Category Archives: LED Manufacturing

Researchers at the University of Illinois at Urbana Champaign have developed a new method for making brighter and more efficient green light-emitting diodes (LEDs). Using an industry-standard semiconductor growth technique, they have created gallium nitride (GaN) cubic crystals grown on a silicon substrate that are capable of producing powerful green light for advanced solid-state lighting.

A new method of cubic phase synthesis: Hexagonal-to-cubic phase transformation. The scale bars represent 100 nm in all images. (a) Cross sectional and (b) Top-view SEM images of cubic GaN grown on U-grooved Si(100). (c) Cross sectional and (d) Top-view EBSD images of cubic GaN grown on U-grooved Si(100), showing cubic GaN in blue, and hexagonal GaN in red. Credit: University of Illinois

A new method of cubic phase synthesis: Hexagonal-to-cubic phase transformation. The scale bars represent 100 nm in all images. (a) Cross sectional and (b) Top-view SEM images of cubic GaN grown on U-grooved Si(100). (c) Cross sectional and (d) Top-view EBSD images of cubic GaN grown on U-grooved Si(100), showing cubic GaN in blue, and hexagonal GaN in red. Credit: University of Illinois

“This work is very revolutionary as it paves the way for novel green wavelength emitters that can target advanced solid-state lighting on a scalable CMOS-silicon platform by exploiting the new material, cubic gallium nitride,” said Can Bayram, an assistant professor of electrical and computer engineering at Illinois who first began investigating this material while at IBM T.J. Watson Research Center several years ago.

“The union of solid-state lighting with sensing (e.g. detection) and networking (e.g. communication) to enable smart (i.e. responsive and adaptive) visible lighting, is further poised to revolutionize how we utilize light. And CMOS-compatible LEDs can facilitate fast, efficient, low-power, and multi-functional technology solutions with less of a footprint and at an ever more affordable device price point for these applications.”

Typically, GaN forms in one of two crystal structures: hexagonal or cubic. Hexagonal GaN is thermodynamically stable and is by far the more conventional form of the semiconductor. However, hexagonal GaN is prone to a phenomenon known as polarization, where an internal electric field separates the negatively charged electrons and positively charged holes, preventing them from combining, which, in turn, diminishes the light output efficiency.

Until now, the only way researchers were able to make cubic GaN was to use molecular beam epitaxy, a very expensive and slow crystal growth method when compared to the widely used metal-organic chemical vapor deposition (MOCVD) method that Bayram used.

Bayram and his graduate student Richard Liu made the cubic GaN by using lithography and isotropic etching to create a U-shaped groove on Si (100). This non-conducting layer essentially served as a boundary that shapes the hexagonal material into cubic form.

“Our cubic GaN does not have an internal electric field that separates the charge carriers–the holes and electrons,” explained Liu. “So, they can overlap and when that happens, the electrons and holes combine faster to produce light.”

Ultimately, Bayram and Liu believe their cubic GaN method may lead to LEDs free from the “droop” phenomenon that has plagued the LED industry for years. For green, blue, or ultra-violet LEDs, their light-emission efficiency declines as more current is injected, which is characterized as “droop.”

“Our work suggests polarization plays an important role in the droop, pushing the electrons and holes away from each other, particularly under low-injection current densities,” said Liu, who was the first author of the paper, “”Maximizing Cubic Phase Gallium Nitride Surface Coverage on Nano-patterned Silicon (100)”, appearing Applied Physics Letters.

Having better performing green LEDs will open up new avenues for LEDs in general solid-state lighting. For example, these LEDs will provide energy savings by generating white light through a color mixing approach. Other advanced applications include ultra-parallel LED connectivity through phosphor-free green LEDs, underwater communications, and biotechnology such as optogenetics and migraine treatment.

Enhanced green LEDs aren’t the only application for Bayram’s cubic GaN, which could someday replace silicon to make power electronic devices found in laptop power adapters and electronic substations, and it could replace mercury lamps to make ultra-violet LEDs that disinfect water.

Researchers from North Carolina State University and the U.S. Army Research Office have developed a way to integrate novel functional materials onto a computer chip, allowing the creation of new smart devices and systems.

The novel functional materials are oxides, including several types of materials that, until now, could not be integrated onto silicon chips: multiferroic materials, which have both ferroelectric and ferromagnetic properties; topological insulators, which act as insulators in bulk but have conductive properties on their surface; and novel ferroelectric materials. These materials are thought to hold promise for applications including sensors, non-volatile computer memory and microelectromechanical systems, which are better known as MEMS.

