Category Archives: LED Manufacturing

InfiniLED’s latest MicroLEDs, or µLEDs, have produced record optical beam intensity. This new device is capable of producing up to 1mW of light from a single 20µm pixel at 405nm. This is equivalent to a light output density of more than 300 W/cm2 – the highest recorded for a commercially available LED type device.

“These results highlight the capabilities of the MicroLED,” said Dr. Bill Henry, chief commercial officer of InfiniLED, “This device can be seen as a cross-over between the power and collimation of a laser and the simplicity of an LED. The unique devices enable a range of applications. This was achieved without the need for external optics indicating the potential for further improvement of the performance.”

The MicroLED combines the benefits of a laser and a LED to produce ultra-high light output. The MicroLED provides the wavelength flexibility, drive characteristics and simplicity of a LED as well as the power and collimated beam of a laser. The ability to produce such light intensity and control directly from the chip enables the light to be efficiently used in a range of applications.

InfiniLED has achieved this record performance using the patented MicroLED structure. A parabolic reflector is etched into the semiconductor material during the fabrication process. This places an optical component directly at the site of light generation and at the most effective position for control of the light produced. Not only has the light been shown to be extracted in ultra-high intensity but also at high efficiencies. By directing all the generated light through a single surface of the semiconductor, it can be efficiently collected and used in the wider system.

The MicroLED is currently being used in a range of applications included life sciences, consumer electronics and OEM equipment. The MicroLED (µLED) can be fabricated as a single pixel, large clusters of pixels or as addressable arrays where each pixel is individually switchable. The single pixels can be used to produce high intensity, collimated light over a small area or to produce useable light at ultra-low currents. The single pixels produce light with a few nanoamps of current. To produce larger amounts of light, clusters of tightly packed MicroLEDs are available. This results in high light density and collimated emission over a wider area. MicroLEDs (µLEDs) are also available as addressable arrays of pixels. The collimation from each pixel results in high packing densities and minimal crosstalk between the devices.

Additionally, the high current densities achievable and low capacitance allows the MicroLEDs to be switched at very high speeds. Experimental work is on-going with the Tyndall National Institute and the results will be announced shortly.

 “The applications for the MicroLED are many and varied,” Henry added. “InfiniLED is developing light sources for use in areas such as diagnostics, printing and battery powered consumer electronics. We are particularly focused on applications where the efficient use and control of light is of greatest importance. The first products with MicroLEDs incorporated will be on the market shortly and we look forward to new releases in the near future.” 

InfiniLED will demonstrate this technology at BiOS and Photonic West in San Francisco this February.

Mitsubishi Electric Corporation announced this week that it has developed a prototype multi-wire electrical discharge processing technology to cut very hard four inch square polycrystalline silicon carbide (SiC) ingots into 40 pieces at once. The technology is expected to improve both the productivity of SiC slicing and the effective use of SiC material. Mitsubishi Electric aims to market its multi-wire electrical discharge slicer by fiscal 2015.

SiC is expected to be used increasingly in power semiconductors due to its superior energy-saving and CO2 emissions-reduction properties compared to silicon. Additionally, SiC, along with GaN, zinc oxide (ZnO) and silicon (Si) substrates are considered as the future LED substrates, thanks to low lattice mismatches.

The prevalence of SiC in the semiconductor industry has grown over the past few years, as Si substrates are relatively cheap and benefit from the long process history of semiconductor manufacturing on Si. Currently, Cree is producing epi-wafers using a SiC substrate.

Until now, sliced wafers have been produced through multi-wire saw with diamond particles because SiC is the third hardest compound on earth, but this method requires lengthy machining time and large kerf widths. The new parallel multi-wire electrical discharge machining method utilizes Mitsubishi Electric’s proven electrical discharge technology for difficult-to-cut material, and employs a dedicated power supply specially developed for SiC.

