Category Archives: LED Packaging and Testing

Hybrid optoelectronic devices based on blends of hard and soft semiconductors can combine the properties of the two material types, opening the possibility for devices with novel functionality and properties, such as cheap and scalable solution-based processing methods. However, the efficiency of such devices is limited by the relatively slow electronic communication between the material components that relies on charge transfer, which is susceptible to losses occurring at the hybrid interface.

A phenomenon called Förster resonant energy transfer (FRET) was recently theoretically predicted and experimentally observed in hybrid structures combining an inorganic quantum well with a soft semiconductor film. Förster resonant energy transfer is a radiationless transmission of energy that occurs on the nanometer scale from a donor molecule to an acceptor molecule. The process promotes energy rather than charge transfer, providing an alternative contactless pathway that avoids some of the losses caused by charge recombination at the interface.

Now researchers from the University of Cyprus and Cyprus University of Technology, along with colleagues from the University of Crete, Greece have conducted a comprehensive investigation on how various structural and electronic parameters affect FRET in structures of nitride quantum wells with light-emitting polymers. Based on their studies, the researchers discuss the process to optimize the energy transfer process and identify the limitations and implications of the Förster mechanism in practical devices. The work demonstrates the importance of understanding FRET in hybrid structures that could pave the way for developing novel devices such as high-efficiency LEDs and solar cells. The researchers present their work in a paper published this week in the Journal of Chemical Physics, from AIP Publishing.

In the top left is a schematic of Förster Resonant Energy Transfer from a near-surface nitride quantum well to a polymer overlayer. In the top right is fluorescence from solutions containing light emitting polymer materials. In the bottom left high resolution transmission electron microscope image from an InGaN/GaN quantum well. In the bottom right absorption and fluorescence spectra from various polymers used in our study. Credit: Grigorios Itskos/University of Cyprus, Cyprus

In the top left is a schematic of Förster Resonant Energy Transfer from a near-surface nitride quantum well to a polymer overlayer. In the top right is fluorescence from solutions containing light emitting polymer materials. In the bottom left high resolution transmission electron microscope image from an InGaN/GaN quantum well. In the bottom right absorption and fluorescence spectra from various polymers used in our study. Credit: Grigorios Itskos/University of Cyprus, Cyprus

“Pioneering theoretical and experimental work has demonstrated that energy can be efficiently transferred across hybrid semiconductors via the Förster mechanism. However, our understanding is not complete and many material and structural parameters affecting FRET in such hybrids remain unexplored. Our work employs for a first time a comprehensive approach that combines fabrication, theoretical modeling and optical spectroscopy to fully understand FRET in a nitride quantum well-polymer hybrid structure,” said Grigorios Itskos, the primary researcher and an assistant professor from the Department of Physics at the University of Cyprus.

“We used a systematic approach to optimize the FRET efficiency by tuning various parameters of the nitride quantum well component. The process allowed us to study unexplored aspects of the mechanism and identify competing mechanisms that limit the energy transfer efficiency in hybrid planar structures. The outcome of our investigation can guide future efforts towards a rational design of hybrid geometries that can optimize FRET and limit competing losses to render FRET-based devices feasible,” he said.

Itskos noted that the researchers chose to study structures based on nitrides because the material is well-researched and is used in niche applications such as blue light emitting LEDs. “However, the functionality [of nitride structures] can be further increased by combining them with other soft semiconductors such as light-emitting polymers. The spectral tunability and high light-absorption and emitting efficiency of the polymers can be exploited to demonstrate efficient down-conversion of the blue nitride emission, providing a scheme for efficient hybrid LEDs,” Itskos said.

In the study, the researchers initially sought to produce and study near-surface nitride quantum wells to allow a close proximity with the light-emitting polymer deposited on their top surface.

“The nanoscale proximity promotes efficient interactions between the excitations of the two materials, leading to fast Förster transfer that can compete with the intrinsic recombination of the excitations,” Itskos explained. Förster resonant energy transfer is a strongly distance-dependent process which occurs over a scale of typically 1 to 10 nanometers. The contactless pathway of energy transmission could avoid energy losses associated with charge recombination and transport in hybrid structures.

Using a sequence of growth runs, theoretical modeling and luminescence spectroscopy (a spectrally-resolved technique measuring the light emission of an object), the researchers identified the way to optimize the surface quantum well emission.

