Category Archives: LED Packaging and Testing

Advances at Oregon State University in manufacturing technology for “quantum dots” may soon lead to a new generation of LED lighting that produces a more user-friendly white light, while using less toxic materials and low-cost manufacturing processes that take advantage of simple microwave heating.

The cost, environmental, and performance improvements could finally produce solid state lighting systems that consumers really like and help the nation cut its lighting bill almost in half, researchers say, compared to the cost of incandescent and fluorescent lighting.

The same technology may also be widely incorporated into improved lighting displays, computer screens, smart phones, televisions and other systems.

A key to the advances, which have been published in the Journal of Nanoparticle Research, is use of both a “continuous flow” chemical reactor, and microwave heating technology that’s conceptually similar to the ovens that are part of almost every modern kitchen.

The continuous flow system is fast, cheap, energy efficient and will cut manufacturing costs. And the microwave heating technology will address a problem that so far has held back wider use of these systems, which is precise control of heat needed during the process. The microwave approach will translate into development of nanoparticles that are exactly the right size, shape and composition.

“There are a variety of products and technologies that quantum dots can be applied to, but for mass consumer use, possibly the most important is improved LED lighting,” said Greg Herman, an associate professor and chemical engineer in the OSU College of Engineering.

“We may finally be able to produce low cost, energy efficient LED lighting with the soft quality of white light that people really want,” Herman said. “At the same time, this technology will use nontoxic materials and dramatically reduce the waste of the materials that are used, which translates to lower cost and environmental protection.”

Some of the best existing LED lighting now being produced at industrial levels, Herman said, uses cadmium, which is highly toxic. The system currently being tested and developed at OSU is based on copper indium diselenide, a much more benign material with high energy conversion efficiency.

Quantum dots are nanoparticles that can be used to emit light, and by precisely controlling the size of the particle, the color of the light can be controlled. They’ve been used for some time but can be expensive and lack optimal color control. The manufacturing techniques being developed at OSU, which should be able to scale up to large volumes for low-cost commercial applications, will provide new ways to offer the precision needed for better color control.

By comparison, some past systems to create these nanoparticles for uses in optics, electronics or even biomedicine have been slow, expensive, sometimes toxic and often wasteful.

Oher applications of these systems are also possible. Cell phones and portable electronic devices might use less power and last much longer on a charge. “Taggants,” or compounds with specific infrared or visible light emissions, could be used for precise and instant identification, including control of counterfeit bills or products.

OSU is already working with the private sector to help develop some uses of this technology, and more may evolve. The research has been supported by Oregon BEST and the National Science Foundation Center for Sustainable Materials Chemistry.

SUSS MicroTec, a global supplier of equipment and process solutions for the semiconductor industry and related markets, and the Singh Center for Nanotechnology at the University of Pennsylvania (Penn) are announcing a cooperation agreement in the field of nanoimprint technologies. As part of this cooperation, Penn has recently received the equipment set and the technology know-how for Substrate Conformal Imprint Lithography (SCIL), that will expand the capabilities of the recently installed MA/BA6 Gen3 Mask Aligner from SUSS MicroTec at Penn.

Substrate Conformal Imprint Lithography (SCIL) is a nanoimprint technique combining the advantages of both soft and rigid stamps, allowing large-area patterning and sub-50nm resolution to be achieved at the same time. SCIL is applied in diverse fields, ranging from HB LEDs, Photovoltaics, MEMS, NEMS and mass production of optical gratings for gas sensing and telecommunications.

The Singh Center for Nanotechnology will implement SCIL for use in plasmonic devices, semiconductor nanowires, flexible nanocrystal electronics, biodegradable sensors and MEMS batteries.  In addition, Lithography Manager Dr. Gerald Lopez will lead the Center’s efforts in qualifying new nanoimprint materials and related process technology development in close cooperation with SUSS MicroTec.