Key technologies of Mitsubishi Electric’s electrical discharge technology

Mitsubishi Electric’s electrical discharge technology provides a method of simultaneously cutting of SiC ingots into 40 pieces.  Forty wire electrodes with a diameter of 0.1 mm aligned at 0.6mm intervals are rotated to cut 40 slices at once, improving productivity. The non-contact, thermal process-wire electrical discharge method slices faster and at closer intervals compared to contact cutting (220 micro meters or less cut at a speed of 80 micro meters per minute). More wafer slices extracted per SiC ingot for improved efficiency.

The power supply dedicated to SiC slice processing allows for simultaneous wire cuts with even energy enabled by 40 electrically independent power feed contacts to wire electrodes. The power supply also means uninterrupted processing with even very thing (0.1mm) wire electrodes, thanks to a newly developed high-frequency power supply tailored to the characteristics of SiC material.

LED market discussedWith increasing awareness of global climate change and the importance of energy conservation, more and more countries have launched LED lighting projects and subsidy policies. As a result, even though the growth of the LED market in 2012 was hampered by global economic challenges, overall demand has continued to be on the rise. To help the Taiwan LED industry tackle the increasing challenges, an in-depth analysis of LED global market opportunities and technology breakthroughs were recently provided at the 2013 LED Market and Outlook seminar held by SEMI Taiwan.

Demand for high-power white LED is now growing at a rapid pace. Yellow and natural light LEDs will both exceed 200 lumen/watt in power rating by 2015 and even surpass 250 lumen/watt by 2020. OEM bulb prices are expected to drop from US$ 23 per 1,000 lumen in 2012 to $10 per 1,000 lumen in 2015 and then down to $5 per 1,000 lumen by 2020. The next few years will therefore see strong growth in the LED lighting market.

LED lighting market continues to grow from 2011 to 2016

Daphne Kuo, an analyst with ITRI Industrial Economics & Knowledge Center, added that the global market for general lighting has an annual growth rate of between 3 and 6%. The global market is expected to be worth $114.7 Billion in 2020, with the LED lighting market reaching a compound annual growth rate of 45% between 2011 and 2016, and 15% between 2016 and 2020. The LED lighting market could therefore reach a value of $79 billion.

In terms of the LED lighting market structure, LED home lighting will be the largest market in 2020 at $32.1 billion accounting for 41 percent of the total LED lighting. The next two largest markets will be outdoor and office lighting, with both approaching $11.3 billion. The overall market will itself be divided into the new installation market and the replacement market. The relative scale of the two markets is approximately 80:20. The scale of the replacement market is however expected to begin contracting after 2015 as LED penetration increases and lighting technology improves.

Different regions show different approaches to LED market

According to Kuo, currently Western nations account for 50% of the general lighting market and the Asian market accounts for 40%, so these two large regional markets remain evenly balanced. However, future growth will be driven mainly by emerging nations, and the BRICs in particular, because of strong government support for LED lighting. China will be the largest among them and account for approximately 70% of the BRIC lighting market. The China market is estimated to account for 45% of all demand in Asia, or 18% of the global lighting market.

Nevertheless, demand for LED lighting in China mainly comes from government projects. With local firms and governments joining forces to protect their vested interests, it is very difficult for outside firms to make any headway. Any company wishing to enter the China market must pay attention to the parochial nature of the lighting market. Adopting a profit sharing model and establishing a solid partnership with regional lighting channel operators is essential when entering the LED lighting market in China.

Keys to market: Lower production cost and improve efficiency

In addition to the market challenges, there will also be a number of technological challenges in the future. EPISTAR’s Carson Hsieh noted that solving problems with thermal resistance remains the number one priority. The current trend is using Flip-Chip technology to reduce chip-level thermal resistance. Another approach is to improve light emission efficiency. Light emission efficiency is in turn governed by internal quantum efficiency and light extraction efficiency. While improvements have been made in internal quantum efficiency, factors such as material absorption, uneven current distribution, and threshold loss mean that even high internal quantum efficiency within the LED produces relatively little external light. The bottleneck in LED light extraction efficiency must therefore be overcome.

