Category Archives: LED Packaging and Testing

Seoul Semiconductor Co., Ltd. announced on Sept. 19, 2017 that it has filed a patent infringement lawsuit, together with its affiliate, Seoul Viosys Co., Ltd., against Archipelago Lighting, Inc. in the U.S. District Court for the Central District of California.

In its complaint, Seoul asserts that Archipelago Lighting is selling various LED bulb products, including filament LED bulbs, that infringe on “twelve” (12) patents covering aspects of Seoul’s long-established Acrich technology. These Acrich patents include fundamental LED technologies, such as LED driver technology for high-voltage operation, MJT (Multi-Junction Technology), filament LED bulb structure, LED packaging, LED epitaxial growth, LED chip fabrication, etc.

In conventional LED products, one LED unit usually operates at a low voltage (3V) and high current. In order to increase brightness, one must connect many LED units through wire-bonding, but this can lead to other issues, such as an oversized, costly operating circuit, a substantial increase in manufacturing costs and defects caused by multiple wire-bonding connections.

Seoul’s Acrich technology resolves such problems by enabling the design of a high-voltage product with a high power output that relies on only a small number of LED units. Acrich technology does so by utilizing its innovative LED driver technology to enable high-voltage operation, as well as its unique MJT technology for mounting and integrating many LEDs within a small area. Seoul’s Acrich technology enables LED products to operate using AC power without requiring conversion to DC, minimizing power dissipation and reducing overall component count. This maximizes the available space in LED products, facilitating a simple circuit design and significantly reducing the size and cost of LED products. Acrich technology has become widely adopted for general lighting, as well as electronic products, including televisions.

For example, in the general lighting market, 12V/18V high-voltage products have become increasingly popular, and there has been a significant increase in the demand for 36V/48V products. To manufacture such high-voltage products, Acrich technology is necessary to support LED driver technology for high-voltage operations with MJT technology. The innovative benefits of Acrich technology have resulted in its being applied in street lights and commercial lights in countries throughout the world, including locations as diverse as Korea, the United States, China, Europe, Southeast Asia, Mongolia and Kazakhstan.

In electronic products, Acrich technology is being increasingly used for valuable product lines such as large-area television displays. Acrich technology enables a dramatic enhancement in the service life and efficiency of such displays by simplifying their internal system. It also dramatically reduces the size and thickness of the final product, rendering it more pleasing to consumers, by reducing the amount of internal space previously reserved for complicated electric circuits. In particular, Acrich enables full-array local dimming that enhances the contrast range of the latest ultra-thin UHD display products by providing the next generation of backlighting solutions for high-definition displays.

Acrich technology is also expanding its application to other product areas that require high LED light output, such as landscape lighting, vehicle headlamps and daylight running lamps as well as mobile phone flash units.

Seoul began to develop its unique Acrich technology in the mid-1990s and has continued to launch advanced, innovative Acrich products every year following its successful volume production in 2005. Based on its decades of investment in research and development, Seoul has established a large patent portfolio for Acrich technology, including rights to approximately 1,000 Acrich patents. However, with the recent increase in the demand for high-voltage LED products, several companies have begun to manufacture products that infringe on Seoul’s Acrich patents. In order to protect its hard-earned investment against such infringement, Seoul will actively enforce its patent rights against any infringers.

Dr. Ki-bum Nam, head of Seoul’s R&D Center and chief technology officer said, “We have extensively investigated copycat products infringing on Acrich technology with various LED TVs, general lighting and automotive lighting products. In order to protect Acrich technology, which has been developed with considerable resources over many decades, we will continuously take any and all legal action against infringers that disregard our valuable intellectual property.” Nam added: “Creating a fair market that respects intellectual property is important for all innovative entrepreneurs and businesses.”

Samsung Electronics Co., Ltd. today announced the launch of the “Q-series,” a new line-up of LED linear modules for use in premium indoor luminaire applications where an exceptionally high level of light efficacy* is required.