“These novel oxides are normally grown on materials that are not compatible with computing devices,” says Jay Narayan, the John C. Fan Distinguished Chair Professor of Materials Science and Engineering at NC State and co-author of a paper describing the work. “We are now able to integrate these materials onto a silicon chip, allowing us to incorporate their functions into electronic devices.”

The approach developed by the researchers allows them to integrate the materials onto two platforms, both of which are compatible with silicon: a titanium nitride platform, for use with nitride-based electronics; and yttria-stabilized zirconia, for use with oxide-based electronics.

Specifically, the researchers developed a suite of thin films that serve as a buffer, connecting the silicon chip to the relevant novel materials. The exact combination of thin films varies, depending on which novel materials are being used.

For example, if using multiferroic materials, researchers use a combination of four different thin films: titanium nitride, magnesium oxide, strontium oxide and lanthanum strontium manganese oxide. But for topological insulators, they would use a combination of only two thin films: magnesium oxide and titanium nitride.

These thin film buffers align with the planes of the crystalline structure in the novel oxide materials, as well as with the planes of the underlying substrate – effectively serving as a communicating layer between the materials.

This approach, called thin film epitaxy, is based on the concept of domain-matching epitaxy, and was first proposed by Narayan in a 2003 paper.

“Integrating these novel materials onto silicon chips makes many things possible,” Narayan says. “For example, this allows us to sense or collect data; to manipulate that data; and to calculate a response – all on one compact chip. This makes for faster, more efficient, lighter devices.”

Another possible application, Narayan says, is the creation of LEDs on silicon chips, to make “smart lights.” Currently, LEDs are made using sapphire substrates, which aren’t directly compatible with computing devices.

“We’ve already patented this integration technology, and are currently looking for industry partners to license it,” Narayan says.

The gallium nitride (GaN) substrates market is set to cross $4 billion USD by 2020, according to the market research report “Gallium Nitride (GaN) Substrates Market Analysis: By Type (GaN on sapphire, GaN on Si, GaN on SiC, GaN on GaN); By Products (Blu-ray Disc (BD), LEDs, UV LEDs) By Industry (Consumer Electronics, Telecom, Industrial, Power, Solar, Wind)-Forecast(2015-2020)”, published by IndustryARC.

Gallium Nitride (GaN) is a semiconductor compound material which has proved to be advantageous in comparison to the other conventional materials such as Silicon, Silicon Carbide, Aluminum, and so on. GaN substrates are essential materials which are deployed across blue-violet laser diodes in recorders or BD players and the power control elements. GaN materials are also used across optoelectronic products such as lasers, LEDs, Power Electronics and Radio Frequency amplifiers.

Optoelectronics are the key devices that employ GaN substrates, among which, LEDs account for over 70% share. Traditionally, these devices are grown on GaN on Sapphire, GaN on Si, and GaN on Sic substrates with GaN on Sapphire being the most utilized substrate. However, these substrates contain GaN layers grown by epitaxial methods leading to lattice mismatches and defects. In this context, the gallium nitride substrates are presented as the potential substitute for the foreign substrates. The GaN epitaxy if performed on the native substrates has several technical advantages and also improves the performance of the devices.

According to recent study by IndustryARC, the GaN substrates market is dominated by sapphire which is nearing maturity. The market for sapphire substrates was around $ 1.4 billion in 2014 and estimated to grow at 7% CAGR in 2015-2020. The market is estimated to showcase normal growth rates and grow predictably till 2020 and if any disrupting market developments are expected from the silicon and bulk GaN substrate areas. There is only company, Cree Inc. manufacturing GaN on SiC products and very few players adopting GaN on Si. Acquisitions and partnerships are going to be the key in these segments to showcase significant growth in the next five years.

Asia-Pacific is the key region for both substrates and devices market. LEDs, with demand in particular from automotive and lighting industry, are estimated to drive the GaN market in the period 2015-2020. In this, region, Japan, China, and Korea are the key regions where majority of the players are located and demand emerges. The less labor and production costs in these countries are aiding manufacturers to set up production facilities. In 2015, Panasonic Corporation has shifted its LED production to Japan from Indonesia to capitalize these advantages in the country and further grow its share in the LED market. Besides that, the substrate suppliers are also strongly distributed in the region. With these players significantly scaling up their global market position, the prices are estimated to be affected significantly. In countries such as China, the substrates are offered at cheaper prices which will not only attract LED producers significantly but also intensify demand for cheaper products.