The current trend is using Patterned Sapphire Substrate (PSS) technology as it has the advantage of increasing LED light extraction efficiency. Another method, called Nano Patterned Sapphire Substrate (NPSS), not only increases light extraction efficiency but also boosts epi wafer output. Increasing light extraction efficiency will not only boost overall light emission efficiency but also reduce thermal loss, allowing LED bulbs to do away with heat sinks and reduce costs even more.

By using GaN LED on Si technology to grow the epi layers on large silicon wafers, it will also be possible to adopt a production process that is compatible with semiconductor production lines and significantly reduce overall costs as well. However, GaN has a far higher thermal expansion coefficient than silicon so this may lead to technical problems such as epitaxial film rupture or wafer warping that will need to be overcome in the future.

Technology breakthroughs lead to further reductions in LED costs. This will in turn increase market acceptance and usher in of the era of high growth for the LED lighting market.

A new report from IHS Displaybank examined a total of 483 patents on roll-to-roll processing technologies, focusing on 32 that were flexible, OLED-related. 43 flexible OLED-related roll-to-roll application technologies and 23 roll-to-roll patents by SiPix were also selected for an analysis. 

A flexible display is considered as the next-generation display that is bendable and rollable without damage, by using a paper-thin and flexible substrate. The flexible display market is projected to lead the market growth by creating a new display market as well as by replacing the current display market. In addition, when producing flexible displays, if a large-area and low-cost technology based on the roll -to-roll process is realized, new demands with such as indoor/outdoor advertising and various decorative purposes are expected to be created.

The roll-to-roll process is a foundation to mass produce flexible electronics applications at low cost. It is a greatly demanded technology in the related-product manufacturing industry. The technology at the present level allows high speed printing, but the ink viscosity and the resolution vary depending on the printing method, and the equipment research on the device manufacturing process has not yet conducted enough.

The report contains the application trend and in-depth analysis of key patents on the roll-to-roll processing technology.

Looking at the application trend of 483 patents on roll-to-roll processing technology, the number of applications has continuously increased since mid 2000s, and many were applied in the U.S. Major applicants include 3M Innovative Properties, SiPix Imaging, Fuji Film, and General Electric. Amid vigorous developments of roll-to-roll processing technologies, competition among companies in the U.S., Japan, and South Korea gets increasingly fierce.

Roll-to-roll Processing Technology Patent Application Trends by Year/Country

 

Source: Displaybank, “Key Patent Analysis—Flexible Roll-to-roll Processing Technology”

Of a total of 483 roll-to-roll processing technology patents, 23 flexible OLED-related U.S. published/issued patents and 9 international patents were extracted as key patents. In-depth analyses were conducted on the 32 key patents after divided into the roll-to-roll manufacturing processing technology and apparatus technology. The key patent analysis includes key patent status, technology development map, and abstract.

Thomas Edison invented the first incandescent light bulb 130 years ago, which greatly contributed to the advancement of civilization. However, that technology is antiquated, economically inefficient to operate, and fragile.

Fluorescent lights are energy efficient but they are bulky and have to ‘warm-up’ when turned on. Their bulbs contain phosphorus and mercury, which are toxic to the environment. Today’s LED lights are also energy friendly but are expensive and difficult to manufacture. The process to make conventional LEDs is very complicated, as it involves the growth of single crystal layers on the single crystal substrate. Each layer has to contain low defects for it to work. The cost of LED lights is usually ten times the cost of the incandescent bulb, because the equipment to produce them is expensive, the raw materials are expensive, and the environmental and safety issues are critical. Another disadvantage of the current LEDs is they do not produce white light from a single chip. This requires extra manipulation, such as using a set of 3 chips emitting different lights or adding a phosphors material to the blue or UV chip to produce the white light. 

