Category Archives: LED Packaging and Testing

Fueled by lightning-fast demand for ubiquitous connectivity, the number of connected Internet of Things (IoT) devices globally will jump by 15 percent year-over-year to 20 billion in 2017, according to new analysis from IHS Markit (Nasdaq: INFO).

In a free new report entitled “IoT Trend Watch 2017,” IHS Markit technology analysts have identified four key trends that will drive the IoT this year and beyond. Increasingly, the report says, businesses see the IoT as a tremendous opportunity to create unique value propositions by linking disparate systems of connected devices that range from multiscreen content sharing to smart city networks.

IHS Markit defines IoT as a conceptual framework, powered by the idea of embedding connectivity and intelligence into a wide range of devices. “These internet-connected devices can be used to enhance communication, automate complex industrial processes and provide a wealth of information that can be processed into useful actions – all aimed at making our lives easier,” said Jenalea Howell, research director – IoT connectivity and smart cities for IHS Markit.

According to the report, the industrial sector — led by building automation, industrial automation and lighting — will account for nearly one half of new connected devices between 2015 and 2025.

IHS Markit has named these four trends as leading the IoT evolution in the coming years:

Trend #1 – Innovation and competitiveness are driving new business models and consolidation

  • To date, the focus on IoT monetization has rightly revolved around the way in which suppliers earn revenue selling components, software or services to IoT application developers. Increasingly, however, the focus is shifting to the IoT developers themselves and how they will monetize new streams of data delivered by their IoT deployments.
  • A wide range of monetization models are being tested, reflecting the fragmented nature of the IoT market across numerous vertical industries. Successful models will revolve around “servitization” and closer, ongoing relationships with end customers, the report says.

Trend #2 – Standardization and security are enabling scalability

  • With the high growth in IoT deployments and much hype surrounding the promise of the IoT marketplace, scaling the IoT is highly dependent on two factors: first, the pace at which devices are connected and second, the ability to manage a large number of devices.
  • Currently, diverse standards and technologies make it difficult to evaluate the many technology options available. Stakeholders also must take a holistic, end-to-end view of securing systems comprehensively and move beyond focusing only on device security.
  • By 2020, the global market for industrial cybersecurity hardware, software and devices is expected to surpass $1.8 billion as companies deal with new IoT devices on business networks as well as a new wave of mobile devices connected to corporate networks.

Trend #3 – Business models are keeping pace with IoT technology

  • The methods used to monetize the IoT are almost as diverse as the IoT itself. Many pioneers of the IoT sold products to build it. That is still happening, of course, but now there is a shift to reaping the benefits of the data that’s been created.
  • An overabundance of business models are being tested to determine which models work and for which applications. Advertising, services, retail and big data are just a few of the areas that have spawned many innovative experiments in monetization. In the coming years, the pace of innovation will slow as successful business models are identified.

Trend #4 – Wireless technology innovation is enabling new IoT applications

  • Advances in wireless technologies will continue to extend the IoT at both the low and high ends. At the low end, low-power wide-area network (LPWAN) promises low cost, low power and long range, connecting millions of devices that previously could not be unified in a practical way. At the high end, 802.11ad makes it possible to wirelessly connect very high performance applications such as 4k video.
  • Beyond 2020, 5G has the potential to address new, mission-critical use cases, particularly where mobility is essential. By 2020, IHS Markit expects around two billion device shipments by integrated circuit type will feature integrated cellular technology.

Dow Corning significantly expanded the design flexibilities for LED packaging manufacturers today with the addition of three new highly reflective silicone coatings to its fast-growing portfolio of advanced LED solutions. Offering targeted solutions for cutting-edge LED designs – such as chip scale (CSP) and chip on-board (COB) packaging – the three new products also deliver versatile processing options ranging from conventional dispensing to emerging printing methods.

All introduced under the Dow Corning label, the three new products include WR-3001 Die Edge Coat, WR-3100 Die Edge Coat and WR-3120 Reflective Coating. In the future, products are planned to be added to match customer required processes.

“Manufacturers are aggressively seeking to design smaller, more efficient and cost-effective LED packages, which is driving demand for advanced new reflective materials that enable evolving application processes such as printing, and withstand increasingly stringent operating conditions,” said Takuhiro Tsuchiya, global marketing manager at Dow Corning. “These three cutting-edge coatings are only the first of a range of new products that we have in store for the industry. A proactive and collaborative innovator, Dow Corning formulated these three reflective silicone coatings specifically to help customers overcome today’s greatest design challenges and deliver highly reliable and differentiated products in the fiercely competitive LED market.”