As a further important part of the cooperation, SUSS MicroTec`s customers will gain direct access to the cleanroom facilities and the equipment set installed at Penn, serving as a demonstration center for North American customers. The experience and high technology level of Penn allows the customer to see the entire process flow, the imprinting process itself and the subsequent steps up to a finished device.

“We are pleased to collaborate with SUSS MicroTec for developing applications with SCIL. By combining our strengths in micro- and nanofabrication, we are able to provide superior nanoimprint capabilities to our researchers,” stated Professor Mark Allen, Scientific Director of the Singh Center for Nanotechnology and Alfred Fitler Moore, Professor of Electrical and Systems Engineering. “This industrial partnership enhances our ability to demonstrate how nanoimprint technology serves as a catalyst in research and its translation into the commercial sector.”

“We are very happy about the cooperation with the Singh Center for Nanotechnology. Their work will contribute strongly to further commercialize this large area nano-patterning technique in order to accelerate the adoption for volume production. In addition, our customers do not just benefit from the possibility to use Penn’s facilities and get insights to the entire imprinting process, but also from Penn´s knowledge, by having an experienced partner at hand”, says Ralph Zoberbier, General Manager Exposure and Laser Processing of SUSS MicroTec.“

Recently, quantum dots (QDs)–nano-sized semiconductor particles that produce bright, sharp, color light–have moved from the research lab into commercial products like high-end TVs, e-readers, laptops, and even some LED lighting. However, QDs are expensive to make so there’s a push to improve their performance and efficiency, while lowering their fabrication costs.

Researchers from the University of Illinois at Urbana-Champaign have produced some promising results toward that goal, developing a new method to extract more efficient and polarized light from quantum dots (QDs) over a large-scale area. Their method, which combines QD and photonic crystal technology, could lead to brighter and more efficient mobile phone, tablet, and computer displays, as well as enhanced LED lighting.

To demonstrate their new technology, researchers fabricated a novel 1mm device (aka Robot Man) made of yellow photonic-crystal-enhanced QDs. Every region of the device has thousands of quantum dots, each measuring about six nanometers. Credit:  Gloria See, University of Illinois at Urbana-Champaign

To demonstrate their new technology, researchers fabricated a novel 1mm device (aka Robot Man) made of yellow photonic-crystal-enhanced QDs. Every region of the device has thousands of quantum dots, each measuring about six nanometers. Credit: Gloria See, University of Illinois at Urbana-Champaign

With funding from the Dow Chemical Company, the research team, led by Electrical & Computer Engineering (ECE) Professor Brian Cunningham, Chemistry Professor Ralph Nuzzo, and Mechanical Science & Engineering Professor Andrew Alleyne, embedded QDs in novel polymer materials that retain strong quantum efficiency. They then used electrohydrodynamic jet (e-jet) printing technology to precisely print the QD-embedded polymers onto photonic crystal structures. This precision eliminates wasted QDs, which are expensive to make.

These photonic crystals limit the direction that the QD-generated light is emitted, meaning they produce polarized light, which is more intense than normal QD light output.

According to Gloria See, an ECE graduate student and lead author of the research reported this week in Applied Physics Letters, their replica molded photonic crystals could someday lead to brighter, less expensive, and more efficient displays. “Since screens consume large amounts of energy in devices like laptops, phones, and tablets, our approach could have a huge impact on energy consumption and battery life,” she noted.

“If you start with polarized light, then you double your optical efficiency,” See explained. “If you put the photonic-crystal-enhanced quantum dot into a device like a phone or computer, then the battery will last much longer because the display would only draw half as much power as conventional displays.”

To demonstrate the technology, See fabricated a novel 1mm device (aka Robot Man) made of yellow photonic-crystal-enhanced QDs. The device is made of thousands of quantum dots, each measuring about six nanometers.

“We made a tiny device, but the process can easily be scaled up to large flexible plastic sheets,” See said. “We make one expensive ‘master’ molding template that must be designed very precisely, but we can use the template to produce thousands of replicas very quickly and cheaply.”