Professor Yue Kuo of the Artie McFerrin Department of Chemical Engineering at Texas A&M University has fabricated a new type of LED, capable of producing a wide spectrum light while operating for long periods of time at atmospheric conditions. This device is based on a new concept of light emission from an ultra-thin amorphous dielectric layer.     

Figure (left) Low- and (right) high-magnification photos of light emission from the new LED.

An article published in Applied Physics Letters, describes the light emission mechanism, characteristics of the emission spectrum, fabrication method, and the operation parameter effects on this type of LED. The device was fabricated with the room-temperature sputter deposition method on a silicon wafer. The light emission intensity could be enhanced with a nanocrystal layer embedded in the dielectric film. Most importantly, the complete process and materials are compatible with the existing IC fabrication facility.

“There is a need for a new type of LED that is: low cost, long operation life, small in size, emits white light, and easy to fabricate with environmentally friendly materials and process.” Dr. Kuo says. “ What makes this new LED unique is it meets all of these requirements plus it is extremely easy to fabricate with the existing equipment in all semiconductor fabs.” 

The light emitted is composed of small bright dots evenly distributed across the electrode surface.  The input voltage controls the intensity or brightness of the LED.  Dr. Kuo is very optimistic with the results of his findings. “We have discovered this phenomenon and studied this kind of LED for more than a year. It can be operated continuously for more than ten hours. A longer operation time is expected.”

Kuo‘s discovery has larger implications than just lighting. These LEDs could potentially be integrated into a computer processor; dramatically increasing the speed by transporting signals optically rather than by electrons through copper lines.  They could have use in various industries, entertainment, medical, commercial, and military areas due to the compact size and low cost. 

By Tom Morrow, chief marketing officer, SEMI

Spending on LED fab manufacturing equipment will decline 9.2% in 2013 as the industry faces weak long-term demand and consolidates manufacturing capacity. According to the SEMI LED/Opto Fab Forecast, spending on LED fab manufacturing equipment will drop to $1.68 billion in 2013, down from $1.85 billion in 2012. Global LED manufacturing capacity will continue to grow this year, reaching an estimated 2.57 million 4-in. wafer equivalents, a 24% increase over 2012. The outlook for equipment spending in 2014 is currently projected at less than $1 billion, as manufacturers assess an uncertain competitive environment and potential alternative manufacturing strategies.

Underlying the softening in manufacturing investment is weak long-term demand for package LED components. Despite growing demand for solid state lighting systems, total demand for packaged LEDs is at or nearing its peak. Last year, Strategies Unlimited forecasted that demand for LEDs would peak in 2012 or 2013 at approximately $13.3 billion, declining to less than $13.0 billion in 2014. Recently, IMS Research forecasted that LED demand would peak in 2015 at nearly $14 billion before declining through the remainder of the decade.

World LED capacity trend. (Source: SEMI Opto/LED Fab Forecast, Nov. 2012)

Among the reasons for weak long-term demand is the LED count per device is dropping fast and the long-life of LED-based lighting systems radically reduces the replacement lamp market. For LED manufacturers, average selling prices continue to drop, especially in high-growth mid- and low-power segments serving the lighting industry.

With excess manufacturing capacity continuing to place price pressures on LED components, manufacturers will be cautious in embarking on major new manufacturing investments. Low fab utilization is also delaying the transition to 6-in. sapphire wafers. In addition, new GaN on silicon products are just now reaching the market, creating further uncertainty. Last month, Toshiba announced the beginning of production of white LEDs using GaN on 8-in. silicon substrates, utilizing depreciated IC fabs with modern automation tools. Working with technology from Bridgelux, Toshiba has reportedly indicated they will eventually ramp to 10 million units per month. German-based Azzurro Semiconductors announced that Taiwan LED leader, Epistar, has successfully migrated their LED structures to its 150mm GaN-on-Si templates and the company is feverishly working on 200mm technology. Philips, OSRAM, and Samsung are all actively exploring GaN on silicon technology.

