Category Archives: LED Manufacturing

The latest update to the World Fab Forecast report, published on September 5, 2017 by SEMI, again reveals record spending for fab equipment. Out of the 296 Front End facilities and lines tracked by SEMI, the report shows 30 facilities and lines with over $500 million in fab equipment spending.  2017 fab equipment spending (new and refurbished) is expected to increase by 37 percent, reaching a new annual spending record of about US$55 billion. The SEMI World Fab Forecast also forecasts that in 2018, fab equipment spending will increase even more, another 5 percent, for another record high of about $58 billion. The last record spending was in 2011 with about $40 billion. The spending in 2017 is now expected to top that by about $15 billion.

fab equipment spending

Figure 1: Fab equipment spending (new and refurbished) for Front End facilities

Examining 2017 spending by region, SEMI reports that the largest equipment spending region is Korea, which increases to about $19.5 billion in spending for 2017 from the $8.5 billion reported in 2016. This represents 130 percent growth year-over-year. In 2018, the World Fab Forecast report predicts that Korea will remain the largest spending region, while China will move up to second place with $12.5 billion (66 percent growth YoY) in equipment spending. Double-digit growth is also projected for Americas, Japan, and Europe/Mideast, while other regions growth is projected to remain below 10 percent.

The World Fab Forecast report estimates that Samsung is expected to more than double its fab equipment spending in 2017, to $16-$17 billion for Front End equipment, with another $15 billion in spending for 2018. Other memory companies are also forecast to make major spending increases, accounting for a total of $30 billion in memory-related spending for the year. Other market segments, such as Foundry ($17.8 billion), MPU ($3 billion), Logic ($1.8 billion), and Discrete with Power and LED ($1.8 billion), will also invest huge amounts on equipment. These same product segments also dominate spending into 2018.

In both 2017 and 2018, Samsung will drive the largest level in fab spending the industry has ever seen. While a single company can dominate spending trends, SEMI’s World Fab Forecast report also shows that a single region, China, can surge ahead and significantly impact spending. Worldwide, the World Fab Forecast tracks 62 active construction projects in 2017 and 42 projects for 2018, with many of these in China.

For insight into semiconductor manufacturing in 2017 and 2018 with more details about capex for construction projects, fab equipping, technology levels, and products, visit the SEMI Fab Database webpage (www.semi.org/en/MarketInfo/FabDatabase) and order the SEMI World Fab Forecast Report. The report, in Excel format, tracks spending and capacities for over 1,200 facilities including over 80 future facilities, across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.

Samsung Electronics Co., Ltd. today announced the launch of the “Q-series,” a new line-up of LED linear modules for use in premium indoor luminaire applications where an exceptionally high level of light efficacy* is required.

The Q-series features 200 lumens per watt (lm/W) of light efficacy, which is the highest efficacy level among current LED linear modules. The new modules are the first to incorporate the LM301B, Samsung’s recently announced mid-power LED package.

This allows LED lighting fixtures using the new modules to reach more than 150lm/W, enabled through an optical efficiency level of approximately 86 percent and LED driver efficiency of about 88 percent. The Q-series’ performance levels are ideally suited to meet DLC** Premium technical standards, which require higher efficacy and lumen maintenance specifications than the DLC Standard classification.

The new Q-series modules come in one-, two- and four-foot sizes, and can be combined linearly to achieve any desired length. There are two sets of modules: Q-series modules for the North American market are UL certified, while those for the European market have CE certification.

With the addition of the premium Q-series line-up, Samsung now offers five families of LED lighting modules (Q-, H-, M-, S- and V-series) to meet most indoor LED lighting needs. The Q-series has the same form factor as Samsung’s other modules for easy retrofitting with existing LED luminaires and is now available through Samsung’s worldwide LED sales network.

Samsung’s Q-series line-up includes:

(@ tp = 40 ºC, 4000K)

Region Type Model Luminous Flux Efficacy Conditions
US

4 ft.

LT-QB22A

4,000 lm

203 lm/W

450 mA, 43.8 V

2 ft. LT-Q562A

2,000 lm

450 mA, 21.9 V
1 ft. LT-Q282A

1,000 lm

450 mA, 11.0 V
Europe 2 ft. LT-Q562B 2,000 lm 180 mA, 54.8 V
1 ft. LT-Q282B 1,000 lm 180 mA, 27.4 V

ROHM has recently announced the availability of the industry’s smallest class (1608 size) of 2-color chip LEDs. In addition to their breakthrough size, the SML-D22MUW features a special design that improves reliability along with a backside electrode configuration that supports high-resolution displays.