“We studied the influence of parameters such as growth temperature, material composition, and thickness of the quantum well and barrier on the optoelectronic properties of the nitride structures. Increase of the quantum confinement by reducing the width or increasing the barrier of the quantum well increases the well emission. However, for high quantum well confinement, excitations leak to the structure surface, quenching the luminescence. So there is an optimum set of quantum well parameters that produce emissive structures,” Itskos said. He also pointed out that the studies indicate a strong link between the luminescence efficiency of the nitride quantum well with the FRET efficiency of the hybrid structure, as predicted by the basic theory of Förster. The correlation could potentially provide an initial and simple FRET optimization method by optimizing the luminescent efficiency of the energy donor in the absence of the energy acceptor material.

“Our studies also indicated that electronic doping of the interlayer between the nitride quantum well and the polymer film reduces the efficiency of FRET. This constitutes a potential limitation for the implementation of such hybrid structures in real-world electronic devices, as electronic doping is required to produce efficient practical devices. Further studies are needed to establish the exact influence of doping on FRET,” Itskos noted.

He said the team’s next step is to perform a systematic study of hybrid structures based on doped nitride quantum wells to investigate the mechanisms via which electronic doping affects the characteristics of the Förster resonant energy transfer.

Cambridge Nanotherm, a producer of thermal management technology, has won the “LED Lighting Product of the Year” award at the 2015 Elektra Awards for its “Nanotherm DM” product. The industry’s largest technology and business awards, the Elektras is in its 13th year of celebrating the best the electronics industry has achieved.

Cambridge Nanotherm beat stiff competition from NASDAQ listed ON Semiconductor, Khatod Optoelectronics and Zeta Specialist Lighting to win the LED Lighting Product of the Year category. Commenting on the award the judges noted that Nanotherm DM is uniquely compatible with standard manufacturing processes and picked up on the fact that the company manufactures Nanotherm DM at its facility near Cambridge and exports to customers in the US and Asia.

Nanotherm DM is a robust and cost effective alternative to aluminium nitride, an electronics grade ceramic that is used in thermally challenging electronics. The production of Nanotherm DM involves a patented ‘ECO’ process (Electro Chemical Oxidation) that converts the surface of aluminium into a nanoceramic dielectric layer. The nanoceramic aluminium is completed with a copper circuit sputtered onto the nanoceramic to customer specifications. This results in a material with thermal properties that rival aluminium nitride but with the mechanical properties of aluminium that offers the best thermal performance to price ratio available.

Initially targeted at Chip-on-Board modules and LED packaging markets, Nanotherm DM enables LED manufacturers to make significant cost savings without impacting the performance of their products.

Collecting the award on Tuesday night Mike Edwards, Sales Director, said: “Winning an Elektra award is testament to the hard work and dedication our team has put into the development and commercialisation of Nanotherm DM. It cements Nanotherm’s place at the vanguard of UK high-technology manufacturing and I’m delighted to be taking the award back to our manufacturing facility in Haverhill. 2016 is shaping up to be a very exciting year for Nanotherm as we continue to ramp up our production capabilities to meet unprecedented demand for our thermal management solutions.”

The win follows on from Nanotherm being shortlisted for the R&D 100 awards and winning the 2015 Insider Media Made in the East technology award.

The winners of the 2015 were announced on the Tuesday 24th November at the awards ceremony taking place at The Lancaster, London.

The use of sapphire in the manufacturing of Light Emitting Diodes (LEDs) is covered in the second part of a two part series.

BY WINTHROP A. BAYLIES and CHRISTOPHER JL MOORE, BayTech-Resor LLC, Maynard, MA

In Part 1 of this article, we discussed the optical and mechanical properties of sapphire and its use in the mobile device industry. In part 2, we will discuss the use of sapphire in the LED process including some of the newer technologies that produce these devices.

Solid state lighting (or “LED bulbs” as they are commonly known) have become a mainstream product in our culture. Their longer life time and lower power usage (along with the banning of incandescent bulbs) have ensured that more and more consumers are moving to this type of lighting. Like a fluorescent light (where the white light is produced by a phosphor coating excited by the excited gas molecules) solid state lights use a phosphor excited by the short wavelength light emitted by an LED. What you may not know is that about 8 out of every 10 LED bulbs sold uses sapphire as the starting material for their manufacturing process.

As we summarized in part 1, sapphire has some good points: hard, strong, optically transparent and chemically inert (there is a reason high end watches use sapphire crystals) and some bad points: hard, strong, and chemically inert (which is why sapphire crystals are more expensive than glass). What we did not discuss is that single crystal sapphire has turned out to be an ideal material on which to grow the layers of material needed to make an LED.

