEMI pressed congressional leaders to reject the tariffs and support a push for congress to re-assert itself on trade policy.

Tariffs to cost U.S. SEMI members more than $500 million

SEMI estimates that the second list of proposed tariffs, covering about $16 billion in Chinese goods, will cost its 400 U.S. members more than $500 million annually in additional duties.

The tariffs on $34 billion in Chinese goods, which took effect July 6, impact products such as test and inspection equipment as well as spare parts that enter the U.S. from China. That round of tariffs will cost SEMI member companies and estimated tens of millions of dollars annually.

SEMI public policy team asks members to review tariff list

Looking ahead, SEMI encourages members to review the newly released $200 billion tariff list, determine any impact to their businesses and share their findings with SEMI’s public policy team.

The U.S. Trade Representative (USTR) has published the exclusion process for products subject to the China 301 tariffs. If your company’s products are subject to tariffs, you can request an exclusion.

In evaluating product exclusion requests, the USTR will consider whether a product is available from a source outside of China, whether the additional duties would cause severe economic harm to the requestor or other U.S. interests, and whether the product is strategically important or related to Chinese industrial programs (such as “Made in China 2025”).

The deadline for submitting product exclusion requests to USTR is October 9, 2018. Approved exclusions will be effective for one year upon approval and retroactive to July 6, 2018.

More information including the process for submitting the product exclusion request can be found here.

Any SEMI members with questions should contact Jay Chittooran, Public Policy Manager at SEMI, at [email protected].