In recent years, chip LEDs are being increasingly used for numerical displays in industrial equipment and consumer devices. Conventional numerical displays utilize a single color to indicate numbers, but there is a growing need to change the color to make it easier to recognize abnormalities. However, this typically entails utilizing two separate LEDs, which doubles the mounting area along with development costs, or opting for a standard 2-color LED that also increases board size.

In contrast, proprietary technologies and processes allowed ROHM to integrate 2 chips in the same package size as conventional single-color LEDs, making it possible to emit multiple colors in a smaller footprint. Board space is reduced by 35% over standard 1.5 x 1.3mm 2-color LEDs, contributing to thinner displays. And after taking into consideration usage conditions during reflow, countermeasures were adopted that prevents solder penetration within the resin package to ensure greater reliability.

In a depressed visible LED industry, manufacturers are looking at new opportunities to increase their revenues and margins. In this context, the IR LED market is perceived as a potential new ‘blue ocean’ with attractive opportunities for those players.

While LEDs are important, VCSEL technology is the hot topic. “IR LEDs represented around 65% of the IR light source market in 2016, but this figure is likely to decrease to 45% in 2022,” commented Pierrick Boulay, Technology & Market Analyst at Yole Développement (Yole). Development of 3D cameras and autofocus applications, associated with the sensor fusion trend in smartphones and automotive, will strongly drive growth of the IR VCSEL market in the future (1).

All these topics will be discussed during the First Executive Forum on Laser Technologies created by Yole’s analysts, in collaboration with CIOE. Taking place on September 6&7 in Shenzhen, China, the Forum proposes an impressive agenda composed of 4 sessions, 19 presentations, debates and networking. All along the Forum, industrial experts will debate about the latest innovations, market trends and business opportunities. They will make a special focus on laser manufacturing and analyze the emerging applications. The agenda is now available: LASER FORUM AGENDA.

What are the technologies perspectives? What are the latest advances in semiconductor manufacturing? What will be the next applications? Innovation enables the identification of new business opportunities. It has further accelerated the adoption of laser solutions in many areas.

ir light sources

IR VCSEL represents a good compromise between traditional laser diodes, providing coherent and directional light, and IR LEDs, offering lower manufacturing cost and ease of integration. Additionally, IR VCSELs allow new sensing approaches, such as ToF . In this context, the IR VCSEL industry will be at the center of the attention and should experience strong growth in coming years. It is also likely that some players will work on both IR LEDs and lasers to maximize their revenues.

“Opportunities for both technologies will also be dependent on developments to overcome current limitations, towards longer wavelengths, higher performance, multi-spectral functionality and lower cost,” analyzed Yole’s expert, Pierrick Boulay. Typically, most current IR LEDs are in the 850nm or 940nm range. To enable emerging applications such as gas sensors or portable/integrated spectroscopy systems, longer wavelengths will be mandatory. In addition, integration of these light sources into sensors and modules will also be part of the challenge to be handled by the photonics industry.

Pierrick Boulay from Yole is one of the key speaker of the Emerging Applications session in the First Executive Forum on Laser Technologies agenda. Based on his strong expertise on LED lighting (general lighting, automotive lighting…) and OLED lighting, Pierrick proposes a relevant presentation, titled “IR laser: At the heart of the industry in coming years”. He will highlight the status of laser technologies and emerging applications including 3D camera, LIDAR, proximity sensors… This session also welcome other experts of the industry:
•  Rainer Paetzel, Director of Marketing, Coherent
•  Steven Hsieh, Senior Industry Analyst, ITRI
•  Hans van der Tang, Director Sales & Marketing – APAC Region, ElectroniCast Consultants

First Executive Forum’s program is also offering several networking times to discuss with industrial leaders and identify business opportunities… Discover the agenda and register today: LASER FORUM REGISTRATION 

A team of engineers has developed stretchable fuel cells that extract energy from sweat and are capable of powering electronics, such as LEDs and Bluetooth radios. The biofuel cells generate 10 times more power per surface area than any existing wearable biofuel cells. The devices could be used to power a range of wearable devices.

The epidermal biofuel cells are a major breakthrough in the field, which has been struggling with making the devices that are stretchable enough and powerful enough. Engineers from the University of California San Diego were able to achieve this breakthrough thanks to a combination of clever chemistry, advanced materials and electronic interfaces. This allowed them to build a stretchable electronic foundation by using lithography and by using screen-printing to make 3D carbon nanotube-based cathode and anode arrays.