As FIGURE 1 shows an LED is made by growing epitaxial layers of Gallium Nitride (GaN), AlGan or InGaN on a substrate. Ideally one would use GaN as the substrate material (similar to growing epitaxial Si on Si for integrated circuits) as this would result in the highest quality material and thus the most efficient LED’s. Unfortunately GaN substrates are very difficult to make in any reasonable size and the costs have ruled out using this approach except in certain niche markets. The three main substrate alternatives have been silicon (Si), silicon carbide (SiC) and sapphire.

Sapphire 1

As a substrate material Si would be expected to be the best choice due to its high quality, low cost and ready availability. To date, the quality of GaN type layers grown on Si has not been sufficient for large scale manufacturing processes. Work continues on improving this process and although it may one day dominate the process it currently remains a small part of the business.

SiC substrates are higher cost than Si but have been successfully used for LED manufacturing processes. Much of the LEDs produced by Cree (who also manufacture SiC substrates) use this type of substrate. However, the higher cost and limited availability of 6 inch SiC material means that the majority of LED producers use sapphire.

Thus sapphire substrates account for the majority of LED devices produced [1]. Although not as cheap as Si they are cheaper than SiC, available from a number of manufacturers and are able to survive the high temperature processes needed to produce a short wavelength LED. FIGURE 2 schematically shows the production process for a typical non-patterned sapphire wafer.

Sapphire 2

The sapphire production process starts when a seed crystal and a mixture of aluminum oxide and crackle (un-crystallized sapphire material) is heated in a crucible. Included in this mix is a cookie-sized seed crystal which forms the pattern to be replicated as the crystal grows. Each furnace manufacturer has its own special recipe which heats the material using a specific temperature/ time profile based on the size of melt and the type of crystal to be grown. Once the correct growth temperature is reached the melt is cooled (this process can take two weeks depending on the amount of sapphire being produced) using another set of carefully controlled time/temperature profiles. When done correctly, the cookie-sized seed grows and produces a single-crystal sapphire boule. (FIGURE 3). In reality, two weeks is a long time and any number of can go arise during this process including gas bubbles, mechanical faults such as cracks and contamination. Each of these problems affects the sapphire and its crystal properties. Each crystal fault can become a nucleation site for defects in the epitaxy grown on wafers produced from the boule. There is a clear correlation between the time taken to grow a boule and the potential quality of the boule produced. Many of the problems encountered in the upscaling of the sapphire production process have come from trying to grow large boules at high speeds.

Sapphire 3

At this point in the process you have a boule which in fact has the wrong crystal orientation for growing GaN epitaxy. Unlike the Si crystal growth process where the cylindrical boules can be ground to size and then cut into wafers, sapphire boules are often cored at right angles to the boule axis. Some companies produce sapphire using a silicon like process [2] but the majority of sapphire produced has to be cored. Thus the next step in the process is to “core-drill” a boule to produce one or more smaller round cylinders (ingots) depending on the original boule size and the size of wafers to be produced.

The ability to grow large sized boules on a regular basis is not in question; most important is how much of that boule is bubble-, crack- and impurity-free. In some cases the boules are inspected with various metrology techniques to determine which sections of the boule can be used and which cannot. The section of the boules not used is recycled into the original growth process (unless contaminated). Obviously if one is producing 6 inch wafers larger volumes of the boule need to be defect free than if one is producing 2 inch or 4 inch. Currently most of the LEDs produced are produced on 4 inch wafers with a few newer 6 inch lines and a number of older 2 inch lines. 8 inch sapphire wafers do exists but are not in mass production at this time.

The process after this is very similar to that used in the silicon industry to produce the wafers which will be used as substrates. A diamond saw (remember, Sapphire is a very hard material) is used to cur the ingot into a number of thin disc shapes by cutting perpendicular to the ingot’s long sides. Each of these discs is then ground to its final size, surface-ground and mechanically and chemically polished to produce sapphire substrates. These substrates, after cleaning, can be used as starting material for the epitaxial process used to produce the LED structure. FIGURE 4 shows some pictures of typical 2, 4 and 5 inch sapphire substrates. As discussed earlier the more defect free the surface is the better the quality of epitaxial film that can be grown. The video listed in reference [3] produced by GTAT shows many of the steps discussed above.

Sapphire 4

Recently one further step has been taken to produce what are called patterned sapphire substrates (PSS). The multiple quantum well layer shown in Fig. 1 is the layer that generates light in an LED. As you can imagine this light is emitted in all directions. However, once packaged most LED’s emit light from only one surface of the device. In the case of Fig. 1, a typical package collects the light emitted from the top of the device. This of course means that all of the light emitted in any other direction is wasted. In particular, since sapphire is transparent, little of the light emitted toward the substrate can be used.

