Category Archives: FPDs and TFTs

January 17, 2013 – Printed, flexible, and organic electronics have garnered more than $7.5 billion in venture funding from 1996-2011, but funding has declined sharply from a peak in 2007, according to a report from Lux Research. Funding topped $990M in 2007, but lost a third of that value within four years to $626M in 2011.

"A number of high-profile failures like Konarka have soured many investors’ impressions of this space — cutting away some unwarranted hype, but potentially raising the hurdles for companies with more promising technologies to secure funds," stated Anthony Vicari, Lux Research associate and lead author of a new report examining investments and opportunities in printed, flexible, and organic electronics. He points to "glaring funding imbalances, with overfunding in areas such as organic photovoltaics, but promising technologies such as electrowetting and electrochromic displays haven’t received investment that matches their potential."

Lux will present a Webinar on Feb. 5 to discuss the report’s findings, but here’s some insights in a nutshell:

Display technologies have huge potential. Electrowetting, electrochromic, and metal oxide thin-film transistors (MOTFTs) are potential gold mines, offering high technical performance and value relative to competing reflective displays and TFTs.

Asian startups are underfunded. North America leads overall investment at $5.1B, or 67% of the world total. However, Asian start-ups, like OLED developers in South Korea, account for just $506M of investing. That indicates not a lack of innovation, but the need for an alternate funding model, Lux says.

Dow, Samsung, and Intel are trendsetters. These three giants lead corporate venture capital (CVC) investors, with high levels of activity in this space. Their best bets have targeted the more promising, higher-potential technologies such as OLEDs and RFID.

January 11, 2012 – The annual Consumer Electronics Show in Las Vegas has become a mecca for all things electronic and digital, from useful to cool to just plain bizarre. Among the technologies at the confluence of cool and useful were two things that aim to rethink the PC model. (And for the cool/bizarre side of the CES spectrum, behold eatART’s rideable robot Mondo Spider.)

This year’s CES emphasized "designs that defied or pushed the limits of convention," with two clear examples, points out DisplaySearch’s Richard Shim: size-defying "phablets," and even more size-defying "table PCs."

The phablet — a combination of phone and tablet — got its start with Samsung’s Galaxy Note, which offered an expanded 5-in. OLED screen; the Galaxy Note II was even bigger at 5.5-in. At this year’s CES, the phablet took another screen-size step up thanks to China’s Huawei, which unveiled its Ascend Mate ,which has a 6.1-in. 1280 × 720 screen. (Huawei also touted its Ascend D2 with a 5-in., 1920 × 1080 display.) The Ascend D2 will be available in China later this month, followed by the Ascend Mate in February.

The "table PC," meanwhile, is essentially a supersized tablet, with the screensize of a large computer monitor. Sony’s Vaio Tap 20 (20-in. display) is now joined by Lenovo’s IdeaCentre Horizon with a 27-in. resistive touch-based display, and the company has a prototype 39-in. version planned for later this summer. Each of these "table PCs" can stand upright like an all-in-one desktop PC, but also laid down flat, Shim notes.

"Both the phablet and the table PC categories represent the extreme end of a form factor trend that we expect to see throughout 2013," Shim explains. "The traditional lines that have been used to define, categorize, and track devices are expected to only become more difficult to maintain," and suppliers will increasingly tinker with formfactors to find what resonates with consumers. (In his own CES research note, Barclays analyst CJ Muse acknowledged the interest shown in phablets, and likely reverberations they should cause among suppliers, along with "large screen touch, Next Gen TVs, and the Internet of everything.") Shim doesn’t expect these design tinkerings will greatly impact shipment trends in the near-term (DisplaySearch still sees notebook PC shipments dipping 5% Y/Y in 2013), but "we anticipate that brands can score image points and credibility with consumers for willing to be bold with design. That has translated to good fortune for Apple so it should not be underestimated."