As with all of Dow Corning reflective materials, the three new grades maintain high reflectivity at low thicknesses and retain their performance at sustained temperatures of 150°C – a temperature at which many organic coatings crack and yellow. Listed in order of increasing hardness, the new products include:

  • WR-3001 Die Edge Coat targets high-power CSP applications that demand LED materials with high thermal- and photostability. It is compatible with conventional dispensing processes.
  • WR-3100 Die Edge Coat is formulated for CSP applications and low- to middle-power LED package designs. Compatible with conventional dispensing equipment, it delivers comparatively high hardness of Shore D 65 after cure, making it suitable with chip dicing processes.
  • WR-3120 Reflective Coating also provides high thermal- and photostability suitable for high-power LED packaging applications, as well as the highest hardness of Dow Corning’s three new products. Suitable for printing processes, this advanced silicone further offers the highest reflectivity for enhanced LED performance.

A market leader in materials, expertise and collaborative innovation for LED lighting concepts, Dow Corning offers solutions that span the entire LED value chain, adding reliability and efficiency for sealing, protecting, adhering, cooling and shaping light across all lighting applications.

Wolfspeed, a Cree Company and a developer of silicon carbide (SiC) power products, has introduced a 900V, 10mΩ MOSFET rated for 196 A of continuous drain current at a case temperature of 25̊̊ C. This device enables the reduction of EV drive-train inverter losses by 78 percent based on EPA combined city/highway mileage standards. This efficiency improvement offers designers new options in terms of range, battery usage and vehicle design.

Recently Wolfspeed supplied Ford Motor Company―in a collaboration with the U.S. DoE―with a full-SiC, 400A power module designed around the 900V, 10mΩ chip. The module, designed and produced by Wolfspeed, contains four MOSFETs connected in parallel to achieved a remarkable 2.5mΩ Rds(on). Wolfspeed engineers have since demonstrated the capability to use these chips to create an 800A, 1.25mΩ module.

“With the commercial release of the 900V 10mΩ device, electric vehicles can now reap the benefits of SiC in all aspects of their power conversion,” said John Palmour, CTO of Wolfspeed. “With the continued expansion of our Gen3 MOSFET portfolio in new package options, our devices can now support significant efficiency improvements in onboard chargers, offboard chargers, and now EV drive trains.”

Commercially qualified and rated for a maximum operating temperature of 175˚C, Wolfspeed’s new chip offers high-reliability in harsh environments, like those found in vehicle drive-trains.

Device Information

The new 900V, 10mΩ MOSFET is available in bare die, is listed as part number CPM3-0900-0010A, and is currently available for purchase from SemiDice. Wolfspeed expects to release the associated discrete device in a 4L-TO247 package (C3M0010090K) in the coming weeks. This package has a Kelvin-source connection that allows engineers to create designs that maximize the benefits of SiC’s superior speed and efficiency.

For more complete technical information about Wolfspeed’s new 900V, 10mΩ MOSFET, access its part page here.

Reproducibility is a necessity for science but has often eluded researchers studying the lifetime of organic light-emitting diodes (OLEDs). Recent research from Japan sheds new light on why: impurities present in the vacuum chamber during fabrication but in amounts so small that they are easily overlooked.

Organic light-emitting diodes use a stack of organic layers to convert electricity into light, and these organic layers are most commonly fabricated by heating source materials in vacuum to evaporate and deposit them onto a lower temperature substrate.

While issues affecting the efficiency of OLEDs are already well understood, a complete picture of exactly how and why OLEDs degrade and lose brightness over time is still missing.

Complicating matters is that devices fabricated with seemingly the same procedures and conditions but by different research groups often degrade at vastly different rates even when the initial performance is the same.

Unable to attribute these reproducibility issues to known sources such as the amount of residual water in the chamber and the purity of the starting materials, a report published online in Scientific Reports on December 13, 2016, adds a new piece to the puzzle by focusing on the analysis of the environment in the vacuum chamber.

“Although we often idealize vacuums as being clean environments, we detected many impurities floating in the vacuum even when the deposition chamber is at room temperature,” says lead author Hiroshi Fujimoto, chief researcher at Fukuoka i3-Center for Organic Photonics and Electronics Research (i3-OPERA) and visiting associate professor of Kyushu University.