One obvious solution to this would be to coat the substrate with something that reflects the light (i.e. metal). Unfortunately this interferes with the epitaxial layer growth process, producing poor devices. One partial solution to the reflection problem is to pattern the sapphire surface such that it reflects light. This pattern can be a series of microscopic pyramidal structures or more rounded bump like structures on the surface. FIGURE 5 shows top and side view SEM pictures of some of the patterns produced by manufacturers. These patterns scatter the light and reflect some of it back towards the surface of the device increasing the light output from the LED. In addition to increasing the apparent light output a number of manufacturers have claimed that epitaxial layers grown on patterned substrates is of better quality than that grown on bare sapphire substrates.

Sapphire 5

Patterned substrates can be produced by the manufacturer of the sapphire substrates. However, factories now exist which begin with a non-patterned substrate and produce specific patterns (normally via chemical etch) for specific LED manufacturers.

Once valued only as a gemstone, sapphire is now an engineered material with a wide variety of industrial uses. These two article have concentrated on its use in mobile devices for everything from camera lens covers to touch sensors and touch screens to the starting material on which most of the solid state lights produced are made. Cost of the material continues to be a limiting factor in its widespread adoption for certain industries. However, as the technology for producing sapphire matures material costs are decreasing and in some ways sapphire substrates have become a commodity rather than a rarity.

Additional reading and viewing material

1. http://rubicontechnology.com/sites/default/files/Opportu- nities%20for%20Sapphire%20White%20Paper-Rubicon%20 Technology.pdf
2. http://www.arc-energy.com/products-services/CHES/Foundations/1
3. https://www.youtube.com/embed/mHrDXyQGSK0

Due to the growth of the semiconductor business, the wider adoption of Cu pillar solutions and the introduction of Flip Chip technology for LED and CMOS Image Sensors (CIS) applications, the Flip Chip market is expending. Under this context, more and more industrial companies including OSATs, IDMs IC foundries and bumping house undertake in this market.

The “More than Moore” market research and strategy consulting company Yole Développement (Yole) explored this industry and proposes today a detailed technology and market report, entitled “Flip Chip: Technologies & Market Trends”Yole’s team is daily discussing with the leaders of the Advanced Packaging industry. Based on these interactions, the consulting company highlights the evolution of the technical needs and market trends. These major results make Yole’s analysts to think that full capacity should be reached in 2017.

What are the required investments to support this growth? Are there competitive technologies such as TSMC’s new solution, high-performance integrated fan-out wafer level packaging (InFO-WLP), that could answer the market needs and compete Flip Chip technology?

Under “Flip Chip: Technologies & Market Trends” report, Yole’s advanced packaging team provides an overview of Flip Chip technology and market trends. The company reviews the competitive landscape including player dynamics and key market trends; they also detail the Flip Chip market capacity and wafer forecast. Yole’s report also includes a detailed technology roadmap.

“Based on the discussions we had with the major advanced packaging companies, at Yole, we think that demand for Flip Chip is expected to reach the current maximum capacity in 2017,” said Santosh Kumar, Senior, Technology & Market Analyst, Advanced Packaging & Semiconductor Manufacturing at Yole. And he adds: “Therefore, new investment will be needed starting in 2018.”

Since Cu pillar processing can be performed by standard foundries and IDMs, the supply chain may see some slight modification. Yole’s analysts expect higher investment in Cu pillar 12” line wafer bumping lines from wafer foundries such as TSMC and SMIC. This change will affect OSATs’ wafer bumping revenue since foundries will gain market share.

OSATs will maintain their strong position in wafer bumping and assembly thanks to of their huge experience and low cost solutions. Their business model enables them to better control the supply chain, as they provide for the complete set of flip-chip services: package design and qualification, wafer bumping, substrate in-sourcing, assembly and final test.

However, big IDM companies like Intel and Samsung maintain their dominance in terms of wafer bumping capacity.

flip chip bump

“At Yole, we expect that even in 2020 Intel will remain the highest-capacity player in Cu pillar wafer bumping,” commented Thibault Buisson, Technology & Analyst, Advanced Packaging at Yole. Foundries and OSATs are also establishing joint ventures for wafer bumping to provide turnkey solutions to customers from chip fabrication to assembly at competitive cost.

And what about the Chinese companies? Do they have a role to play in the Flip Chip market? Chinese players are significantly increasing their presence in wafer bumping and Flip Chip assembly by mergers and acquisitions. JCET acquired STATS ChipPAC and FCI was acquired by Tianshui Huatian Technology Company.

In that context, Yole’s report, Flip Chip: Technologies & Market Trends report gives insights on the future strategies that players may adopt. A detailed description of this report is available on www.i-micronews.com, advanced packaging reports section.