(photos via DisplaySearch; credit photo #1 to Lori Grunin/CNet)

January 7, 2012 – As the annual Consumer Electronics Show and hordes of techie enthusiasts descends over Las Vegas this week, one display technology — 4K × 2K — is expected to grab most of the attention, says NPD DisplaySearch.

4K LCD TV shipments will exceed OLED TV shipments through 2015, the firm says, due to both delays by OLED TV makers and increased promotion of 4K LCD TVs. Many Chinese brands are currently launching their own products domestically. OLED TVs should start hitting the market in 2013, but with low volumes and high prices. Note that 4K technology can be applied to OLED TVs as well, and eventually will be introduced for some premium TV segments, the firm points out.

"The global TV market—and North America in particular—are experiencing either slow or negative growth in 2012, and brands are eager to demonstrate new technologies that might create a spike in demand," stated Paul Gagnon, Director for Global TV Research at NPD DisplaySearch. Gagnon added, “OLED TV was prominently featured during the previous two CES shows as the next-generation TV display technology, but the lack of market launch so far has caused several set makers to start emphasizing 4K×2K resolution TVs for premium market segments."

Forecast for OLED TV and 4K LCD TV. (Source: NPD DisplaySearch)

Overall TV demand is expected to fall in 2012, as consumers worldwide grapple with tough economic conditions and TV prices fall at only marginal rates. DisplaySearch estimates LCD TV shipments in 2012 were 205 million, slightly lower than in 2011, while plasma TV shipments sunk 24% to 13 million. The firm sees 2013 initially taking shape as a flat market due to persistent economic uncertainty, but ultimately smoothing into gradual growth as conditions improve and as price declines in the TV market accelerate.


TV shipment growth by technology. (Source: NPD DisplaySearch)

By Julian Gates, Managing Director, AG Semiconductor Services

The multibillion-dollar secondary or used semiconductor equipment market has gone through significant changes over the past five years and has become increasingly sophisticated in its approach, with industry leaders offering a full range of services well beyond the tool purchase itself. The days of a broker trying to sell a piece of chipmaking gear of uncertain condition and provenance out of a crate on a warehouse floor are numbered. IC manufacturers trying to balance cost considerations with the need to upgrade or expand their production capability can now partner with secondary equipment services firms that offer economical turnkey solutions combining tool configuration, refurbishment, installation, start-up and support with a risk-reducing warranty package that largely mirrors that of an original equipment manufacturer.

Since most OEMs have focused their efforts on the development and proliferation of their 300mm equipment suites and have either reduced or eliminated their 200mm offerings, many semiconductor companies need support in enhancing their existing 200mm production lines, or with converting from 150 to 200mm wafer size operations. Some firms lack the internal human resources or technical proficiency to handle the equipment aspects of the ramp by themselves. With dedicated expertise in 200mm systems, the full-service secondary equipment firm can provide a project management team to the customer site that will work with the device-maker to help get the facility’s toolset up and running.  

Another trend in the used equipment space we’re seeing is the synergistic combination of dedicated remarketing services with turnkey solution capabilities. Done well, these services increase the amount and diversity of a secondary equipment company’s inventory and provide customers more flexibility and velocity in their ability to buy and sell surplus equipment.

Analysts forecast that wafer fab utilization will increase in 2013 and gain momentum into 2014, which means that chipmakers will soon begin to invest in production equipment to meet the demand curve of the emerging upcycle in the market. For those seeking to gain the most out of their capital budgets, the availability of more high-quality pre-owned 200 and 300mm equipment backed by comprehensive service and support packages offers a financially attractive, low-risk path to fulfilling their capacity requirements.

January 3, 2012 – Active matrix OLED (AMOLED) displays will continue to encroach upon LCD technology through small and medium-sized (9-in. and smaller) displays used in mobile phones, according to recent analysis by NPD DisplaySearch.