The Q-series features 200 lumens per watt (lm/W) of light efficacy, which is the highest efficacy level among current LED linear modules. The new modules are the first to incorporate the LM301B, Samsung’s recently announced mid-power LED package.

This allows LED lighting fixtures using the new modules to reach more than 150lm/W, enabled through an optical efficiency level of approximately 86 percent and LED driver efficiency of about 88 percent. The Q-series’ performance levels are ideally suited to meet DLC** Premium technical standards, which require higher efficacy and lumen maintenance specifications than the DLC Standard classification.

The new Q-series modules come in one-, two- and four-foot sizes, and can be combined linearly to achieve any desired length. There are two sets of modules: Q-series modules for the North American market are UL certified, while those for the European market have CE certification.

With the addition of the premium Q-series line-up, Samsung now offers five families of LED lighting modules (Q-, H-, M-, S- and V-series) to meet most indoor LED lighting needs. The Q-series has the same form factor as Samsung’s other modules for easy retrofitting with existing LED luminaires and is now available through Samsung’s worldwide LED sales network.

Samsung’s Q-series line-up includes:

(@ tp = 40 ºC, 4000K)

Region Type Model Luminous Flux Efficacy Conditions
US

4 ft.

LT-QB22A

4,000 lm

203 lm/W

450 mA, 43.8 V

2 ft. LT-Q562A

2,000 lm

450 mA, 21.9 V
1 ft. LT-Q282A

1,000 lm

450 mA, 11.0 V
Europe 2 ft. LT-Q562B 2,000 lm 180 mA, 54.8 V
1 ft. LT-Q282B 1,000 lm 180 mA, 27.4 V

ROHM has recently announced the availability of the industry’s smallest class (1608 size) of 2-color chip LEDs. In addition to their breakthrough size, the SML-D22MUW features a special design that improves reliability along with a backside electrode configuration that supports high-resolution displays.

In recent years, chip LEDs are being increasingly used for numerical displays in industrial equipment and consumer devices. Conventional numerical displays utilize a single color to indicate numbers, but there is a growing need to change the color to make it easier to recognize abnormalities. However, this typically entails utilizing two separate LEDs, which doubles the mounting area along with development costs, or opting for a standard 2-color LED that also increases board size.

In contrast, proprietary technologies and processes allowed ROHM to integrate 2 chips in the same package size as conventional single-color LEDs, making it possible to emit multiple colors in a smaller footprint. Board space is reduced by 35% over standard 1.5 x 1.3mm 2-color LEDs, contributing to thinner displays. And after taking into consideration usage conditions during reflow, countermeasures were adopted that prevents solder penetration within the resin package to ensure greater reliability.

In a depressed visible LED industry, manufacturers are looking at new opportunities to increase their revenues and margins. In this context, the IR LED market is perceived as a potential new ‘blue ocean’ with attractive opportunities for those players.

While LEDs are important, VCSEL technology is the hot topic. “IR LEDs represented around 65% of the IR light source market in 2016, but this figure is likely to decrease to 45% in 2022,” commented Pierrick Boulay, Technology & Market Analyst at Yole Développement (Yole). Development of 3D cameras and autofocus applications, associated with the sensor fusion trend in smartphones and automotive, will strongly drive growth of the IR VCSEL market in the future (1).

All these topics will be discussed during the First Executive Forum on Laser Technologies created by Yole’s analysts, in collaboration with CIOE. Taking place on September 6&7 in Shenzhen, China, the Forum proposes an impressive agenda composed of 4 sessions, 19 presentations, debates and networking. All along the Forum, industrial experts will debate about the latest innovations, market trends and business opportunities. They will make a special focus on laser manufacturing and analyze the emerging applications. The agenda is now available: LASER FORUM AGENDA.