Sapphire is hard, strong, optically transparent and chemically inert.

BY WINTHROP E. BAYLIES and CHRISTOPHER JL MOORE, BayTech-Resor LLC, Maynard, MA

Have you ever wondered what blue gemstone earrings, an LED lightbulb and an Apple Watch have in common? The answer (at least for this article) is that all depend on sapphire as part of their manufacturing process. In part 1 of the following two part article, we will discuss how sapphire is becoming an important part of the mobile device food chain. Part 2 will concentrate on how sapphire is used in LED production.

Sapphire (chemical composition Al2O3) has a high melting point of 2040°C (3704°F) and is chemically resistant even at high temperatures. It is an anisotropic material meaning that its mechanical/thermal properties depend on the direction of the crystal plane that is cut and polished. An insulator with a 9.2 eV energy gap it is optically transparent. With a hardness of 9 on the Mhos scale, it is almost as hard and strong as diamond (10 Mhos).

To summarize, sapphire has some good points: hard, strong, optically transparent and chemically inert (there is a reason high end watches use sapphire crystals) and some bad points: hard, strong, and chemically inert (which is why sapphire crystals are more expensive than glass). That is, the very properties that make it ideal for applications needing mechanical strength and hardness mean that it is a difficult material to grow, machine and polish.

There are several places where sapphire can be (or is now) used in the manufacture of mobile devices. The most publicity in this area was generated in 2014 with significant speculation in both the trade magazines and newspapers (such as the Wall Street Journal) that the iPhone 6 would be released with a sapphire touch screen or at the very least a sapphire cover glass over the existing touchscreen. Part of this speculation was fueled by the large number (1700 to 2500 depending on source) of sapphire producing furnaces being installed at an Apple facility in Mesa Arizona. However, the sapphire iPhone 6 was not released due in part to the difficulties in growing and processing enough sapphire screens at a reasonable cost to supply the significant number of phones produced. There are now sapphire touch screen phones available from other suppliers and recently, the Apple Watch was released with a sapphire screen. In addition, many fingerprint sensors and camera cover glasses are now produced using sapphire as the cover material.

Requirements for sapphire material is clear (forgive the pun). For screens and cameras, it must be of good optical quality i.e. transmit light well and have low surface roughness. For fingerprint sensors, it needs consistent surface quality and electrical properties.

Production process

FIGURE 1 shows a schematic of the production process for sapphire used in a mobile device screen. The following paragraphs provide more detail on this process [1] as well as a few of problems encountered along the way.

Sapphire Fig 1

The sapphire production process starts when a seed crystal and a mixture of aluminum oxide and crackle (un-crystallized sapphire material) is heated using a specific temperature/time profile, then cooled (this process can take two weeks depending on the amount of sapphire being produced) using a carefully controlled set of time/temperature profiles. When done correctly, the cookie sized seed grows and produces a single-crystal sapphire boule. That at least is the theory. In reality, two weeks is a long time and any number of problems can go wrong during this process including gas bubbles, mechanical faults such as cracks and contamination. Each of these problems can affect the sapphire and its optical/electrical properties. There is a clear correlation between the time taken to grow a boule and the potential quality of the boule produced. Many of the problems encountered in the upscaling of the sapphire production process sprang from trying to grow large boules at high speeds.

It is at the next step in the process where boule size does matter. Typically, the boule will be drilled or cut to produce material near the size needed for the particular application. It makes a significant difference if the material is for a watch crystal (say 1.5 inch diameter ~ 1.7 square inches). Here you can “core-drill” a boule to produce a number of smaller cylinders. For a phone screen/cover plate (at 4 by 6 inch i.e. 24 square inches) a larger portion of the boule is needed for a box shape. The ability to grow large sized boules on a regular basis is not in question; most important is how much of that boule is bubble-, crack- and impurity-free. In some cases the boules are inspected with various metrology techniques to determine which sections of the boule can be used and which cannot. The section of the boules not used is recycled into the original growth process (unless contaminated).

Given the hardness of the sapphire, diamond wire saws or diamond core drills are used for cutting or coring the boules. The yield from any boule is a function of the original boule size, the size of the cores or slabs being produced and the volume of the boule free from imperfections. As was discussed earlier, and is typical of many processes, the larger the size of the piece the lower the yield.

The next step is to take the cylindrical cores (or rectangular slabs) and cut them into appropriate sized pieces. The thickness of the desired part and the amount the producer is willing to invest in high technology solutions determines what is done next. On one end of the technology scale, the parts are cut using a wire saw or an abrasive cutoff saw. On the other end of the scale, you can ion implant the surface to produce a damaged layer at a depth below the surface determined by the original ion energy. If the slab is heated after sufficient implantation is done, a thin sheet will separate from the surface. Both processes result in parts of the approximate size needed for the application; a discussion of the pros and cons of each approach is beyond the scope of this article.