Because of these impurities in the deposition chamber, the researchers found that the time until an OLED under operation dims by a given amount because of degradation, known as the lifetime, sharply increased for OLEDs that spent a shorter time in the deposition chamber during fabrication.

This trend remained even after considering changes in residual water and source material purity, indicating the importance of controlling and minimizing the device fabrication time, a rarely discussed parameter.

Research partners at Sumika Chemical Analysis Service Ltd. (SCAS) confirmed an increase of accumulated impurities with time by analyzing the materials that deposited on extremely clean silicon wafers that were stored in the deposition chamber when OLED materials were not being evaporated.

Using a technique called liquid chromatography-mass spectrometry, the researchers found that many of the impurities could be traced to previously deposited materials and plasticizers from the vacuum chamber components.

“Really small amounts of these impurities get incorporated into the fabricated devices and are causing large changes in the lifetime,” says Professor Chihaya Adachi, director of Kyushu University’s Center for Organic Photonics and Electronics Research (OPERA), which also took part in the study.

In fact, the new results suggest that the impurities amount to less than even a single molecular layer.

To improve lifetime reproducibility, a practice often adopted in industry is the use of dedicated deposition chambers for specific materials, but this can be difficult in academic labs, where often only a limited number of deposition systems are available for testing a wide variety of new materials.

In these cases, deposition chamber design and cleaning in addition to control of the deposition time are especially important.

“This is an excellent reminder of just how careful we need to be to do good, reproducible science,” comments Professor Adachi.

From the ground-breaking research breakthroughs to the shifting supplier landscape, these are the stories the Solid State Technology audience read the most during 2016.

#1: Moore’s Law did indeed stop at 28nm

In this follow up, Zvi Or-Bach, president and CEO, MonolithIC 3D, Inc., writes: “As we have predicted two and a half years back, the industry is bifurcating, and just a few products pursue scaling to 7nm while the majority of designs stay on 28nm or older nodes.”

#2: Yield and cost challenges at 16nm and beyond

In February, KLA-Tencor’s Robert Cappel and Cathy Perry-Sullivan wrote of a new 5D solution which utilizes multiple types of metrology systems to identify and control fab-wide sources of pattern variation, with an intelligent analysis system to handle the data being generated.

#3: EUVL: Taking it down to 5nm

The semiconductor industry is nothing if not persistent — it’s been working away at developing extreme ultraviolet lithography (EUVL) for many years, SEMI’s Deb Vogler reported in May.

#4: IBM scientists achieve storage memory breakthrough

For the first time, scientists at IBM Research have demonstrated reliably storing 3 bits of data per cell using a relatively new memory technology known as phase-change memory (PCM).

#5: ams breaks ground on NY wafer fab

In April, ams AG took a step forward in its long-term strategy of increasing manufacturing capacity for its high-performance sensors and sensor solution integrated circuits (ICs), holding a groundbreaking event at the site of its new wafer fabrication plant in Utica, New York.

#6: Foundries takeover 200mm fab capacity by 2018

In January, Christian Dieseldorff of SEMI wrote that a recent Global Fab Outlook report reveals a change in the landscape for 200mm fab capacity.

#7: Equipment spending up: 19 new fabs and lines to start construction

While semiconductor fab equipment spending was off to a slow start in 2016, it was expected to gain momentum through the end of the year. For 2016, 1.5 percent growth over 2015 is expected while 13 percent growth is forecast in 2017.

#8: How finFETs ended the service contract of silicide process

Arabinda Daa, TechInsights, provided a look into how the silicide process has evolved over the years, trying to cope with the progress in scaling technology and why it could no longer be of service to finFET devices.

#9: Five suppliers to hold 41% of global semiconductor marketshare in 2016

In December, IC Insights reported that two years of busy M&A activity had boosted marketshare among top suppliers.

#10: Countdown to Node 5: Moving beyond FinFETs

A forum of industry experts at SEMICON West 2016 discussed the challenges associated with getting from node 10 — which seems set for HVM — to nodes 7 and 5.

BONUS: Most Watched Webcast of 2016: View On Demand Now

IoT Device Trends and Challenges

Presenters: Rajeev Rajan, GLOBALFOUNDRIES, and Uday Tennety, GE Digital

The age of the Internet of Things is upon us, with the expectation that tens of billions of devices will be connected to the internet by 2020. This explosion of devices will make our lives simpler, yet create an array of new challenges and opportunities in the semiconductor industry. At the sensor level, very small, inexpensive, low power devices will be gathering data and communicating with one another and the “cloud.” On the other hand, this will mean huge amounts of small, often unstructured data (such as video) will rippling through the network and the infrastructure. The need to convert that data into “information” will require a massive investment in data centers and leading edge semiconductor technology.