What are the technologies perspectives? What are the latest advances in semiconductor manufacturing? What will be the next applications? Innovation enables the identification of new business opportunities. It has further accelerated the adoption of laser solutions in many areas.

ir light sources

IR VCSEL represents a good compromise between traditional laser diodes, providing coherent and directional light, and IR LEDs, offering lower manufacturing cost and ease of integration. Additionally, IR VCSELs allow new sensing approaches, such as ToF . In this context, the IR VCSEL industry will be at the center of the attention and should experience strong growth in coming years. It is also likely that some players will work on both IR LEDs and lasers to maximize their revenues.

“Opportunities for both technologies will also be dependent on developments to overcome current limitations, towards longer wavelengths, higher performance, multi-spectral functionality and lower cost,” analyzed Yole’s expert, Pierrick Boulay. Typically, most current IR LEDs are in the 850nm or 940nm range. To enable emerging applications such as gas sensors or portable/integrated spectroscopy systems, longer wavelengths will be mandatory. In addition, integration of these light sources into sensors and modules will also be part of the challenge to be handled by the photonics industry.

Pierrick Boulay from Yole is one of the key speaker of the Emerging Applications session in the First Executive Forum on Laser Technologies agenda. Based on his strong expertise on LED lighting (general lighting, automotive lighting…) and OLED lighting, Pierrick proposes a relevant presentation, titled “IR laser: At the heart of the industry in coming years”. He will highlight the status of laser technologies and emerging applications including 3D camera, LIDAR, proximity sensors… This session also welcome other experts of the industry:
•  Rainer Paetzel, Director of Marketing, Coherent
•  Steven Hsieh, Senior Industry Analyst, ITRI
•  Hans van der Tang, Director Sales & Marketing – APAC Region, ElectroniCast Consultants

First Executive Forum’s program is also offering several networking times to discuss with industrial leaders and identify business opportunities… Discover the agenda and register today: LASER FORUM REGISTRATION 

Seoul Semiconductor Co., Ltd. (KOSDAQ 046890) today announced consolidated second-quarter revenues of KRW 267 billion. The rise in consolidated revenue came from strong sales in general lighting and strengths across all divisions within the company. The year over year rise in automotive lighting sales proved highly profitable for the company.

For the lighting division, while the differentiated product such as Wicop and Acrich increased in great proportion, automotive exterior lamps, e.g. daytime running lights and headlights continued their fast-paced growth. Automotive lighting is an area of high entry barriers due to high technology requirements and intellectual properties. Seoul expects to gain further market share with its differentiated Wicop technology. For the IT division, current customers expanding their product line-ups and new customer acquisitions were the main drivers for the rising sales figures.

To improve share price stability and increase shareholder value, Seoul announced plans to almost double its future dividends, based on the fact that its current level of pay-out is half the industry average and an increase up to the industry average is necessary. In addition, the company has sufficient cash generation capabilities since it has booked above 20% gains in EBITDA, leaving sufficient funds available for future investments. This was part of Seoul’s last quarter’s announcement to execute a KRW 10 billion share buyback program.

Company outlook

The company has provided revenue guidance of KRW 260 to 280 billion for the third quarter. The company plans to further strengthen its sales and marketing activities for its unique technologies including Acrich and Wicop and focus on acquiring more customers to reach new heights with respect to earnings.

The company’s Chief Financial Officer Sangbum Lee stated that SunLike, a new LED technology that produces light closely matching the spectrum of natural sunlight, unveiled at a press conference in Frankfurt, Germany in June, had been very well received with great interest from global customers. The company plans to launch additional new products during the remainder of the year and focus on protecting intellectual properties owned by the company.

A major bottleneck in the commercialization of Micro LED displays is the mass transfer of micron-size LEDs to a display backplane. Research by LEDinside, a division of TrendForce, reveals that many companies across industries worldwide have entered the Micro LED market and are in a race to develop methods for the mass transfer process. However, their solutions have yet to meet the standard for commercialization in terms of production output (in unit per hour, UPH), transfer yield and size of LED chips (i.e. Micro LED is technically defined as LEDs that are smaller than 100 microns). These research findings can be found in LEDinside’s 3Q17 Micro LED Next Generation Display Industry Member Report: Analyses on Mass Transfer and Inspection/Repair Technologies.