The process after this point depends on the parts’ final application and their manufacturer. Given the difficulty of polishing a material this hard many of the bigger companies have developed proprietary process for grinding or mechanically polishing the sapphire parts to the desired shape and surface roughness/finish. From a mechanical strength standpoint, it is important that there be no significant scratching of the surface or chipping of the edges which could severely limit the mechanical strength of the final piece. From an optical standpoint, it is important to produce a uniform finish so as not to effect the overall appearance of the part. At this stage, the parts are then ground to their final size and any additional shaping of the part including holes/ profiles is done. FIGURE 2 shows a variety of sapphire parts at this stage of the process.

Sapphire Fig 2

In most sapphire part production these parts are next coated with a variety of optical and/or electrical and/ or chemical films again depending on their application. Because of its high index of refraction (1.76) a sapphire screen or watch crystal is highly reflective. For this application, the parts are typically coated with a series of films to produce an anti-reflection coating enhancing final screen readability. For parts that will be touched on a regular basis such as touchscreens or fingerprint sensors coatings, it is important that they be “self-cleaning.” In these cases, hydrophobic and oleophobic coatings are used to make sure your fingerprints are less likely to stay behind after the material has been touched. FIGURE 3 shows a series of parts after the coating and silk screening process. They are now ready for assembly into the mobile device.

Sapphire Fig 3

The use of sapphire in mobile devices is driven by two main concerns. One is that the final screen/sensor be mechanically stronger and harder than most glasses. There are a number of videos [2] available showing cement blocks being dragged over cell phones to show the sapphire screens’ scratchproof capabilities. The second (and not as well known) factor is the significant data showing that touch sensors made using sapphire have better performance characteristics due to its superior electrical properties and electrical uniformity. This allows the development of sensors which have improved performance in the field.

The downside of using sapphire remains its cost. Estimates [3] have reported sapphire costs 2 to 10 times the price of an equivalent glass part. Although these costs are coming down, in price sensitive applications glass continues to dominate at this time and it is expected that only higher end phones will use sapphire screens.

In the second part of this article, we will discuss the importance of sapphire in the LED industry and the difference in process needed for this material.

Additional reading/viewing material

1. http://www.businessinsider.com/how-sapphire- glass-screens-are-made-2014-9
2. Video Aero Gear’s Flight Glass SX Sapphire Crystal vs a Concrete
3. http://seekingalpha.com/article/2230553-ignore- the-sapphire-threat-corning-is-on-a-roll

Baltimore, MD — November 11, 2015 — Pixelligent, a leader in high-index advanced materials, today launched a new family of PixClear® materials for display and optical components and films. The PixClear product line is now available in a new solvent system — a low boiling ethyl acetate (ETA) — that delivers the same high performance while easing integration with customer manufacturing processes. Now leading manufacturing companies will have the choice of a standard, high boiling propylene glycol methyl ether acetate (PGMEA) or the low boiling ETA for their testing. These materials are available in both 20 percent and 50 percent loadings for PixClear PG and PixClear PB.

“The launch of our new PixClear ETA materials is a response to customer demand. These low boiling ETA dispersions will result in brighter, clearer devices produced at a lower cost, which directly supports reducing time to innovation for our customers in the display and adhesives space,” said Craig Bandes, President and CEO of Pixelligent. “At Pixelligent, we continue to expand our matrix of high quality, high-index nanomaterials in order to support the growth of our customers.” Matt Healy, Vice President of Product Management adds, “In August, we launched a full OLED materials family, which includes four products for testing internal light extraction structures for OLED lighting. All totaled, we have introduced 12 new products for customer testing in the past three months.”

PixClear zirconia dispersions are now available for order in two solvents, and at two different loadings, to complement the processes used for the production of displays and optical components.

Plasma-Therm announced that it has acquired an innovative High Density Radical Flux plasma technology, which enables low-temperature Bosch polymer removal.

High Density Radical Flux — HDRF® —was developed by Nanoplas France as a superior plasma process for low-temperature removal of photoresists and organic polymer residues. These capabilities are especially important for device fabrication steps in the MEMS, LED, and advanced packaging markets.

Plasma-Therm is integrating HDRF technology into its existing suite of plasma etching, deposition, and wafer-dicing products. The Nanoplas-developed HDRF low-temperature photoresist stripping capability is also applicable to Bosch polymer removal after DRIE processing.