The bulk GaN or GaN on GaN substrates hold lot of promise in the LED, Power Electronics, and RF products. Particularly in power electronics, the bulk gallium nitride substrates are proven to be very useful. There is significant research underway to realize the GaN material potential into these industries and very recently, MIT researchers have successfully enabled GaN power transistors at low cost. Due to huge power saving nature of the components made from them, the billion dollar markets such as internet of things and electric vehicles market are only ready to embrace bulk GaN substrates. Thus, with encouraging developments in the market and potential billion markets, bulk GaN is projected as the game changer. But, to realize the same, there are substantial obstacles in terms of production and capital. Therefore, even in 2020, the market is estimated to be dominated by foreign substrates where bulk GaN will account for smaller share.

A collaboration of researchers from Kumamoto, Yamaguchi, and Osaka Universities in Japan have discovered a new method of drastically changing the color and fluorescence of a particular compound using only oxygen (O2) and hydrogen (H2) gases. The fully reversible reaction is environmentally friendly since it produces only water as a byproduct. Rather than using electrical or photo energy, the discovery uses energy from the gases themselves, which is expected to become a future trend, to switch the color and fluorescence properties. The technique could be used as a detection sensor for hydrogen or oxygen gases as well as for property controls of organic semiconductors and organic light emitting diodes (OLEDs).

An efficient chemical synthesis method for picene-13, 14-dione. Credit: Dr. Hayato Ishikawa

An efficient chemical synthesis method for picene-13, 14-dione. Credit: Dr. Hayato Ishikawa

Polyaromatic compounds (PACs) are widely used in fluorescent materials, semiconductor materials, organic EL devices, and organic solar-cell devices. The research performed at Kumamoto University focused on using energy from gases to trigger a molecular switch in a PAC. In particular, focus was placed on H2 as a reductant and O2 as an oxidant.

“We tried to determine the most attractive compounds that could freely and dramatically change the optical properties of the PAC with a redox reaction,” said Associate Professor Hayato Ishikawa from Kumamoto University. “Specifically, we introduced an orthoquinone moiety to the PAC that possessed the most ideal switching properties under a redox reaction with hydrogen and oxygen gases.”

To determine the candidates with the best switching properties, researchers screened several orthoquinone-containing aromatic compounds in a computational study. The ideal molecules clearly showed switching between fluorescence emission and quenching, and between a colored and colorless state.

Picene-13, 14-dione was nominated as the most promising candidate from the computational analysis. The researchers then developed an original protocol to efficiently synthesize the compound from commercially available petroleum raw materials. The key steps for the synthesis were the transition metal-catalyzed coupling reaction and the ring construction reaction by an organocatalyst. This synthetic methodology is also applicable to the synthesis of various other similar compounds or derivatives.

A palladium nanoparticle catalyst was added to the synthesized picene-13, 14-dione and then H2 gas was bubbled into the solution. As predicted by the computational study, a dramatic change in color and fluorescence of the solution was observed; its color and fluorescence changed from yellow to colorless, and from non-fluorescent to blue fluorescent respectively. The subsequent reverse oxidation proceeded smoothly when H2 gas was exchanged for O2 gas, and the solution reverted back to its original state.

“When we performed a detailed analysis, it was revealed that the resultant changes in color and fluorescence were caused by two different molecular states. The prediction of these states, and our ideas about this phenomenon, were strongly supported by both the computational analysis and the experimental results,” said Associate Professor Ishikawa. “This molecular switching technology of an aromatic compound using an orthoquinone moiety is a new insight that appears to have been reported first by our research team.”

An important advantage of this technology is that it is environmentally friendly since the byproduct of the reaction is simply water. Additionally, the synthetic PACs don’t experience very much damage after each reaction meaning that the molecular switch has excellent reusability.

“We have considered a wide range of future applications for this molecular technique,” said Associate Professor Masaki Matsuda, a research collaborator from Kumamoto University. “For example, we can put this molecular sheet into a package of food filled with an inert gas to check whether oxygen, which promotes the spoilage of food, has entered the package. All that would be required is a simple check under a UV light; the package wouldn’t even have to be opened. Organic semiconductors and OLEDs could also benefit from the ability to control optical properties using energy from gases. For example, organic semiconductors could be made to change their electrical properties, and OLEDs could show on/off switching characteristics by using the energy from gas that is supplied to it. The applications for this technology are numerous.”