Total OLED display shipments are expected to reach 191 million in 2012, accounting for 8.4% of total small/medium displays. AMOLEDs will make up 6% all by themselves, having driven total OLED penetration into this market segment since 2010 and the launch of Samsung’s Galaxy S phone, according to Yoonsung Chung, director, large-area displays & FPD materials for NPD DisplaySearch. Mobile phones continue to drive the OLED adoption, with mobile phone applications expected to make up 69% of the small/medium OLED market in 2012 and growing to 83% in 2015.

OLED penetration in small and medium display shipments by technology. (Source: NPD DisplaySearch)

Mass adoption of AMOLED technology, though, faces hurdles due to the higher cost and technical difficulty of manufacturing — successful entry takes five years on average, according to the firm. "Prior to the start of mass production of AMOLED displays for mobile phones, only passive-matrix OLED (PMOLED) displays were available, mostly used in applications such as mobile phone sub-displays, automobile displays, and some industrial and niche applications," Chung stated.

Samsung produces nearly all AMOLED displays today, but more players will be needed to continue to push the technology’s adoption — and indeed new panel makers will emerge in 2013 from Taiwan and China, Chung forecasts. He also predicts demand for "OLED applications for smartphones, amusement devices, digital still cameras, and home appliances."

Small/medium OLED display shipments by application. (Source: NPD DisplaySearch)

December 12, 2012 – Increased tablet adoption, with Apple’s continued dominance and emergence by new players (see Google, Microsoft) are changing the mobile PC competitive landscape — and supply-chain partners are having to rethink their strategies to stay atop the game.

Competitive conflicts are now a big concern, points out Jeff Lin, value chain analyst at NPD DisplaySearch; he cites Samsung Display planning to reduce its share in Apple and increase support to captive brands and other external customers, including Amazon and Barnes & Noble. New competitors in the market will seek to emphasize touch notebooks and ultraslim devices in 2013, while entrenched mobile PC competitors (Lin points to HP, Lenovo, Samsung, and Acer) need solid agreements with their own OEMs. Their collective demands will strain supply-chain logistics, from panels to OEMs, he notes.

“With 2013 business planning well underway, product portfolios, sales strategies, and sourcing plans for mobile PC brands will certainly impact the supply chain,” Lin noted. Top PC brands will see only 2% annual growth in 2012 for notebook PCs, and a -28% plunge in mini-notebook PCs — but tablet PC growth chugs on at 75%. In 2013, however, these PC companies are setting their sights higher, planning 16% Y/Y shipment increases on average for notebook PCs, while tablet PC growth "may be less impressive than in 2012,” he says.

LG Display was the top supplier of mobile PC panels, with more than a third of its shipments going to Apple. Still the clear leader in mobile PCs (defined as notebooks, tablets, and ultraslim PCs), Apple accounted for more than 84% of total tablet PC shipments in 2Q12 (primarily made by Foxconn). HP was second, with Quanta covering about 33% of its production. Foxconn led in all PC OEM production in 2Q12 with >85% of its volume from Apple’s new 9.7-in. iPad and iPad 2. (Quanta started making Google’s Nexus 7-in. tablet PC in 2Q12.)

OEM shipments to mobile PC customers, in millions. (Source: DisplaySearch)

What will 100M iPads do to the tablet supply chain?

Speaking of Apple, panel makers including Samsung, LG Display, Sharp, and Innolux are expected to ship 70M iPad panels (9.7-in.) in 2012; about a third of them (23M) for iPad 2 XGA panels and the rest (47M) the new iPad QXGA panels that use both a-Si and oxide TFT technologies. Strong sales of the legacy iPad model continue, though, so Apple and its panel makers are having to adjust their panel production plans.

Die-hard techies love their favorite devices, none more so than Apple fans. The iPad mini, which was recently voted one of the hottest consumer products of 2012 in Japan, immediately faced supply shortages for its 7.85-in. XGA display supplied by AUO and LG Display. Apple had originally planned to sell 6M units in 2012; only 1.6M panels shipped in 3Q12, but the company wants panel makers to ship another 12M to meet demand.