GaN on silicon could be a game-changer in the LED market, but its impact is still uncertain. Yole Developpement estimates that significant cost benefits can only occur if equivalent yields to sapphire processes can be achieved, and that production utilizes fully amortized 200mm lines. Sapphire wafer prices have significantly declined over the past 18-months, lessening the benefits of a move to silicon.

Apart from major substrate technology changes, manufacturing spending will increasingly be focused on yield rather than capacity and throughput. Equipment, materials and technology suppliers who can deliver an ROI through improved manufacturing yields can still prosper in the weakened market.

China pursues leadership

China’s 12th Five Year Plan took effect in 2011 and renewed the country’s commitment to LED and solid state lighting technologies. While the massive MOCVD spending of 2010/2011 has significantly declined, China remains the leading region in manufacturing investments. China will be the largest market for LED fab equipment in 2013 with projected spending of $667 million, approximately 40% of the total worldwide spending and almost double Japan’s spending, the second largest region. In 2011, China spent over $1.2 billion on LED fab manufacturing equipment.

China’s generous national and local subsidy programs behind the massive industry development (China now has 82 LED fabs, up from only 16 in 2006) have all but disappeared, but the country remains committed to developing all sectors of the LED industry. China is a major consumer of LEDs in signage, mobile displays, TVs, and lighting that utilize low and mid-power LEDs that Chinese suppliers specialize in. Energy conservation through solid state lighting is a national priority. Most observers predict a consolidation of the China LED industry, with perhaps one of two companies emerging as global powerhouses. While much of China’s LED capacity is dormant, in transition or reliant on older technology, companies such as SanAn and ETi will invest new and upgraded manufacturing technology over the next two years.

Industry structure implications

Another troublesome aspect of the LED industry is that nearly 70% of the LED market is supplied by only ten companies, most of whom are directly involved in manufacturing lighting systems. Increasingly, the LED components may be seen as loss leaders offering little incentive for manufacturing investments. With falling ASP’s, soft demand, vertically integrated customers, and increasing supply of quality products from China and elsewhere, the outlook for continued LED manufacturing investments will be limited for the foreseeable future.

Tom Morrow will be providing the keynote address at the Strategies in Light (SIL) conference, February 12, 2013. SEMI members can receive a special discount rate with up to $200 savings to attend the Manufacturing Track. To register for SIL, click here.

The SEMI HB-LED Wafer Task Force, Equipment Automation Task Force, and Impurities & Defects Task Force will be meeting in conjunction with the Strategies in Light conference in Santa Clara, CA (Feb. 12-14). Following Strategies in Light, the NA HB-LED committee and its task forces will meet in April 1-4 in conjunction with the NA Standards Spring 2013 meetings in San Jose, California. For more information and to register for these meetings, please visit the SEMI Standards website here: www.semi.org/en/Standards.

For more information on SEMI’s involvement in the LED market, visit www.semi.org/LED.

January 9, 2012 – SEMI’s HB-LED Standards Committee has approved its first standard, specifying sapphire wafers used in making high-brightness light-emitting diode (HB-LED) devices.

Sapphire wafers are used in producing HB-LED devices for multiple applications: LCD backlights, signage and solid-state lighting. Development of industry standards, in collaboration with the global LED manufacturing supply chain, will help eliminate costs and better enable equipment and process innovation.