The biofuel cells are equipped with an enzyme that oxidizes the lactic acid present in human sweat to generate current. This turns the sweat into a source of power.

Engineers report their results in the June issue of Energy & Environmental Science. In the paper, they describe how they connected the biofuel cells to a custom-made circuit board and demonstrated the device was able to power an LED while a person wearing it exercised on a stationary bike. Professor Joseph Wang, who directs the Center for Wearable Sensors at UC San Diego, led the research, in collaboration with electrical engineering professor and center co-director Patrick Mercier and nanoegnineering professor Sheng Xu, both also at the Jacobs School of Engineering UC San Diego.

The biofuel cell can stretch and flex, conforming to the human body. Credit: University of California San Diego

The biofuel cell can stretch and flex, conforming to the human body. Credit: University of California San Diego

Islands and bridges

To be compatible with wearable devices, the biofuel cell needs to be flexible and stretchable. So engineers decided to use what they call a “bridge and island” structure developed in Xu’s research group. Essentially, the cell is made up of rows of dots that are each connected by spring-shaped structures. Half of the dots make up the cell’s anode; the other half are the cathode. The spring-like structures can stretch and bend, making the cell flexible without deforming the anode and cathode.

The basis for the islands and bridges structure was manufactured via lithography and is made of gold. As a second step, researchers used screen printing to deposit layers of biofuel materials on top of the anode and cathode dots.

Increasing energy density

The researchers’ biggest challenge was increasing the biofuel cell’s energy density, meaning the amount of energy it can generate per surface area. Increasing energy density is key to increasing performance for the biofuel cells. The more energy the cells can generate, the more powerful they can be.

“We needed to figure out the best combination of materials to use and in what ratio to use them,” said Amay Bandodkar, one of the paper’s first authors, who was then a Ph.D. student in Wang’s research group. He is now a postdoctoral researcher at Northwestern University.

To increase power density, engineers screen printed a 3D carbon nanotube structure on top the anodes and cathodes. The structure allows engineers to load each anodic dot with more of the enzyme that reacts to lactic acid and silver oxide at the cathode dots. In addition, the tubes allow easier electron transfer, which improves biofuel cell performance.

Testing applications

The biofuel cell was connected to a custom-made circuit board manufactured in Mercier’s research group. The board is a DC/DC converter that evens out the power generated by the fuel cells, which fluctuates with the amount of sweat produced by a user, and turns it into constant power with a constant voltage.

Researchers equipped four subjects with the biofuel cell-board combination and had them exercise on a stationary bike. The subjects were able to power a blue LED for about four minutes.

Next steps

Future work is needed in two areas. First, the silver oxide used at the cathode is light sensitive and degrades over time. In the long run, researchers will need to find a more stable material.

Also, the concentration of lactic acid in a person’s sweat gets diluted over time. That is why subjects were able to light up an LED for only four minutes while biking. The team is exploring a way to store the energy produced while the concentration of lactate is high enough and then release it gradually.

Seoul Semiconductor Co., Ltd. (KOSDAQ 046890) today announced consolidated second-quarter revenues of KRW 267 billion. The rise in consolidated revenue came from strong sales in general lighting and strengths across all divisions within the company. The year over year rise in automotive lighting sales proved highly profitable for the company.

For the lighting division, while the differentiated product such as Wicop and Acrich increased in great proportion, automotive exterior lamps, e.g. daytime running lights and headlights continued their fast-paced growth. Automotive lighting is an area of high entry barriers due to high technology requirements and intellectual properties. Seoul expects to gain further market share with its differentiated Wicop technology. For the IT division, current customers expanding their product line-ups and new customer acquisitions were the main drivers for the rising sales figures.

To improve share price stability and increase shareholder value, Seoul announced plans to almost double its future dividends, based on the fact that its current level of pay-out is half the industry average and an increase up to the industry average is necessary. In addition, the company has sufficient cash generation capabilities since it has booked above 20% gains in EBITDA, leaving sufficient funds available for future investments. This was part of Seoul’s last quarter’s announcement to execute a KRW 10 billion share buyback program.

Company outlook

The company has provided revenue guidance of KRW 260 to 280 billion for the third quarter. The company plans to further strengthen its sales and marketing activities for its unique technologies including Acrich and Wicop and focus on acquiring more customers to reach new heights with respect to earnings.