This is even harder than it sounds. The iPad panels are known to be complex and difficult to make, notes DisplaySearch’s David Hsieh. Not only must they have high resolution and low-power consumption, but their wide viewing angle and high color saturation require additional photomask steps. "Standard a-Si TFT backplanes require 4 or 5 photomask steps, but the iPad and iPad mini panels require 6 to 7," notes Hsieh. "And for panel makers with limited experience in IPS [in-plane switching] or FFS production, as many as 8 mask steps may be used. Increased mask steps means longer production times and lower yield rates."

If Apple’s expectations for a substantially bigger 2013 come true, it might have to rethink its supply chain even further. Answering the strong demand for the iPad mini, the company is targeting 100M iPad shipments in 2013 — half of those for the mini, 40M for the new iPad, and 10M of the iPad 2 model. (DisplaySearch projects over 170M total tablet PC shipments in 2013, which would give Apple continued domination at 60% share.) But there’s a downside, notes Hsieh: "If the iPad mini volume is anything near 50 million units, Apple will need to find other panel suppliers in addition to AUO and LG Display, just as it always has three suppliers for the iPad panels," he writes. Likely candidates include Century (China), Innolux (Taiwan), and Panasonic LCD (Japan), all of whom are experienced in IPS technologies. Apple must also manage its iPad panel supplies in case it ends up parting ways with longtime partner/competitor Samsung.

In an IC fab, cycle time is the time interval between when a lot is started and when it is completed. The benefits of shorter cycle time during volume production are well known: reduced capital costs associated with having less work in progress (WIP); reduced number of finished goods required as safety stock; reduced number of wafers affected by engineering change notices (ECNs); reduced inventory costs in case of a drop in demand; more flexibility to accept orders, including short turnaround orders; and shorter response time to customer demands. Additionally, during development and ramp, shorter cycle times accelerate end-of-line learning and can result in faster time to market for the first lots out the door.

Given all the benefits of reducing cycle time, it’s useful to consider how wafer defect inspection contributes to the situation. To begin with, the majority of lots do not accrue any cycle time associated with the inspection, since usually less than 25 percent of lots go through any given inspection point. For those that are inspected, cycle time is accrued by sending a lot over to the inspection tool, waiting until it’s available, inspecting the lot and then dispositioning the wafers. On the other hand, defect inspection can decrease variability in the lot arrival rate—thereby reducing cycle time.

Three of the most important factors used in calculating fab cycle time are variability, availability, and utilization. Of these, variability is by far the most important. If lots arrive at process tools at a constant rate, exactly equal to the processing time, then no lot will ever have to wait and the queue time will be identically zero. Other sources of variability affect cycle time, such as maintenance schedules and variability in processing time, but variability in the lot arrival rate tends to have the biggest impact on cycle time.

In the real world lots don’t arrive at a constant rate and one of the biggest sources of variability in the lot arrival rate is the dreaded WIP bubble—a huge bulge in inventory that moves slowly through the line like an over-fed snake. In the middle of a WIP bubble every lot just sits there, accruing cycle time, waiting for the next process tool to become available. Then it moves to the next process step where the same thing happens again until eventually the bubble dissipates. Sometimes WIP bubbles are a result of the natural ebb and flow of material as it moves through the line, but often they are the result of a temporary restriction in capacity at a particular process step (e.g., a long “tool down”).

When a defect excursion is discovered at a given inspection step, a fab may put down every process tool that the offending lot encountered, from the last inspection point where the defect count was known to be in control, to the current inspection step.  Each down process tool is then re-qualified until, through a process of elimination, the offending process tool is identified.

If the inspection points are close together, then there will be relatively few process tools put down and the WIP bubble will be small.  However, if the inspection points are far apart, not only will more tools be down, but each tool will be down for a longer period of time because it will take longer to find the problem.  The resulting WIP bubble can persist for weeks, as it often acts like a wave that reverberates back and forth through the line creating abnormally high cycle times for an extended period of time. 