The findings of this research were published in the Angewandte Chemie International Edition, online edition, on May 4th, 2016.

By Shannon Davis, Web Editor

Kateeva is out to change the way displays are being made, and during Tuesday’s Silicon Innovation Forum keynote, Kateeva President and COO Conor Madigan, PhD, laid out how their YIELDJet inkjet system is making that happen.

In recent years, OLED displays have captured the imagination of the industry because of the materials’ capability to enable new kinds of form factors, specifically flexible displays. One of the compelling characteristics of OLED is designers can make a display on a thin piece of plastic, freeing them from rigid glass.

Another compelling aspect, Madigan explained, is that OLED displays have fewer subcomponents than their LCD counter parts, so manufacturing cost can be lower. And he believes inkjet technology will play a key role in making OLED more affordable. His company, Silicon Valley-based Kateeva, has focused their efforts on developing an inkjet platform for OLED manufacturing called YIELDJet, a completely different style of inkjet system.

Kateeva’s YIELDJet inkjet printing platform.

Kateeva’s YIELDJet inkjet printing platform.

When the concept of flexible OLEDs was first catching on, designers had some significant manufacturing obstacles to overcome, Madigan explained. Designers in R&D were using vacuum-based technique for depositing the films in the OLED structure.

“It was very slow; it required planarization to make a smooth surface, and this didn’t do that well,” said Madigan. “There were many particle defects, and the cost was high.”

Kateeva worked with adapting inkjet technology to this process. Madigan explained that YIELDJet uses individual droplets of ink in a pattern, merges that ink together, and then uses UV lights to cure into a single layer, which has improved the quality of the films.

“Nowadays, we’re focused on broadly enabling low cost, mass production OLEDs with inkjet printing,” Madigan said. “What we’re working on now is a general deposition platform for putting down patterned films at high speed over large areas, realizing the full potential of inkjet technology for the display industry.”

In developing Kateeva’s YIELDJet, Madigan said they focused on how the glass would be handled, how to perform maintenance on a printer system that would be completely enclosed in a nitrogen environment, and managing particle decontamination.

YIELDJet employs a technique that floats a panel of glass on a vacuum and pressure holds, holding it at the very edge, which significantly reduces the size of the system when compared to conventional system which requires glass be moved on a large, often bulky holder. To address accessibility of their complicated system, Kateeva engineers made the system fully automated and able to recover quickly if it needed to be opened up to air.

“It was a new thing to make a printer that was low particle contaminating,” said Madigan. “In one of these printers, you have about ten thousand nozzles, to do fast coating.”

Kateeva was able to develop techniques to monitor all of these nozzles simultaneously, resulting in completely uniform coatings and films.

“The analysis that we’ve done with our customers is that, once they can move to inkjet printing, then you’ll quickly see OLED come down to cost parity and even be below LCD in cost,” Madigan concluded.

Today, SiC benefits are not a secret anymore and progressively lot of industries are considering the development of new products including SiC technologies.

”The SiC power business is concrete and real, with a promising outlook,” announced Yole Développement (Yole) in its latest compound semiconductor report, Power SiC 2016: Materials, Devices, Modules & Applications. The SiC power market, diode and transistor included is estimated to be more than $200 million in 2015 and forecasted to be more than $550 million in 2021, with a 2015 – 2021 CAGR of 19%. SiC diodes still dominate the overall SiC market with 85% market share. According to Yole, this leading position will not change for several years. In parallel, SiC transistors are more and more present and should reach 27% market share in 2021. SiC solutions are diffusing step by step into multiple application segments: “We are at the opening stage of the SiC industry for power electronics applications,” confirmed Yole’s analysts.

This SiC technology & market analysis is not the first edition for Yole. Therefore, the “More than Moore” market research and strategy consulting company has been working for fifteen years on SiC technologies, associated markets and more globally within the WBG area. This year, this report is probably the most successful achievement with a global comprehension of the market needs and technology challenges.

Yole’s analysis details a relevant description of the SiC power industry landscape and lists the key related market data. It also proposes a detailed review per market segment, a full analysis of the SiC supply chain including new entrants, mergers and acquisitions and a technology roadmap. A special section has been also performed by Yole’s analysts to understand the current issues in China and identify business opportunities. With this 2016 edition, Yole confirms its leadership within the analysis of the WBG industry, its technologies and market trends.