Also, manufacturers seek increased visibility and better insights into the performance of their equipment and assets to minimize failures and reduce downtime. They wish to both cut their costs as well as grow their profits for the organization while ensuring safety for employees, the general public and the environment.

The Industrial Internet is transforming the way people and machines interact by using data and analytics in new ways to drive efficiency gains, accelerate productivity and achieve overall operational excellence. The advent of networked machines with embedded sensors and advanced analytics tools has greatly influenced the industrial ecosystem.

Today, the Industrial Internet allows you to combine data from the equipment sensors, operational data , and analytics to deliver valuable new insights that were never before possible. The results of these powerful analytic insights can be revolutionary for your business by transforming your technological infrastructure, helping reduce unplanned downtime, improve performance and maximize profitability and efficiency.

Weisl-AndreasAndreas Weisl (38), former Vice President Europe of Korean LED manufacturer Seoul Semiconductor (SSC), has taken on the position of CEO at Seoul Semiconductor Europe GmbH based Munich, Germany, with effect from November 11, 2016.

The European headquarters has been consistently successful, establishing themselves since 2010. The global success story of SSC, which is marked by rapid growth, has been successfully implemented in Europe for many years now. SSC is among the leading companies in global markets and throughout the European LED market.

In his role as General Manager for Central and Northern Europe since 2010, and as Vice President Europe since 2014, Mr. Weisl is part of the SSC executive and is responsible for business developments in Europe. Mr Weisl has contributed significantly to the company’s success and looks back on more than eleven years of experience in the area of LEDs before coming to SSC in 2010. Previously he served as a manager, among other roles, at Osram Opto Semiconductors.

By Christian G. Dieseldorff, Industry Research & Statistics Group at SEMI 

Data from SEMI’s recently updated World Fab Forecast report reveal that 62 new Front End facilities will begin operation between 2017 and 2020.  This includes facilities and lines ranging from R&D to high volume fabs, which begin operation before high volume ramp commences.  Most of these newly operating facilities will be volume fabs; only 7 are R&Ds or Pilot facilities.

Between 2017 and 2020, China will see 26 facilities and lines beginning operation, about 42 percent of the worldwide total currently tracked by SEMI.  The majority of the facilities starting operation in 2018 are Chinese-owned companies. The peak for China in 2018 comes mainly from foundry facilities (54 percent). The Americas region follows with 10 facilities, and Taiwan with 9 facilities. See Figure 1.

Figure 1 depicts the regions in which new facilities will begin operation.

Figure 1 depicts the regions in which new facilities will begin operation.

By product type, the forecast for new facilities and lines include: 20 (32 percent) are forecast to be foundries, followed by 13 Memory (21 percent), seven LED (11 percent), six Power (10 percent) and five MEMS (8 percent). See Figure 2

Figure 2: New facilities & lines starting operation by product type from 2017 to 2020

Figure 2: New facilities & lines starting operation by product type from 2017 to 2020

Because the forecast extends several years, it includes facilities and lines of all probabilities, including rumored projects and projects which have been announced, but have a low probability of actually happening.  See Table 1.

FabForecast-table1

 

Probabilities of less than 50 percent are considered unconfirmed, while a probability of 80 to 85 percent means that the facility is currently in construction mode.  Projects with 90 percent probability are currently equipping. As the forecast gets farther out, more of the projects have lower probabilities.

The projects under construction, or soon to be under construction, will be key drivers in equipment spending for this industry over the next several years — with China expected to be the key spending market.

SEMI’s World Fab Forecast provides detailed information about each of these fab projects, such as milestone dates, spending, technology node, products, and capacity information. Since the last publication in August 2016, the research team has made 249 changes on 222 facilities/lines.

The World Fab Forecast Report, in Excel format, tracks spending and capacities for over 1,100 facilities including future facilities across industry segments from Analog, Power, Logic, MPU, Memory, and Foundry to MEMS and LEDs facilities.  Using a bottoms-up approach methodology, the SEMI Fab Forecast provides high-level summaries and graphs, and in-depth analyses of capital expenditures, capacities, technology and products by fab.