Currently, entrants in the Micro LED market are working towards the mass transfer of LEDs sized around 150 microns. LEDinside anticipates that displays and projection modules featuring 150-micron LEDs will be available on the market as early as 2018. When the mass transfer for LEDs of this size matures, market entrants will then invest in processes for making smaller products.

Development of mass transfer solutions faces seven major challenges

“Mass transfer is one of the four main stages in the manufacturing of Micro LED displays and has many highly difficult technological challenges,” said Simon Yang, assistant research manager of LEDinside. Yang pointed out that developing a cost-effective mass transfer solution depends on advances in seven key areas: precision of the equipment, transfer yield, manufacturing time, manufacturing technology, inspection method, rework and processing cost.

LED suppliers, semiconductor makers and companies across the display supply chain will have to work together to develop specification standards for materials, chips and fabrication equipment used in Micro LED production. Cross-industry collaboration is necessary since each industry has its own specification standards. Also, an extended period of R&D is needed to overcome the technological hurdles and integrate various fields of manufacturing.

Mass transfer has to achieve five-sigma level before mass production of Micro LED displays is feasible

Using Six Sigma as the model for determining the feasibility of mass production of Micro LED displays, LEDinside’s analysis indicates that the yield of the mass transfer process must reach the four-sigma level to make commercialization possible. However, the processing cost and the costs related to inspection and defect repair are still quite high even at the four-sigma level. To have commercially mature products with competitive processing cost available for market release, the mass transfer process has to reach the five-sigma level or above in transfer yield.

As progress on mass transfer solutions continues, true Micro LED products are expected to first enter applications such as indoor displays and wearables

Even though no major breakthroughs have been announced, many technology companies and research agencies worldwide continue to invest in the R&D of mass transfer process. Some of the well-known international enterprises and institutions working in this area are LuxVue, eLux, VueReal, X-Celeprint, CEA-Leti, SONY and OKI. Comparable Taiwan-based companies and organizations include PlayNitride, Industrial Technology Research Institute, Mikro Mesa and TSMC.

There are several types of mass transfer solutions under development. Choosing one of them will depend on various factors such as application markets, equipment capital, UPH and processing cost. Additionally, the expansion of manufacturing capacity and the raising of the yield rate are important to product development.

According to the latest developments, LEDinside believes that the markets for wearables (e.g. smartwatches and smart bracelets) and large indoor displays will first see Micro LED products (LEDs sized under 100 microns). Because mass transfer is technologically challenging, market entrants will initially use the existing wafer bonding equipment to build their solutions. Furthermore, each display application has its own pixel volume specifications, so market entrants will likely focus on products with low pixel volume requirements as to shorten the product development cycle.

Thin film transfer is another away of moving and arranging micron-size LEDs, and some market entrants are making a direct jump to developing solutions under this approach. However, perfecting thin film transfer will take longer time and more resources because equipment for this method will have to be designed, built and calibrated. Such an undertaking will also involve difficult manufacturing related issues.

Renewed investigation of a molecule that was originally synthesized with the goal of creating a unique light-absorbing pigment has led to the establishment of a novel design strategy for efficient light-emitting molecules with applications in next-generation displays and lighting.

Researchers at Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA) demonstrated that a molecule that slightly changes its chemical structure before and after emission can achieve a high efficiency in organic light-emitting diodes (OLEDs).

In addition to producing vibrant colors, OLEDs can be fabricated into everything from tiny pixels to large and flexible panels, making them extremely attractive for displays and lighting.

In an OLED, electrical charges injected into thin films of organic molecules come together to form packets of energy – called excitons – that can produce light emission.

The goal is to convert all of the excitons to light, but three-fourths of the created excitons are triplets, which do not produce light in conventional materials, while the remaining one-fourth are singlets, which emit through a process called fluorescence.