Not surprisingly, the PFC power supply market is still the leading application with almost 50% market share (in revenue), consuming a large volume of diodes in 2015. However this market share is expected to decrease little by little after 2016. So far behind, PV inverters are close behind. Indeed SiC diodes and MOSFETs are now used by various PV inverter manufacturers in their products. It has been confirmed that SiC implementation provides several performance benefits including increased efficiency, reduced size and weight. In addition, it allows to low cost at the system level in certain power range. “At Yole, we have received increasingly positive feedback from the market”, said Dr. Hong Ling, Technology & Market Analyst at Yole. “And we expect other manufacturers to follow in the footsteps of the early adopters, leading to a rapid expansion of the PV segment in the coming years.”

Other SiC applications include UPS , motor drive, wind, EV/HEV and rail, all with different levels of adoption. Within the rail sector, SiC penetration continues. For EV/HEV applications, OEMs and Ter1 are testing SiC devices but qualification time is long…

The benefits enabled by SiC, the continuous performance improvement, and the cost erosion of SiC power devices will clearly fuel the implementation of SiC in different applications. “Under this new SiC edition, we propose a deep understanding of SiC implementation in different segments”, comments Dr Ling at Yole. Indeed this analysis offers a comprehensive summary of SiC power device market data (split by application), including PFC/power supply, PV, EV/HEV, uninterruptible power supplies (UPS), motor drives, wind, and rail.

SiC power is creating many opportunities for many different types of suppliers. Indeed, attracted by the market’s potential, more and more players are entering at different levels of the value chain:
•  At the module packaging level, Starpower just showed their SiC module in May 2016.
•  At the device level, after investing in Monolith Semiconductors in 2015, Littlefuse released its SiC diode products in May this year, with the intention to develop a full product range. Yole has also identified other newcomers including Brückewell, YangJie Technology, Gengol, each with different backgrounds and different business models.
•  On the materials side, Aymont, the SiC growth furnace supplier, has started to supply SiC wafers.

Furthermore, existing players will expand their products. For example, Infineon Technologies just released its 1200V SiC MOSFET and plans to go into mass production in 2017. Also, Fuji’s full SiC module will be available. As more and more products reach the market, Yole expects an acceleration of SiC. This growing market is generating plenty of opportunities for different types of suppliers: passive components, materials suppliers, test equipment suppliers, and more.

Despite slower growth for the automotive industry and exchange rate fluctuations, the automotive semiconductor market grew at a modest 0.2 percent year over year, reaching $29 billion in 2015, according to IHS (NYSE: IHS), a global source of critical information and insight.

A flurry of mergers and acquisitions last year caused the competitive landscape to shift, including the merger of NXP and Freescale, which created the largest automotive semiconductor supplier in 2015 with a market share of 14.3 percent, IHS said. The acquisition of International Rectifier (IR) helped Infineon overtake Renesas to secure the second-ranked position, with a market share of 9.8 percent. Renesas slipped to third-ranked position in 2015, with a market share of 9.1 percent, followed by STMicroelectronics and Texas Instruments.

“The acquisition of Freescale by NXP created a powerhouse for the automotive market. NXP increased its strength in automotive infotainment systems, thanks to the robust double-digit growth of its i.MX processors,” said Ahad Buksh, automotive semiconductor analyst for IHS Technology. “NXP’s analog integrated circuits also grew by double digits, thanks to the increased penetration rate of keyless-entry systems and in-vehicle networking technologies.”

NXP will now target the machine vision and sensor fusion markets with the S32V family of processors for autonomous functions, according to the IHS Automotive Semiconductor Intelligence Service Even on the radar front, NXP now has a broad portfolio of long- and mid-range silicon-germanium (SiGe) radar chips, as well as short-range complementary metal-oxide semiconductor (CMOS) radar chips under development. “The fusion of magnetic sensors from NXP, with pressure and inertial sensors from Freescale, has created a significant sensor supplier,” Buksh said.

The inclusion of IR, and a strong presence in advanced driver assistance systems (ADAS), hybrid electric vehicles and other growing applications helped Infineon grow 5.5 percent in 2015. Infineon’s 77 gigahertz (GHz) radar system integrated circuit (RASIC) chip family strengthened its position in ADAS. Its 32-bit microcontroller (MCU) solutions, based on TriCore architectures, reinforced the company’s position in the powertrain and chassis and safety domains.