Five categories of single-crystal, single-side polished c-axis sapphire wafers are covered by the new HB1 standard:

  • Flatted 100mm diameter, 650μm thick,
  • Flatted 150mm diameter, 1,000μm thick,
  • Flatted 150mm diameter, 1,300μm thick,
  • Notched 150mm diameter, 1,000μm thick, and
  • Notched 150mm diameter, 1,300μm thick

SEMI’s HB-LED Standards Committee was formed in late 2010, comprised of companies involved in HB-LED devices, sapphire wafers, MOCVD wafer processing, and equipment and materials suppliers. Among its various individual efforts:

— The HB-LED Wafer Task Force already is seeking refinements to the HB1 standard, including specs for patterned sapphire substrates, double-sided polished wafers, impurities and defects (wafer and bulk), laser marking and identification, and bow and warp measurements. This group also is beginning a second round of experiments with wafer marking to characterize mark survivability, width, and depth; a first round conducted this year "showed promising results" on 100mm and 150mm wafers with front and back-surface marks (i.e., data matrix and OCR) were subjected to various surface modifications (e.g., slicing, grinding, polishing, GaN Ep). For 2013, the group plans to explore core and wafer defect inspection on ultrasonic technology, and conduct surveys on patterned sapphire substrates and double-side polishing.

— The HB-LED Equipment Automation Task Force plans to reballot a SEMI Draft Document on cassettes for 150mm sapphire substrates, seeking revisions to allow interoperability with existing equipment, taking into account cassette pocket size and spacing. This also will help standardization of load ports and transport systems.

— Meanwhile, a Software Working Group continues to develop a spec for an automation communication interface between process, automation, and metrology equipment. Another new standard, submitted and approved last October at the SEMI NA Standards Fall 2012 meetings, builds on that automation spec to address materials management and job management.

SEMI also plans to begin experiments and test methods based on a survey deployed last summer about defect vs. inspection techniques, aiming to identify sapphire wafer defects and inspection techniques catering to HB-LED manufacturing.

The wafer, automation, and impurities/defects task forces will be meeting at the Strategies in Light conference Feb. 12-14 in Santa Clara, CA. The NA HB-LEB committee and task forces will meet at the NA Standards Spring 2013 meetings April 1-4 in San Jose.

By Rebecca Howland, Ph.D., and Tom Pierson, KLA-Tencor.

Is it time for high-brightness LED manufacturing to get serious about process control?  If so, what lessons can be learned from traditional, silicon-based integrated circuit manufacturing?

The answer to the first question can be approached in a straight-forward manner: by weighing the benefits of process control against the costs of the necessary equipment and labor.  Contributing to the benefits of process control would be better yield and reliability, shorter manufacturing cycle time, and faster time to market for new products. If together these translate into better profitability once the costs of process control are taken into account, then increased focus on process control makes sense.

Let’s consider defectivity in the LED substrate and epi layer as a starting point for discussion. Most advanced LED devices are built on sapphire (Al2O3) substrates. Onto the polished upper surface of the sapphire substrate an epitaxial (“epi”) layer of gallium nitride (GaN) is grown using metal-organic chemical vapor deposition (MOCVD).

Epitaxy is a technique that involves growing a thin crystalline film of one material on top of another crystalline material, such that the crystal lattices match—at least approximately. If the epitaxial film has a different lattice constant from that of the underlying material, the mismatch will result in stress in the thin film. GaN and sapphire have a huge lattice mismatch (13.8%), and as a result, the GaN “epi layer” is a highly stressed film. Epitaxial film stress can increase electron/hole mobility, which can lead to higher performance in the device. On the other hand, a film under stress tends to have a large number of defects.

Common defects found after deposition of the epi layer include micro-pits, micro-cracks, hexagonal bumps, crescents, circles, showerhead droplets and localized surface roughness. Pits often appear during the MOCVD process, correlated with the temperature gradients that result as the wafer bows from center to edge. Large pits can short the p-n junction, causing device failure. Submicron pits are even more insidious, allowing the device to pass electrical test initially but resulting in a reliability issue after device burn-in. Reliability issues, which tend to show up in the field, are more costly than yield issues, which are typically captured during in-house testing. Micro-cracks from film stress represent another type of defect that can lead to a costly field failure.