The company’s Chief Financial Officer Sangbum Lee stated that SunLike, a new LED technology that produces light closely matching the spectrum of natural sunlight, unveiled at a press conference in Frankfurt, Germany in June, had been very well received with great interest from global customers. The company plans to launch additional new products during the remainder of the year and focus on protecting intellectual properties owned by the company.

Veeco Instruments Inc. (NASDAQ: VECO) announced today that CrayoNano AS, research company for ultraviolet short wavelength light emitting diodes (UV-C LEDs), has ordered the Propel Power Gallium Nitride (GaN) Metal Organic Chemical Vapor Deposition (MOCVD) System. CrayoNano will use the system to grow semiconductor nanowires on graphene for water disinfection, air purification, food processing and life science applications.

UV-C LEDs are free of harmful mercury compared to typically 20-200 milligrams of mercury found in traditional UV lamps used in these applications. They also require minimal energy to operate and have longer life cycles compared to other purification and disinfection lighting methods. The value of the global market for UV-C LEDs used in sterilization and purification equipment is growing at a CAGR of 56% from US$28 million in 2016 to US$257 million in 2021, according to the 2016~2021 UV LED and IR LED Application Market Report by LEDinside, a division of TrendForce.

“We see enormous opportunity in our focused markets and we need superior MOCVD technology to accomplish our goals,” said Mr. Morten Froseth, Chief Executive Officer, CrayoNano. “Veeco’s Propel system offers us the unique opportunity to scale to 200 mm graphene wafer sizes while maintaining superior uniformity, low manufacturing costs and long run campaigns.”

Veeco’s Propel Power GaN MOCVD system is capable of processing single 200 mm wafers or smaller (e.g., two-inch) in batch mode. The system is based on Veeco’s TurboDisc® technology including the IsoFlange™ and SymmHeat™ breakthrough technologies, which provide homogeneous laminar flow and uniform temperature profile across each wafer, up to 200 mm in size.

“The Propel Power GaN system is the best choice to deposit advanced GaN-based structures, including complex semiconductor nanowires on graphene substrates with strict process demands,” said Peo Hansson, Ph.D., Veeco’s Senior Vice President, General Manager, MOCVD. “Our Propel system offers industry leading uniformity and process cycle time, therefore providing superior productivity compared to other technologies. As a global supplier of MOCVD systems, we look forward to supporting CrayoNano and their research activities.”

A major bottleneck in the commercialization of Micro LED displays is the mass transfer of micron-size LEDs to a display backplane. Research by LEDinside, a division of TrendForce, reveals that many companies across industries worldwide have entered the Micro LED market and are in a race to develop methods for the mass transfer process. However, their solutions have yet to meet the standard for commercialization in terms of production output (in unit per hour, UPH), transfer yield and size of LED chips (i.e. Micro LED is technically defined as LEDs that are smaller than 100 microns). These research findings can be found in LEDinside’s 3Q17 Micro LED Next Generation Display Industry Member Report: Analyses on Mass Transfer and Inspection/Repair Technologies.

Currently, entrants in the Micro LED market are working towards the mass transfer of LEDs sized around 150 microns. LEDinside anticipates that displays and projection modules featuring 150-micron LEDs will be available on the market as early as 2018. When the mass transfer for LEDs of this size matures, market entrants will then invest in processes for making smaller products.

Development of mass transfer solutions faces seven major challenges

“Mass transfer is one of the four main stages in the manufacturing of Micro LED displays and has many highly difficult technological challenges,” said Simon Yang, assistant research manager of LEDinside. Yang pointed out that developing a cost-effective mass transfer solution depends on advances in seven key areas: precision of the equipment, transfer yield, manufacturing time, manufacturing technology, inspection method, rework and processing cost.

LED suppliers, semiconductor makers and companies across the display supply chain will have to work together to develop specification standards for materials, chips and fabrication equipment used in Micro LED production. Cross-industry collaboration is necessary since each industry has its own specification standards. Also, an extended period of R&D is needed to overcome the technological hurdles and integrate various fields of manufacturing.

Mass transfer has to achieve five-sigma level before mass production of Micro LED displays is feasible

Using Six Sigma as the model for determining the feasibility of mass production of Micro LED displays, LEDinside’s analysis indicates that the yield of the mass transfer process must reach the four-sigma level to make commercialization possible. However, the processing cost and the costs related to inspection and defect repair are still quite high even at the four-sigma level. To have commercially mature products with competitive processing cost available for market release, the mass transfer process has to reach the five-sigma level or above in transfer yield.