The dollar-to-yen exchange rate worked against the revenue ranking for Renesas for the third consecutive year. A major share of Renesas business is with Japanese customers, which is primarily conducted in yen. Even though Renesas’ automotive semiconductor revenue fell 12 percent, when measured in dollars, the revenue actually grew by about 1 percent in yen. Renesas’ strength continues to be its MCU solutions, where the company is still the leading supplier globally.

STMicroelectronics’ automotive revenue declined 2 percent year over year; however, a larger part of the decline can be attributed to the lower exchange rate of the Euro against the U.S. dollar in 2015, which dropped 20 percent last year. STMicroelectronics’ broad- based portfolio and its presence in every growing automotive domain of the market helped the company maintain its revenue as well as it did. Apart from securing multiple design wins with American and European automotive manufacturers, the company is also strengthening its relationships with Chinese auto manufacturers. Radio and navigation solutions from STMicroelectronics were installed in numerous new vehicle models in 2015.

Texas Instruments has thrived in the automotive semiconductor market for the fourth consecutive year. Year-over-year revenue increased by 16.6 percent in 2015. The company’s success story is not based on any one particular vehicle domain. In fact, while all domains have enjoyed double-digit increases, infotainment, ADAS and hybrid-electric vehicles were the primary drivers of growth.

IHS_Auto_Semis_Ranking_2015

Other suppliers making inroads in automotive

After the acquisition of CSR, Qualcomm rose from its 42nd ranking in year 2014, to become the 20th largest supplier of automotive semiconductors in 2015. Qualcomm has a strong presence in cellular baseband solutions, with its Snapdragon and Gobi processors; while CSR’s strength lies in wireless application ICs — especially for Bluetooth and Wi-Fi. Qualcomm is now the sixth largest supplier of semiconductors in the infotainment domain.

Moving from 83rd position in 2011 to 37th in 2015, nVidia has used its experience, and its valuable partnership with Audi, to gain momentum in the automotive market. The non-safety critical status of the infotainment domain was a logical stepping stone to carve out a position in the automotive market, but now the company is also moving toward ADAS and other safety applications. The company has had particular success with its Tegra processors.

Due to the consolidation of Freescale, Osram entered the top-10 ranking of automotive suppliers for the first time in 2015. Osram is the global leader in automotive lighting and has enjoyed double-digit growth over the past three years, thanks to the increasing penetration of light-emitting diodes (LEDs) in new vehicles.

Samsung Electronics Co., Ltd. announced today that it has introduced “Fx-CSP,” a line-up of LED packages which features chip-scale packaging and flexible circuit board technology, for use in automotive lighting applications.

New Samsung Fx-CSP automotive LED packages (Graphic: Business Wire)

New Samsung Fx-CSP automotive LED packages (Graphic: Business Wire)

“Our new Fx-CSP line-up will bring greater design flexibility and cost competitiveness to the automotive lighting industry,” said Jacob Tarn, executive vice president, LED Business Team, Samsung Electronics. He added that, “We will continue to introduce innovative LED products and technologies, such as multi-chip array technology, that can play a key role in the growth of the automotive LED lighting industry.”

Samsung’s new Fx-CSP provides an advanced combination of chip-scale packaging and flexible circuit board technology, which together enable more compact chip sizing and a higher degree of reliability. The use of a flexible circuit board also enables more heat to dissipate, which leads to lower resistance and brings about a greater degree of lumen-per-watt efficiency than using a ceramic board.

In addition, the new Samsung automotive LED line-up allows car designers to use a variety of chip arrangements such as a single chip, a 1 by 4, or a 2 by 6 multi-chip arrangement to suit different lighting configurations. The Fx-CSP line-up can be widely used in automotive lighting applications that include position lamps and daytime running lamps as well as headlamps that require higher luminous flux and reliability than other automotive lamps.

The Fx-CSP line-up consists of single packages, Fx1M and Fx1L, with 1-3 watts each, as well as packages with a 14W high voltage array, Fx4 and a 40W high voltage array, Fx2x6. The variation in wattage levels allows Samsung LED lighting packages to work well with a wide range of exterior automotive lighting.

By adding the new Fx-CSP line-up to its existing mid-power and high-power automotive LED component line-ups, Samsung now provides a highly competitive family of automotive lighting components.