Typically, high-end LED manufacturers inspect the substrates post-epi, taking note of any defects greater than about 0.5mm in size. A virtual die grid is superimposed onto the wafer, and any virtual die containing significant defects will be blocked out. These die are not expected to yield if they contain pits, and are at high risk for reliability issues if they contain cracks. In many cases nearly all edge die are scrapped. Especially with high-end LEDs intended for automotive or solid-state lighting applications, defects cannot be tolerated: reliability for these devices must be very high.

Not all defects found at the post-epi inspection originate in the MOCVD process, however. Sometimes the fault lies with the sapphire substrate. If an LED manufacturer wants to improve yield or reliability, it’s important to know the source of the problem.

The sapphire substrate itself may contain a host of defect types, including crystalline pits that originate in the sapphire boule and are exposed during slicing and polishing; scratches created during the surface polish; residues from polishing slurries or cleaning processes; and particles, which may or may not be removable by cleaning. When these defects are present on the substrate, they may be decorated or augmented during GaN epitaxy, resulting in defects in the epi layer that ultimately affect device yield or reliability (see figure).

Patterned Sapphire Substrates (PSS), specialized substrates designed to increase light extraction and efficiency in high-brightness LED devices, feature a periodic array of bumps, patterned before epi using standard lithography and etch processes. While the PSS approach may reduce dislocation defects, missing bumps or bridges between bumps can translate into hexes and crescent defects after the GaN layer is deposited. These defects generally are yield-killers.

In order to increase yield and reliability, LED manufacturers need to carefully specify the maximum defectivity of the substrate by type and size—assuming the substrates can be manufactured to those specifications without making their selling price so high that it negates the benefit of increased yield. LED manufacturers may also benefit from routine incoming quality control (IQC) defect measurements to ensure substrates meet the specifications—by defect type and size.

Substrate defectivity should be particularly thoroughly scrutinized during substrate size transitions, such as the current transition from four-inch to six-inch LED substrates. Historically, even in the silicon world, larger substrates are plagued initially by increased crystalline defects, as substrate manufacturers work out the mechanical, thermal and other process challenges associated with the larger, heavier boule.

A further consideration for effective defect control during LED substrate and epi-layer manufacturing is defect classification. Merely knowing the number of defects is not as helpful for fixing the issue as knowing whether the defect is a pit or particle. (Scratches, cracks and residues are more easily identified by their spatial signature on the substrate.) Leading-edge defect inspection systems such as KLA-Tencor’s Candela products are designed to include multiple angles of incidence (normal, oblique) and multiple detection channels (specular, “topography,” phase) to help automatically bin the defects into types. For further information on the inspection systems themselves, please consult the second author.

Rebecca Howland, Ph.D., is a senior director in the corporate group, and Tom Pierson is a senior product marketing manager in the Candela division at KLA-Tencor.

Check out other Process Watch articles: “The Dangerous Disappearing Defect,” “Skewing the Defect Pareto,” “Bigger and Better Wafers,” “Taming the Overlay Beast,” “A Clean, Well-Lighted Reticle,” “Breaking Parametric Correlation,” “Cycle Time’s Paradoxical Relationship to Yield,” and “The Gleam of Well-Polished Sapphire.”

By Julian Gates, Managing Director, AG Semiconductor Services

The multibillion-dollar secondary or used semiconductor equipment market has gone through significant changes over the past five years and has become increasingly sophisticated in its approach, with industry leaders offering a full range of services well beyond the tool purchase itself. The days of a broker trying to sell a piece of chipmaking gear of uncertain condition and provenance out of a crate on a warehouse floor are numbered. IC manufacturers trying to balance cost considerations with the need to upgrade or expand their production capability can now partner with secondary equipment services firms that offer economical turnkey solutions combining tool configuration, refurbishment, installation, start-up and support with a risk-reducing warranty package that largely mirrors that of an original equipment manufacturer.