Consider the two situations depicted in Figure 1 (below). The chart on the top represents a fab where the cycle time is relatively constant. In this case, increasing the number of wafer inspection steps in the process flow probably won’t help.  However, in the second situation (bottom), the cycle time is highly variable. Often this type of pattern is indicative of WIP bubbles.  Having more wafer inspection steps in the process flow both reduces the number of lots at risk, and may also help reduce the cycle time by smoothing out the lot arrival rate.

 

Because of its rich benefits, reducing cycle time is nearly always a value-added activity. However, reducing cycle time by eliminating inspection steps may be a short-sighted approach for three important reasons. First, only a small percentage of lots actually go through inspection points, so the cycle time improvement may be minimal. Second, the potential yield loss that results from having fewer inspection points typically has a much greater financial impact than that realized by shorter cycle time. Third, reducing the number of inspection points often increases the number and size of WIP bubbles. 

For further discussions on this topic, please explore the references listed at the end of the article, or contact the first author.

Doug Sutherland, Ph.D., is a principal scientist and Rebecca Howland, Ph.D., is a senior director in the corporate group at KLA-Tencor.

Check out other Process Watch articles: “The Dangerous Disappearing Defect,” “Skewing the Defect Pareto,” “Bigger and Better Wafers,” “Taming the Overlay Beast,” “A Clean, Well-Lighted Reticle,” “Breaking Parametric Correlation,” “Cycle Time’s Paradoxical Relationship to Yield,” and “The Gleam of Well-Polished Sapphire.”

References

1.       David W. Price and Doug Sutherland, “The Impact of Wafer Inspection on Fab Cycle Time,” Future Technology and Challenges Forum, SEMICON West, 2007.

2.       Peter Gaboury, “Equipment Process Time Variability: Cycle Time Impacts,” Future Fab International. Volume 11 (6/29/2001).  

3.       Fab-Time, Inc.  “Cycle Time Management for Wafer Fabs:  Technical Library and Tutorial.”

4.       W.J. Hopp and M.L. Spearman, “Factory Physics,” McGraw-Hill, 2001, p 325.

December 11, 2012 – Our slideshow of 14 interesting papers at this week’s IEEE International Electron Devices Meeting (IEDM 2012), did not include what are often some of the more intriguing papers — the ones that come in late and are unavailable for preview. This year there are four such papers, and we’re now able to give you a sneak peek at them, being unveiled starting this afternoon and through the week at IEDM in San Francisco.

ZnNO for next-gen displays

Stability degradation, especially at high mobility regime, limits the application of oxide semiconductors in next-generation displays. Zinc oxynitride, with its high mobility characteristics and small bandgap, is getting attention as an alternative for pixel-switching devices in ultra-high definition and large-area displays. Researchers from Samsung Advanced Institute of Technology and Seoul National University will describe ZnON-thin film transistors (TFTs) with field effect mobility near 100 cm2/Vs and operation stability(< 3 V) under light-illumination bias-stress. The uniformity is observed to be suitable for display applications, and with mobility performance comparable to that of polysilicon (poly-Si). (#5.6, "High mobility zinc oxynitride-TFT with operation stability under light-illuminated bias-stress conditions for large area and high resolution display applications")

Structure of ES-type ZnON-TFT fabricated by photolithography. (left) Top view from optical microscope and (b) cross-sectional TEM image at the vicinity of contact region.