Samsung’s new Fx-CSP LED line-up was recently selected for a compact car headlamp project from one of the major global automotive manufacturers.

Samsung plans to introduce more CSP technology-based LED components such as the new Fx-CSP line-up for automotive lighting, later this year.

Ultratech, Inc., a supplier of lithography, laser­ processing and inspection systems used to manufacture semiconductor devices and high­brightness LEDs (HB­ LEDs), as well as atomic layer deposition (ALD) systems, announced that its proprietary LXA nanosecond melt laser annealing technology enabled the world’s lowest contact resistivity for FinFETs in an R&D environment.  In collaboration with multiple companies, this record achievement, as well as additional results, was presented in a paper at the 2016 Symposia on VLSI Technology and Circuits held June 13-17, at the Hilton Hawaiian Village in Honolulu, Hawaii.

In the development of today’s advanced CMOS logic FinFET devices, the electrical resistance at the contact junction (contact resistance) is widely recognized to play an increasingly significant role in overall device performance. In larger device nodes, the contact pads provide a relatively large area over which to transfer electrical current. But as devices continue to shrink, so does the available area to form the contact, creating an electrical current bottleneck that reduces the performance of the device and impacts battery life. In order to realize the desired benefits of the scaled transistor architecture, including improved device performance and greater battery life, it will be necessary to make significant advancements over the current process. One emerging solution is to improve the characteristics of the contact by modifying the material properties of the contact using a unique nanosecond melt laser annealing technology. Using Ultratech’s patent pending LXA melt laser annealing technology these researchers reported world record results in contact resistance.

Yun Wang, Ph.D., Senior Vice President and Chief Technologist, Laser Processing at Ultratech, said, “The great achievement in lowering the contact resistivity for FinFETs is that it provides faster on/off switching of the transistor using the same input voltage. Since the input voltage doesn’t need to be increased to provide faster transistor switching, a low supply voltage can be maintained, which saves battery life.  The result is a FinFET transistor that operates very quickly at a lower voltage for faster performance and longer battery life. As we continue our R&D, we expect that Ultratech’s unique LXA nanosecond melt laser anneal technology will address a wide range of applications at the 7-nm and below nodes, and enable use of new materials anticipated at 5nm and below. We plan to use this record achievement as a benchmark to continue to improve our LXA technology.”

On Tuesday, June 14 at HAST, the paper by Hiroaki Niimi</span, Zuoguang Liu, Oleg Gluschenkov and others, titled, 'Sub-2×10-9 Ω‐cm2 N‐ and P-Contact Resistivity with Si:P and Ge:Ga Metastable Alloys for FinFET CMOS  Technology' was presented during Session 7 – Contact Resistance Innovations for Sub‐10nm Scaling, at the 2016 Symposia on VLSI Technology and Circuits.

Ultratech’s LXA Nanosecond Melt Laser Annealing Technology

Ultratech’s LXA technology is a proprietary technology for achieving nanosecond anneal utilizing a millisecond process in-situ with a nanosecond spike anneal to provide ultra-low thermal budget with added process flexibility for a wide range of materials and applications. The LXA technology is targeted for advanced junction formation, contact anneal, and multiple middle-of-line applications.  As more exotic materials are used for 7nm and below devices, it is expected that Ultratech’s LXA nanosecond melt laser annealing technology will play a bigger role and include wider applications in the manufacture of leading-edge transistors.

WPG Americas Inc. (WPGa) a subsidiary of WPG Holdings, announced today it has signed a new agreement with Seoul Semiconductor the world’s fifth largest LED supplier to distribute their full complete line of products. The company’s product portfolio includes a wide array of package and device choices such as AC driven LEDs, high-brightness LEDs, mid-power LEDs, side-view LEDs, through-hole type LED lamps, custom displays, UV LEDs and sensors.

“We are excited to add Seoul Semiconductor to our LED Lighting portfolio.  Seoul strengthens our total LED Lighting solutions for our customers with the addition of their highly competitive Mid-power offering and ACRICH products for direct AC applications,” said Rich Davis, President of WPG Americas Inc.

“As the LED market continues to grow, we are glad to expand our distribution channel through WPGA to reach into the vast client base in the Americas. WPGA’s strength in demand creation, solution selling and operational excellence is a huge asset that Seoulcan lean on for profitable growth,” said Kyu Uhm, Executive Vice President of World Wide Marketing at Seoul Semiconductor, Inc.