As progress on mass transfer solutions continues, true Micro LED products are expected to first enter applications such as indoor displays and wearables

Even though no major breakthroughs have been announced, many technology companies and research agencies worldwide continue to invest in the R&D of mass transfer process. Some of the well-known international enterprises and institutions working in this area are LuxVue, eLux, VueReal, X-Celeprint, CEA-Leti, SONY and OKI. Comparable Taiwan-based companies and organizations include PlayNitride, Industrial Technology Research Institute, Mikro Mesa and TSMC.

There are several types of mass transfer solutions under development. Choosing one of them will depend on various factors such as application markets, equipment capital, UPH and processing cost. Additionally, the expansion of manufacturing capacity and the raising of the yield rate are important to product development.

According to the latest developments, LEDinside believes that the markets for wearables (e.g. smartwatches and smart bracelets) and large indoor displays will first see Micro LED products (LEDs sized under 100 microns). Because mass transfer is technologically challenging, market entrants will initially use the existing wafer bonding equipment to build their solutions. Furthermore, each display application has its own pixel volume specifications, so market entrants will likely focus on products with low pixel volume requirements as to shorten the product development cycle.

Thin film transfer is another away of moving and arranging micron-size LEDs, and some market entrants are making a direct jump to developing solutions under this approach. However, perfecting thin film transfer will take longer time and more resources because equipment for this method will have to be designed, built and calibrated. Such an undertaking will also involve difficult manufacturing related issues.

By Ed Korczynski

Veeco Instruments (Veeco) recently announced that Veeco CNT—formerly known as Ultratech/Cambridge Nanotech—shipped its 500th Atomic Layer Deposition (ALD) system to the North Carolina State University. The Veeco CNT Fiji G2 ALD system will enable the University to perform research for next-generation electronic devices including wearables and sensors. Veeco announced the overall acquisition of Ultratech on May 26 of this year. Executive technologists from Veeco discussed the evolution of ALD technology with Solid State Technology in an exclusive interview just prior to SEMICON West 2017.

Professor Roy Gordon from Harvard University been famous for decades as an innovator in the science of thin-film depositions, and people from his group were part of the founding of Cambridge Nanotech in 2003. Continuity from the original team has been maintained throughout the acquisitions, such that Veeco inherited a lot of process know-how along with the hardware technologies. “Cambridge Nanotech has had a broad history of working with ALD technology,” said Ganesh Sandaren, VP of Veeco CNT Applied Technology, “and that’s been a big advantage for us in working with some major researchers who really appreciate what we’re providing.”

The Figure shows that the company’s ALD chambers have evolved over time from simple single-wafer thermal ALD, to single-wafer plasma-enhance ALD (PEALD), to a large chamber targeting batch processing of up to ten 370 mm x 470 mm (Gen2.5) flat-panels for display applications, and a “large area” chamber capable of 1m x 1.2m substrates for photovoltaic and FPD applications. The large area chamber allows customers to do things like put down an encapsulating layer or an active layer such as buffer materials on CIGS-based solar cells.

Evolution of Atomic-Layer Deposition (ALD) technology starts with single-wafer thermal chambers, adds plasma energy, and then goes to batch processing for manufacturing. (Source: Veeco CNT).

Evolution of Atomic-Layer Deposition (ALD) technology starts with single-wafer thermal chambers, adds plasma energy, and then goes to batch processing for manufacturing. (Source: Veeco CNT).

“There a tendency to think that ALD only belongs in the high-k dielectric application for semiconductor devices, but there are many ongoing applications outside of IC fabs,” reminded Gerry Blumenstock, VP and GM of MBE business unit and Veeco CNT. “Customers who want to do heterogeneous materials develop can now have MBE and ALD in a single tool connected by a vacuum cluster configuration. We have customers today that do not want to break vacuum between processes.” Veeco’s MBE tools are mostly used for R&D, but are also reportedly used for HVM of laser chips.

To date, Cambridge Nanotech tools are generally used by R&D labs, but Veeco is open to the possibility of creating tools for High-Volume Manufacturing (HVM) if customers call for them. “Now that this is part of Veeco, we have the service infrastructure to be able to support end-users in high-volume manufacturing like any of the major OEMs,” said Blumenstock. “It’s an interesting future possibility, but in the next six months to a year we’re focusing on improving our offering to the R&D community. Still, we’re staying close to HVM because if a real opportunity arose there’s no reason we couldn’t get into it.”