Inclusion of a rare metal, such as iridium or platinum, in a molecule can enable rapid emission from the triplets through phosphorescence, which is currently the dominant technology for highly efficient OLEDs.

An alternative mechanism is the use of heat in the environment to give triplets an energetic boost that is sufficient to convert them into light-emitting singlets.

This process, known as thermally activated delayed fluorescence (TADF), easily occurs at room temperature in appropriately designed molecules and has the added advantage of avoiding the cost and reduced molecular design freedom associated with rare metals.

However, most TADF molecules still rely on the same basic design approach.

“Many new TADF molecules are being reported each month, but we keep seeing the same underlying design with electron-donating groups connected to electron-accepting groups,” says Masashi Mamada, lead researcher on the study reporting the new results.

“Finding fundamentally different molecular designs that also exhibit efficient TADF is a key to unlocking new properties, and in this case, we found one by looking at the past with a new perspective.”

Currently, combinations of donating and accepting units are primarily used because they provide a relatively simple way to push around the electrons in a molecule and obtain the conditions needed for TADF.

Although the method is effective and a huge variety of combinations is possible, new strategies are still desired in the quest to find perfect or unique emitters.

The mechanism explored by the researchers this time involves the reversible transfer of a hydrogen atom – technically, just its positive nucleus – from one atom in the emitting molecule to another in the same molecule to create an arrangement conducive to TADF.

This transfer occurs spontaneously when the molecule is excited with optical or electrical energy and is known as excited-state intramolecular proton transfer (ESIPT).

This ESIPT process is so important in the investigated molecules that quantum chemical calculations by the researchers indicate that TADF is not possible before transfer of the hydrogen.

After excitation, the hydrogen rapidly transfers to a different atom in the molecule, leading to a molecular structure capable of TADF.

The hydrogen transfers back to its initial atom after the molecule emits light, and the molecule is then ready to repeat the process.

Although TADF from an ESIPT molecule has been reported previously, this is the first demonstration of highly efficient TADF observed inside and outside of a device.

This vastly different design strategy opens the door for achieving TADF with a variety of new chemical structures that would not have been considered based on previous strategies.

Interestingly, the molecule the researchers used was most likely a disappointment when first synthesized nearly 20 years ago by chemists hoping to create a new pigment only to discover that the molecule is colorless.

“Organic molecules never cease to amaze me,” says Professor Chihaya Adachi, Director of OPERA. “Many paths with different advantages and disadvantages exist for achieving the same goal, and we have still only scratched the surface of what is possible.”

The advantages of this design strategy are just beginning to be explored, but one particularly promising area is related to stability.

Molecules similar to the investigated one are known to be highly resistant to degradation, so researchers hope that these kinds of molecules might help to improve the lifetime of OLEDs.

To see if this is the case, tests are now underway.

While only time will tell how far this particular strategy will go, the continually growing options for OLED emitters certainly bode well for their future.

Pixelligent Technologies, a nanocomposite advanced materials manufacturer, announced today that it has been awarded grant funding from the Department of Energy SBIR program and the Department of Defense STTR program, that totals a combined $2.15 million. This funding will be used to accelerate and further develop a diverse range of applications leveraging Pixelligent’s core PixClear® nanocomposite technology.

“The grants from the Dept. of Energy will help to extend our technology leadership in OLED lighting applications. These SBIR Phase I and Phase IIB grants will allow Pixelligent to further extend our OLED light extraction materials to enable next generation flexible OLED lighting applications. The STTR Phase II grant from the Dept. of Defense will support our continued collaboration with the University of Pennsylvania and Argonne National Laboratory to further the development of PixClear — enabled gear oils for improving the lifetime and energy-efficiency of gear boxes and drive trains,” said Gregory Cooper, PhD, CTO & Founder of Pixelligent.