Since most OEMs have focused their efforts on the development and proliferation of their 300mm equipment suites and have either reduced or eliminated their 200mm offerings, many semiconductor companies need support in enhancing their existing 200mm production lines, or with converting from 150 to 200mm wafer size operations. Some firms lack the internal human resources or technical proficiency to handle the equipment aspects of the ramp by themselves. With dedicated expertise in 200mm systems, the full-service secondary equipment firm can provide a project management team to the customer site that will work with the device-maker to help get the facility’s toolset up and running.  

Another trend in the used equipment space we’re seeing is the synergistic combination of dedicated remarketing services with turnkey solution capabilities. Done well, these services increase the amount and diversity of a secondary equipment company’s inventory and provide customers more flexibility and velocity in their ability to buy and sell surplus equipment.

Analysts forecast that wafer fab utilization will increase in 2013 and gain momentum into 2014, which means that chipmakers will soon begin to invest in production equipment to meet the demand curve of the emerging upcycle in the market. For those seeking to gain the most out of their capital budgets, the availability of more high-quality pre-owned 200 and 300mm equipment backed by comprehensive service and support packages offers a financially attractive, low-risk path to fulfilling their capacity requirements.

By Christian Gregor Dieseldorff, director, SEMI Industry Research & Statistics, San Jose, CA USA  

Despite difficult times, growing demand for mobile devices (such as tablets and phones) inspires an improved outlook for chip sales in 2013.  Various forecasts range from 4% to 16% revenue growth for 2013 (average of forecasts 7%). As observed in the past, chip sales and capex typically ride the same roller coaster; however, 2013 appears to be another year of uncertainty. While chip sales may rise in 2013, expectations for equipment range from timid 5% growth down to double-digit decreases — definitely not the same roller coaster.

The largest spenders on fab equipment are Samsung, TSMC and Intel.  As of mid-December 2012, some of these companies still have not made any official announcement about 2013 capex plans.

The SEMI Consensus Forecast and the SEMI World Fab Forecast, with data collected from two different methodologies, point to the same conclusion.  The year-end Consensus Forecast for wafer processing predicts 0% growth (flat) for 2013.  Meanwhile, the World Fab Forecast report for Front End Fabs (published November 2012) also shows 0% growth (flat) for 2013 and total fab equipment spending hovering at US$ 32.4 billion (including Discretes and LEDs, used equipment and in-house equipment).  The projected number of facilities equipping will drop, from 212 in 2012 to 182 in 2013. Fab equipment spending saw a drastic dip in 2H12 and, accounting for seasonal weakness and near-term uncertainty, will be even lower in 1Q13.  Examining equipment spending by product type, System LSI is expected to lag in 2013. Spending for Flash declined rapidly in 2H12 (by over 40%) but is expected to pick up by 2H13. The foundry sector is also expected to increase in 2013, led by major player TSMC, as well as Samsung, Globalfoundries and UMC.

While fab construction spending slowed in 2012, at -15%, SEMI data projects an increase of 3.7% in 2013 (from $5.6 billion in 2012 to $5.8 billion in 2013).  The World Fab Forecast tracks 34 fab construction projects for 2013 (down from 51 in 2012).  An additional 10 new construction projects (with various probabilities) may start in 2013. The largest increase for construction spending in 2013 is expected to be for dedicated foundries and Flash-related facilities.

In 2012, many device manufacturers stopped adding new capacity due to declining average selling prices and high inventories. This is most pronounced in the Flash sector, as seen with Sandisk since the beginning of 2012, and both Samsung and Toshiba starting 3Q12.

Breaking down the industry by product type, capacity growth for System LSI is expected to decrease in 2013. Flash capacity additions dragged in 2H12. But more activity is expected for Flash by mid-2013, with nearly 6% growth. The data also point to a rapid increase of installed capacity for new technology nodes, not only for 28nm but also from 24nm to 18nm and first ramps for 17nm to 13nm in 2013.

If the global economy and GDP begin to improve, and chip sales actually do increase in the higher single-digit range, equipment spending is expected to ride the same roller coaster, going even higher for 2013.