In IC fab R&D today, some of the most challenging depositions are of Self-Assembled Monolayers (SAM) that are needed as part of the process-flow to enable Direct Self-Assembly (DSA) of patterns to extend optical lithography to the finest possible device features. SAM are typically created using ALD-type processes, and can also be used to enable selective ALD of more than a monolayer. Veeco-CNT is actively working on SAM in R&D with multiple customers now, and claim that major IC device manufacturers have purchased tools.

At the leading edge of materials R&D, researchers are always experimenting with new chemical precursors. “Having a precursor that has good vapor-pressure, and is reactive yet somewhat stable is what is needed,” reminded Sundaram. “People will generally chose a liquid over a solid precursor because of higher vapor pressure. There are many classes of precursors, and many are halogens but they have disadvantages in some reactions. So we see continue to move to metal-organic precursors, which tend to provide good vapor-pressures and not form undesirable byproducts.”

Renewed investigation of a molecule that was originally synthesized with the goal of creating a unique light-absorbing pigment has led to the establishment of a novel design strategy for efficient light-emitting molecules with applications in next-generation displays and lighting.

Researchers at Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) demonstrated that a molecule that slightly changes its chemical structure before and after emission can achieve a high efficiency in organic light-emitting diodes (OLEDs).

In addition to producing vibrant colors, OLEDs can be fabricated into everything from tiny pixels to large and flexible panels, making them extremely attractive for displays and lighting.

In an OLED, electrical charges injected into thin films of organic molecules come together to form packets of energy – called excitons – that can produce light emission.

The goal is to convert all of the excitons to light, but three-fourths of the created excitons are triplets, which do not produce light in conventional materials, while the remaining one-fourth are singlets, which emit through a process called fluorescence.

Inclusion of a rare metal, such as iridium or platinum, in a molecule can enable rapid emission from the triplets through phosphorescence, which is currently the dominant technology for highly efficient OLEDs.

An alternative mechanism is the use of heat in the environment to give triplets an energetic boost that is sufficient to convert them into light-emitting singlets.

This process, known as thermally activated delayed fluorescence (TADF), easily occurs at room temperature in appropriately designed molecules and has the added advantage of avoiding the cost and reduced molecular design freedom associated with rare metals.

However, most TADF molecules still rely on the same basic design approach.

“Many new TADF molecules are being reported each month, but we keep seeing the same underlying design with electron-donating groups connected to electron-accepting groups,” says Masashi Mamada, lead researcher on the study reporting the new results.

“Finding fundamentally different molecular designs that also exhibit efficient TADF is a key to unlocking new properties, and in this case, we found one by looking at the past with a new perspective.”

Currently, combinations of donating and accepting units are primarily used because they provide a relatively simple way to push around the electrons in a molecule and obtain the conditions needed for TADF.

Although the method is effective and a huge variety of combinations is possible, new strategies are still desired in the quest to find perfect or unique emitters.

The mechanism explored by the researchers this time involves the reversible transfer of a hydrogen atom – technically, just its positive nucleus – from one atom in the emitting molecule to another in the same molecule to create an arrangement conducive to TADF.

This transfer occurs spontaneously when the molecule is excited with optical or electrical energy and is known as excited-state intramolecular proton transfer (ESIPT).

This ESIPT process is so important in the investigated molecules that quantum chemical calculations by the researchers indicate that TADF is not possible before transfer of the hydrogen.

After excitation, the hydrogen rapidly transfers to a different atom in the molecule, leading to a molecular structure capable of TADF.

The hydrogen transfers back to its initial atom after the molecule emits light, and the molecule is then ready to repeat the process.

Although TADF from an ESIPT molecule has been reported previously, this is the first demonstration of highly efficient TADF observed inside and outside of a device.

This vastly different design strategy opens the door for achieving TADF with a variety of new chemical structures that would not have been considered based on previous strategies.

Interestingly, the molecule the researchers used was most likely a disappointment when first synthesized nearly 20 years ago by chemists hoping to create a new pigment only to discover that the molecule is colorless.

“Organic molecules never cease to amaze me,” says Professor Chihaya Adachi, Director of OPERA. “Many paths with different advantages and disadvantages exist for achieving the same goal, and we have still only scratched the surface of what is possible.”

The advantages of this design strategy are just beginning to be explored, but one particularly promising area is related to stability.

Molecules similar to the investigated one are known to be highly resistant to degradation, so researchers hope that these kinds of molecules might help to improve the lifetime of OLEDs.

To see if this is the case, tests are now underway.

While only time will tell how far this particular strategy will go, the continually growing options for OLED emitters certainly bode well for their future.