“We are proud to have been selected for these three grant awards from the Department of Energy and Department of Defense. These are highly competitive programs and theses awards point to the broad applicability of our materials, which can deliver unparalleled efficiency gains in applications ranging from OLED technology to lubricant additives,” said Craig Bandes, President & CEO of Pixelligent.

Through grant awards and private funding, Pixelligent has emerged as one of the only companies that has developed a truly disruptive manufacturing and advanced material technology platform for commercializing the promise of nanotechnology. This was recently recognized by Frost & Sullivan who honored Pixelligent with the 2017 Manufacturer of the Year award for SMB under $1B in revenues.

Umicore’s business unit Precious Metals Chemistry today inaugurated its production unit for advanced metal organic precursor technologies used in the semiconductor and LED markets, respectively TMGa (Trimethylgallium) and TEGa (Triethylgallium). The event was attended by European and overseas customers as well as local and regional politicians. The guest of honor was Dr. Barbara Hendricks, Germany’s Federal Minister for the Environment, Nature Conservation, Building and Nuclear Safety.

Umicore’s TMGa manufacturing process is innovative and unique. It offers a more sustainable and ecological production method by minimizing hazardous side streams and material losses and optimizing yield to nearly 100%.

Dr. Lothar Mussmann, Vice-President of Umicore Precious Metals Chemistry said, “I am proud that this patented innovation has now become a world-class and industrial scale manufacturing plant. It will provide benefits for our customers and the environment and underlines Umicore’s position as a pioneer in sustainable technologies.”

Umicore Precious Metals Chemistry is the only European manufacturer of TMGa and TEGa and supplies customers across the world from its Hanau manufacturing base. Umicore Precious Metals Chemistry helps to reduce cost of ownership through its innovative approach to process chemistry and its collaborative approach with customers and end users.

About Trimethylgallium and Umicore’s manufacturing process

Trimethylgallium (TMGa) is a colorless liquid with very high vapor pressure, which boils at low temperatures. Umicore’s new production process increases the yield of TMGa in comparison with current production technologies. In this way, organic solvents can be completely dispensed with. The TMGa is prepared by chemically reacting gallium trichloride with a more efficient methylating agent in molten salt. This reduces the amount of waste per kilogram of TMGa by more than 50%, with the resulting intermediates being recycled in the process. The finished product is then used in the semiconductor industry, where it evaporates in closed systems onto a substrate. This creates, for example, environmentally friendly LED lamps.

Pixelligent Technologies, a developer of high-index advanced materials (PixClear) for displays, solid state lighting and optical components, announces that it has been named the 2017 Manufacturer of the Year by Frost & Sullivan. It won this award in the small/midsize company category for companies with revenues under $1B, for its PixClearProcess that is revolutionizing chemical composite technology. The winner for the large company 2017 Manufacturer of the Year was Dow Chemical.

Over the past five years, Pixelligent has invested over $20 million in designing and building its advanced product development and manufacturing platform, the PixClearProcess. This proprietary platform has enabled Pixelligent to scale from a manufacturing capacity of grams-per-year, to one of the most sophisticated and highly capital efficient manufacturing lines in the world, capable of mass production volumes in the tons.

“We are deeply honored to be named the 2017 Manufacturer of the Year by Frost & Sullivan. It’s especially gratifying as we competed against some of the most respected high-tech manufacturers in the world. This award is also a great recognition of what we are most proud of, namely the balanced approach we have executed in developing both one of the most innovative materials in the world alongside one of the most advanced manufacturing lines in the world,” remarked Craig Bandes, CEO, Pixelligent Technologies.

The Company’s breakthrough PixClearProcess allows its customers to more efficiently tune and magnify the desired optical, mechanical, and electrical properties of their formulations with unprecedented levels of precision. Depending on product performance requirements, incorporating PixClear can deliver the highest possible light extraction, near perfect transmission, increased mechanical strength, and dramatic improvements in overall operating efficiencies. We enable our customers to deliver unprecedented levels of performance for OLED and HD displays, LED and OLED lighting devices, and optical components.