SnO transistor for BEOL-CMOS I/Os

Renesas Electronics’ LSI Research Laboratory has devised a new P-type amorphous SnO thin-film transistor with high Ion/Ioff ratio (>104) as a component to complement N-type IGZO transistors for on-chip voltage-bridging BEOL-CMOS I/Os on conventional Si-LSI Cu-interconnects. (The transistor gives standard LSIs a special add-on function to control high-voltage signals directly.) Their BEOL-transistor (BEOL-Tr) uses a wide-band-gap InGaZnO (IGZO) as the channel and cap-SiN/Cu-interconnect as the gate dielectric/bottom-gate electrode. Normally-off transistor characteristics with relatively high mobility, high-Vd tolerance, high Ion/Ioff ratio, have made the BEOL-Tr attractive for voltage-bridging devices mountable onto advanced MCUs and SoCs. Realization of P-type transistors to complement IGZO-based NFETs and form BEOL-CMOS is also a key function for more sophisticated applications, they claim. (#18.8, "High On/Off-ratio P-type Oxide-based Transistors Integrated onto Cu-interconnects for On-chip High/Low Voltage-bridging BEOL-CMOS I/Os")

XTEM of the integrated device structure with G/D offset of 0.5μm. SnO is integrated onto Cu interconnect to realize P-type BEOL-Tr with high Ion/Ioff ratio. Device integration requires only one mask addition.

III-V TFETs for the 7nm node

III-V tunneling field-effect transistors (TFET) for low-voltage logic applications have gained attention, but their nonoptimized carrier tunneling limit drive currents. Researchers from the Rochester Institute of Technology and SEMATECH set out to map III-V Esaki tunnel diode performance, engineering tunnel diodes (TD) with ultrahigh-current densities while maintaining large peak-valley current ratios. In this paper, they report a comprehensive experimental benchmarking of an Esaki diode, including GaAs, In0.53Ga0.47As, InAs, InAs0.9Sb0.1/Al0.4Ga0.6Sb, and InAs/GaSb. Engineering the hetero-junctions enhances peak and Zener current densities beyond homo-junctions, to a record 2.2 MA/cm2 and 1.1 MA/cm2 (-0.3 V), laying the groundwork for III-V TFETs at the 7nm technology node. (#27.7, "Benchmarking and Improving III-V Esaki Diode Performance With a Record 2.2 MA cm2 Current Density to Enhance TFET Drive Current")

(a) Cross-section of a TD fabrication process flow. (b) SEM image of a characteristic submicron TD after mesa etch. (c) schematic of a fully-fabricated TD.

Integrated CMOS silicon photonics on 90nm

IBM researchers in the US and Europe are demonstrating the first sub-100nm technology (a current 90nm base SOI logic technology) that allows monolithic integration of optical modulators and germanium photodetectors — putting optical and electrical circuits side-by-side on the same chip. The resulting 90nm CMOS-integrated nano-photonics technology is optimized for analog functionality to yield power-efficient, single-die multichannel wavelength-mulitplexed 25Gbps transceivers. (IBM has a fuller description of the technology in a separate press release.) (#33.8, "A 90nm CMOS Integrated Nano-Photonics Technology for 25Gbps WDM Optical Communications Applications")

Cross-sectional SEM view of a 90nm CINP metal stack with Ge PD embedded into the front-end. Zoomed-in image of a photodetector is shown on top left. Optical microscope top-down image is shown on the low left.

Angled view of a portion of an IBM chip showing blue optical waveguides transmitting high-speed optical signals and yellow copper wires carrying high-speed electrical signals.

Qualcomm Incorporated (NASDAQ: QCOM) announced an expansion of its display technology agreement between its subsidiary Pixtronix, Inc. and  Sharp Corporation to develop and commercialize high-quality color, low-power MEMS displays incorporating IGZO (Indium Gallium Zinc Oxide) technology. The goal is to build the displays using existing LCD manufacturing infrastructure. As a result of the equity investment (of up to $120 million), Qualcomm will become a minority shareholder in Sharp.

Qualcomm’s equity investment in Sharp and the expanded joint development agreement build upon the existing work between Sharp and Pixtronix as the two companies have been engaged in development activities for the last year and a half. The goal of this joint effort is to accelerate commercialization of Pixtronix’s low power MEMS displays utilizing Sharp’s IGZO technology.