“We are eager to make the HDRF technology available to our existing customers and potential customers,” said Ed Ostan, vice president of marketing for Plasma-Therm. “HDRF fits very well into our etch and deposition product line, because this will allow Plasma-Therm to provide multi-step solutions to specialized device manufacturers for both R&D and production use.”

Plasma-Therm will also offer ongoing support to Nanoplas customers. The Nanoplas installed baseis primarily made up of DSB 6000 and DSB 9000 HDRF systems.

HDRF enables removal of photoresist, as well as organic polymers left on trench sidewalls following DRIE processes. These applications are sought for advanced packaging, MEMS, and power devices.

HDRF systems incorporate a multi-zone, remote, inductively coupled plasma (ICP) source, which produces up to 1,000 times greater chemical concentration than a conventional ICP source.

HDRF provides better performance than wet processing and regular plasma processing in terms of selectivity, low damage, flexibility, and high-aspect-ratio efficiency. HDRF provides superior polymer removal efficiency for high-aspect-ratio (greater than 50:1) structures.

With operating temperatures lower than 80° C., and with high selectivity to TiN, Al, Au, SiO2, and Si3N4, HDRF provides damage-free residue removal for ultra-sensitive devices.

Nanoplas introduced the semi-automatic DSB 6000 system in 2008. It was followed in 2011by the fully automatic 200mm DSB 9000 system, which accommodates one or two process modules. Both systems are capable of chemical downstream etching, stripping and cleaning applications. The company also designed the HDRF300 system for advanced cleans for 3D-IC fabrication. Nanoplas customers include global companies utilizing the systems in volume production, and also R&D and pilot line facilities, company officials said.

Fremont, Calif., October 29, 2015 – Soraa, a leader in the development of advanced lighting products and gallium nitride on gallium nitride (GaN on GaN™) LED technology, announced today that it will open a new semiconductor fabrication plant in Syracuse, New York. In partnership with the State of New York, the company will construct a new state-of-the-art GaN on GaN LED fabrication facility that will employ hundreds of workers. Working in coordination with SUNY College of Nanoscale Science and Engineering (SUNY Poly CNSE), the new facility is on pace for shell completion by the end of this year with production beginning in the second half of 2016. Soraa currently operates an LED fabrication plant in Fremont, California, one of only a few in the United States.

“Central New York’s economic growth is due in large part to high-tech companies like Soraa that recognize the region’s wealth of assets and resources,” Governor Cuomo said. “Today’s announcement not only means economic stability for the region, but it also strengthens Central New York as leader in the development of the clean technology that will help light and power the future.”

“Syracuse is an optimal location for the new fabrication facility for a number of reasons including the innovative high-tech vision and strategy of Governor Cuomo; the ability to attract some of the best and brightest scientists and engineers in the world; and the capacity to tightly control the product quality and intellectual property around our lighting products through our partnership with SUNY Poly CNSE,” commented Jeff Parker, CEO of Soraa. “Since we launched our first product in 2012, global market reception for our high quality of light LED products has been phenomenal and sales have soared. The new facility will significantly increase our manufacturing capacity to meet this growing demand.”

It was announced in late 2013 that Soraa would expand its manufacturing operations to the Riverbend Commerce Park in Buffalo, NY. The plans outlined sharing the space with solar module manufacturer, Silevo. However, following the acquisition of Silevo by SolarCity, the facilities at Riverbend could no longer accommodate both Soraa’s fabrication facility and the necessary square footage for SolarCity’s expanded operations. As a result, it was back to the drawing board.

“Following the change with the Riverbend space, we remained focused on finding an optimal solution that worked for the State, Soraa and the talented workers that call upstate New York home,” added Parker. “We’re back on track with a great location and are targeting to employ at least 300 people to support a revenue stream of over $1 billion once fully functional.”

“By taking Albany’s nanotechnology-based public-private economic development model across New York State, Governor Andrew Cuomo has established an unmatched engine for long-term growth, and this latest announcement is a perfect example of how his jobs-focused strategy continues to pay dividends,” said Dr. Alain E. Kaloyeros, President and CEO of SUNY Poly. “SUNY Poly is thrilled to partner with Soraa to locate this advanced manufacturing facility and its resultant jobs, as well as the hands-on educational offerings that this will present for New York’s students, adjacent to the Film Hub in Syracuse, where the company’s cutting edge lighting technology can be adapted for production purposes. Each component of this collaboration is further proof that the Governor’s unique vision for crafting commercialization and manufacturing-based opportunities is a powerful recipe for a resurgent New York.”