The SEMI Worldwide Semiconductor Equipment Market Subscription (WWSEMS) data tracks only new equipment for fabs and test and assembly and packaging houses.  The SEMI World Fab Forecast and its related Fab Database reports track any equipment needed to ramp fabs, upgrade technology nodes, and expand or change wafer size, including new equipment, used equipment, or in-house equipment. Also check out the Opto/LED Fab Forecast.

Learn more about the SEMI fab databases at: www.semi.org/en/MarketInfo/FabDatabase and www.youtube.com/user/SEMImktstats.

In 2015, all economic indicators pointed to continued market growth for both industries, power electronics and LED, especially with IGBT modules boosted by EV/HEV industry and general lighting applications, a killer application for LEDs since 2012. To support this growth and answer the thermal management needs in power electronics and LED, lot of innovative technologies are emerging. According to Yole Développement (Yole), one of the most impressive technical developments is the convergence of thermal management for both sectors, LED and power electronics, particularly the materials used for thermal management. The thermal management convergence is driven by the applications, announces the “More than Moore” market research and strategy consulting company, Yole.

thermal management

Thermal Management Technology & Market perspectives in Power Electronics and LEDs report 
powered by Yole’s Power Electronics & LED teams, reviews insight into synergies between power electronics and LED for thermal management. It describes and analyzes drivers and challenges that are facing industrial companies. This latest report proposes an overview of the market trends and technology evolution including 2015-2021 market figures, technology status and technical roadmap analysis and more. Under this report, Yole’s analysts also offer business model and supply chain analysis across various materials used for thermal management.

A rapid convergence of key technologies is driving unprecedented change. In this dynamic environment, Yole’s goal is to understand their customers’ strengths and guide their success.

“Power electronics and LEDs are different industries that today face similar challenges”, explains Dr Pierric Gueguen, Business Unit Manager at Yole. And he adds:”Needs for green energy with lower CO2 emissions have led these industries to develop more efficient and smaller solutions.” At the device level, cost pressure and the need for better performance is pushing designers towards smaller and thinner chips, also leading to increased power density. Such power density targets in both power electronics and LEDs bring a convergence of thermal management requirements, supporting the development of new materials.

Among materials used for thermal management, Yole specifically investigated the market and technology evolution of die attach, substrates, baseplates/PCBs and encapsulants. Overall, the market for these materials was worth US$1.98 billion in 2015 and will grow to US$3.16 billion by 2021 at a CAGR of 6%.

“Their value proposition has the potential to bring business to their suppliers and key differentiating factors to device manufacturers,” commented Pierrick Boulay, Technology & Market Analyst at Yole.

“Power electronic modules represent a healthy market, worth about US$2.9 billion in 2015 and set to reach US$4.5 billion in 2021, growing at 9% CAGR,” explained Pierric Gueguen. In parallel, the LED packaging market reached US$15 billion in 2015, after years of strong growth led by LED TV and general lighting. However, price pressure will moderate growth in coming years, with a 3.4% CAGR leading to a market worth US$18.5 billion in 2021.

Power electronics and LEDs need the right materials to handle thermal management challenges. As those applications are driven by similar technical requirements, one technical solution can be adopted and developed for one industry before being used by another industry. “The 30% of the overall thermal management material market that is common to both LED and power electronics represents US$660 million in 2015”, announces Pierrick Boulay. “According to our estimations, such market segment will reach US$1014 million in 2021”. Moreover, another 30% can be reached by adapting existing technologies used in LED or power for the other application…

From perspectives ranging from manufacturers and material suppliers through to end users, market dynamics, drivers and challenges are presented in this report, for both power electronics and LEDs.
A detailed description of the thermal management report as well as other LED & Power Electronics reports Yole are available on i-micronews.com, reports section.

Cree, Inc. (Nasdaq: CREE) introduces the XLamp XHP50.2 LED, which delivers up to seven percent more lumens and 10 percent higher lumens-per-watt (LPW) than the first generation XHP50 LED in the same 5.0 mm x 5.0 mm package. The new XHP50.2 LED enables lighting manufacturers to quickly improve the performance of existing XHP50 lighting designs. Capable of producing more than 2,500 lumens from its 6mm light emitting surface (LES), the XHP50.2 can reduce the size and cost of new designs and enable innovative solutions to address applications ranging from spot to street lighting.

“Arianna shares Cree’s vision that LEDs should not compromise quality or performance and should provide better lighting experiences in all aspects,” said Lorenzo Trevisanello, R&D manager of Arianna. “Our goals are to achieve the best cost-efficacy and versatility using the most efficient LEDs. Thanks to the XHP50.2 LED’s lumen density and proven reliability, even at high operating temperatures and drive currents, we are able to push the performance and size boundaries of our products even further.”