The equity investment by Qualcomm will take place in stages and the consummation of the transaction is subject to certain contingencies. 

The Wall Street Journal reported that Sharp is discussing possible injections of cash from Intel and Dell, in addition to the Qualcomm deal.

"As one of the leading electronics companies in the world, Sharp has an established industry brand and is a recognized leader in the development and commercialization of new innovative display technologies," said Derek Aberle, executive vice president and group president of Qualcomm. "Expanding our existing relationship with Sharp to jointly commercialize new MEMS display technologies will help both companies realize their shared goal of driving high performance, lower power displays for a variety of devices, including smartphones and tablets."

"Sharp has brought many innovations to the display industry, including the world’s first commercialization of IGZO technology in LCD displays this year," said Yoshisuke Hasegawa, executive managing officer of Sharp Corporation. "Sharp is targeting to accelerate the commercialization of MEMS displays by combining Sharp’s cutting-edge IGZO technology and Pixtronix’s MEMS display technology."  

 

November 28, 2012 – NPD DisplaySearch analyst Paul Gagnon took the pulse of consumer shoppers on Black Friday and came away with three observations: bargains are a priority, consumers want bigger upgrades, and Walmart flexed its muscles. He bases them on what apparently was firsthand experience standing in line like everyone else, plus "reports from colleagues in the industry."

Consumers love bargains… Customers seemed to have their Black Friday TV-deal priorities in order thusly: price, size, brand, and little interest in any other feature. Gagnon noted Emerson 32-in. LCD TVs vanished at a $148 price point, but same-sized Samsung versions stood stacked on the floor largely untouched later on Friday even at $100 off. At a Best Buy later in the day he reports customers sought out a "shockingly low" priced ($179) Toshiba 40-in. TV, but upon learning they were sold out they resigned to next year’s Black Friday rather than seek a replacement. That suggests the motivation was far more on finding a good deal vs. really wanting a new TV — "which should be a wake-up call to the to the industry to not focus so much on promoting shocking prices to drive traffic," he writes.

…but not "step-up" features. At the same time, Gagnon noted that there was little "chatter" and activity surrounding "step-up models" of TVs featuring improvements such as Smart TV, 3D, or LED technology. Over 90% of Chinese LCD TV shipments were LED backlit in 3Q12, but North America isn’t even at 50% yet and ranks near last in the world in terms of unit shipment share, he points out. " Do US consumers understand the feature, and just not care? Are retailers not doing an effective job of educating customers about the technology? Are the prices too high? Probably some combination of all of these factors is at play."

Confirmed: Bigger is believed better. While consumers flocked to promotions of sub-$200 32-in. TVs, a lot of them also sought out bigger models (≥40-in.). Gagnon lists a number of notable Black Friday promotions this year for bigger-sized panels, in some cases with 50-in. models at the same price point as last year’s 40-in. models; some of that is just natural price erosion, he acknowledges. But consumers are also eager to replace 32-in. TVs with significantly bigger models — and that’s particularly good news for panel makers who sell by the square meter.

The power of Walmart compels them! Even in the face of a labor dispute, Walmart heavily promoted its Black Friday deals and it seems to have paid off as waves of promotions kept shopper traffic spread out and lines flowing smoothly, Gagnon writes. "It seemed Walmart was more effective at pulling shoppers looking for TVs this Black Friday, reporting today that it sold more than 1.3 million televisions since 8PM on Thursday," he notes, showing a photo of shoppers "Starbucks and Smartphones in hand" at 5am lined up for a $299 Panasonic 50-in plasma TV. He also notes that Funai "moved a lot of boxes during Black Friday" — the firm climbed to #1 in LCD TV shipments in 3Q12 and nearly 20% share, with many of those units destined for Walmart’s Black Friday push, with whom it has partnered for years, he notes.