In 2007, a team of pioneering professors from the worlds of engineering and semiconductors—Dr. Shuji Nakamura, Nobel Laureate and inventor of the blue laser and LED; Dr. Steven DenBaars, founder of Nitres; and Dr. James Speck of U.C. Santa Barbara’s College of Engineering—came together and made a bet on an LED technology platform completely different than current industry practice, a technology most industry experts at the time considered to be impossible to execute.

Soraa bet that GaN on GaN LEDs would produce more light per area of LED, be of higher quality, and be more cost-effective than technology based on other foreign substrates like sapphire or silicon carbide. This strategy ran against every trend in the LED industry. That bet paid off: today, the company’s LEDs emit more light per LED material than any other LED; handle more electric current per area than any other LED; and the company’s products produce best-in-class color quality with full spectrum light similar to sun-light, while also delivering the brightest beams.

Berkeley, CA, October 29, 2015 — Pixelligent, a leader in high-index materials, announced today the development of a new OLED light extraction technology that dramatically increases light output in their customer’s OLED Lighting devices. Pixelligent founder and chief technology officer, Dr. Gregory Cooper, presented the new technology at the 17th Annual OLEDs World Summit.

These new nanocomposite materials, which combine scattering particles along with PixClear® zirconia, are delivering significant improvements in light extraction and efficiency for numerous OLED lighting applications. “This class of materials represents the next generation of Pixelligent’s technology development strategy. In fact, we have seen light output double in devices that our partners and customers have tested with our PixClear® OLED products,” said Pixelligent Founder & CTO, Gregory Cooper.

Dr. Cooper’s presentation at the conference included the numerous breakthroughs Pixelligent has achieved in OLED lighting applications, derived from its proprietary light extraction nanocomposite materials. These new OLED materials will enable Pixelligent’s customers to deliver new OLED Lighting devices with unprecedented light extraction and cost efficiencies.

 

According to a new market report published by Transparency Market Research “LED Driver and Chipset Market – Global Industry Analysis, Trend, Size, Share and Forecast, 2015 – 2021“, the global LED Driver and Chipset market was valued at US$2.80 billion in 2014 and is expected to reach US$11.99 billion by 2021, growing at a CAGR of 23.2% from 2015 to 2021.

The global LED Driver and Chipset market is primarily driven by increasing demand among the consumers for efficient power solution both in terms of display and lighting. LEDs outperform the traditional Cold Cathode Fluorescent Lamps (CCFLs) and Liquid Crystal Displays (LCDs) in term of size, energy efficiency, reliability and mechanical ruggedness both for displays and lighting applications. LEDs generate 100% of the National Television System Committee (NTSC) colors plus some extra colors in comparison with LCDs which generates only 70-80% of the NTSC colors. In addition, the operating cost of LEDs is low as compared to other lighting and display devices as LEDs produce more lumen per watt. Thus, more consumers are inclining towards the usage of LEDs which in turn is driving the growth of LED drivers and chipset market. Moreover, increasing awareness among the consumers regarding carbon footprints is also expected to fuel the demand of eco friendly LED devices which in turn is expected to boost the demand of LED Drivers and Chipsets offered by different LED product’s manufacturers. LEDs result in less carbon dioxide and Sulphur oxide emission (451 pound/ year) and help to keep the environment pollution free. Moreover, LEDs produces 90% less heat than incandescent and. CCFL bulbs.

The LED Driver and Chipset market is segmented on the basis of application and geography. The application segment is further bifurcated into display and lighting. By display, LED Driver and Chipset market is classified into: mobile phones, digital camera, television and navigation devices, medical devices, computer/laptop peripherals and others. Gaming devices, digital photo frames and MP3 players are included in the others segment. By lighting, the market can be segmented into outdoor areas and traffic signals, automotives, indoor lighting and commercial lighting among others. Geographically, the LED Driver and Chipset market has been segmented into North America, Europe, Asia-Pacific and Rest of the World (ROW).

Among the different applications, lighting segment was the fastest growing market in 2014. The market is predicted to grow at a CAGR of 24.1% from 2015 to 2021 and accounted for 20.1% of the overall revenue share of LED Driver and Chipset market. By geography, Asia Pacific held the largest market share and is expected to be the fastest growing market expanding at a CAGR of 23.4%. Asia Pacific is mainly driven by China and Japan. The government in this region has taken several steps to phase out the usage of conventional lighting and display technology to reduce carbon footprints. This in turn is expected to increases the sale of LED appliances and is predicted to drive the growth of LED Driver and Chipset market during the forecast period. Advanced Analogic Technologies Inc, Diodes Inc, Exar Corp and Ixys Corp among others are some of the major players operating in LED Driver and Chipset market.