In addition to light output and efficacy enhancements, the XHP50.2 LED provides improvements to optical uniformity through secondary optics, enabling spot and portable lighting manufacturers to deliver better lighting experiences. The XHP50.2 LED has LM-80 data available immediately, reducing the time required to receive ENERGY STAR® and DesignLights Consortium® qualifications.

“Cree redefined High Power LED performance with the introduction of the industry’s first Extreme High Power LEDs,” said Dave Emerson, senior vice president and general manager for Cree LEDs. “Delivering the industry’s best lumen density and reliability, Cree’s XHP LED family allows our customers to achieve performance levels not possible with other LEDs at the lowest total system cost in a wide range of applications. With the launch of XHP50.2, Cree continues to redefine what is possible with high performance LEDs.”

Featuring Cree’s EasyWhite technology, which provides the industry’s best color consistency, the XLamp XHP50.2 LEDs are available in 2700K-6500K with high CRI options. Product samples are available now, and production quantities are available with standard lead times.

Within a highly competitive landscape due to a strong price pressure, most of the LED companies are looking for business opportunities and adopt different strategies of development. Vertical integration, product, application and activity diversification. New relays of growth are required for LED players to survive.

From a packaging point of view, more and more packaged LED manufacturers selected the vertical integration strategy to move towards the module level and add more and more value in their LED components.

Under the new report titled LED Packaging 2016: Market, Technology and Industry Landscape reportYole Développement (Yole) reviews the LED industry and market status. The “More than Moore” market research and strategy consulting company Yole, details process flows and related technologies in LED packaging. Yole proposes also a comprehensive analysis of the cost reduction and its impact at the LED packaging level.

According to Yole’s analysts, the packaged LED market represented a revenue of nearly US$15.7 billion in 2015. This industry should grow to a size of nearly US$18.2 billion by 2020.

led packaging revenue

Following the overcapacity caused by the recent LED TV crisis and the entry of Chinese players, industry consolidation was expected to decrease competition and stabilize price erosion. This eventually happened in China during 2014 and 2015, but with unforeseen effects on the overall industry. Indeed, several smaller players went bankrupt and many midsize players have since been acquired, leading to a situation where dozens of companies are having “going-out-of business” sales. This has triggered strong price decline and, naturally, other LED players had no choice but to match the price trend initiated by the Chinese industry.

ASP for low and mid power LEDs declined 30% – 40% in the second half of 2015. In parallel ASP for high power LEDs, though less affected, still declined 20% – 30%. Globally, 2015 was a rough year for the LED industry, with packaged LED revenue declining for the first time ever: from US$15.1 billion in 2014 to US$15 billion in 2015.

This decrease was emphasized by lower-than anticipated demand in the LED backlight and LED lighting markets. Moreover, strong evolution in currency exchange rates due to the US dollar’s rise contributed to many players’ declining revenue.

2016 has seen the industry begin recovering, and packaged LED ASPs have mostly stabilized for highly-commoditized stock keeping units like the low-power 2835 and mid-power 5630.

Higher power grades for lighting applications are seeing increasing demand, but also stiffer competition, which likely will lead to a significant ASP drop as competition intensifies.

“Thus we expect the packaged LED market to show moderate growth in the coming years, reaching US$18.5 billion in 2021 (CAGR 2016 – 2021: +3.4%)”, explains Pars Mukish, Business Unit Manager at Yole. 

LED packaging market is still a strong opportunity for materials suppliers. Indeed, LED packaging requires specific materials in agreement with application requirements.

Regarding packaging substrates, the high power density of devices induces the use of ceramic substrates, a market that will grow from nearly US$684 million in 2015 to US$813 million in 2021, according to Yole’s LED packaging report.

Encapsulant/optic materials will follow the same trend: Yole’s analysts announce US$400 million in 2015 and US$526 million in 2021. This market segment is driven mostly by the increased use of silicone material offering better reliability/lifetime than traditional epoxy material.

In parallel, with major YAG IP expiring from 2017, the phosphor market will face strong commoditization and price pressure. Consequently, market will only grow from nearly US$339 million in 2015 to US$346 million in 2021.

The LED packaging report (2016 edition) provides a comprehensive overview of all LED packaging aspects. Each step of the packaging process flow including equipment and materials used is described, along with associated trends. Associated technological breakthroughs are also analysed.