Pixelligent Technologies, a manufacturer of high index materials for demanding optoelectronics applications, announces the addition of four new OLED lighting products to its PixClear Zirconia nanocrystal family. These new products will deliver light extraction and efficiency for a wide variety of OLED lighting applications.

“Our new family of high index products for OLED lighting expands upon Pixelligent’s leadership position in the solid state lighting market, and we believe it will help accelerate the adoption of OLED lighting,” said Craig Bandes, President and CEO of Pixelligent.

The new PixClear for OLED products can be incorporated into OLED lighting panels as an internal light extraction and smoothing layer, delivering more than twice the amount of light currently extracted in OLED lighting devices. The product line includes two solvent-based and two formulated materials, available both as samples and at commercial scale.

“The OLED lighting market is ripe for accelerated growth and broad-user adoption and Pixelligent is delivering the functionality required to help OLED lighting manufacturers deliver substantially more lumens-per-watt,” added Bandes.

Sapphire is the key material for LED manufacturing. But in 2015, 20 percent of sapphire will be used in Apple’s iPhone, for the camera lens, fingerprint readers and heart rate monitors covers, and the Apple watch’s window. The new Yole Développement (Yole) report on Sapphire Applications & Market 2015: from LED to Consumer Electronic provides a complete update of all sapphire uses, from LED substrates to consumer applications.

Today, the sapphire industry looks very different, depending on your perspective. The market for sapphire wafers for LED manufacturing is depressed. Wafer prices often fall below manufacturing cost. There is excess capacity that will be able to supply the needs of the industry through to at least the end of the decade. Consequently, companies are shutting down one after the other.

By contrast, the use of sapphire is booming for non-LED applications, driven by Apple’s choice of this material to protect various sensors, and this may be just the beginning. The company decided not to use sapphire for the iPhone 6 family’s display covers, a decision that led to the bankruptcy of GTAT. But now there are signs in the industry that the mobile phone maker is again looking at sapphire as the solution for display covers. Multiple companies are apparently attempting to position themselves in the potential future supply chain. The moves include Lens Technology investing US$532 million investment in a new Chinese sapphire facility, a US$98 million injection in GTAT, the plans of Biel’s joint venture with Roshow for a huge expansion in Inner Mongolia, and several other initiatives.

sapphire companies

Click to view full size.

There were many reasons for Apple’s 2014 decision not to use sapphire in display covers, but they can be summarized as “too fast, too much, too soon.” The project was ambitious in its timeframe and targeted outputs, but many of the necessary processes and technologies in crystal growth and finishing were still at an early stage of development. Yet the venture still set the stage for the future. The partners have developed unrivalled expertise in working with sapphire in a high-volume, cost-controlled environment. A lot was also learned in manufacturing of the complex 3D-shaped Apple Watch cover. But the question remains: why use sapphire?

At more than five times the cost of glass, benefits in term of breakages are still far from obvious and its high reflectivity washes out displays. Sapphire won’t sell for a premium and increase Apple’s market share just on glamour and cachet. If the company eventually adopts sapphire, it means that it would have either demonstrated that it can improve breakage resistance compared to glass and/or developed entirely new functionalities enabled by some unique properties of sapphire.

To exist and thrive, the display cover market needs Apple to take the lead and to succeed. Otherwise, only Huawei seems in a position to propel this market, but not at the same level. And alternative technologies are emerging. Various phone manufacturers recently adopted alumina-coated glass display covers to provide superior scratch resistance. Sapphire Applications & Market 2015: from LED to Consumer Electronic report from Yole presents and analyzes the recent trends in this market, including cost structures, investments and alternative technologies.

In 2015, LEDs still consume 76 percent of the sapphire supply, but oversupply is affecting revenue and profitability. Capacity has increased non-stop since 2009, despite prices being at or below cost for most suppliers since late 2011. The market is oversupplied two or threefold, depending on product category. But the situation is complex. Tier one vendors often operate at high utilization rates and keep increasing capacity. Tier two companies operate at low utilization rates or not at all.

Companies such as BIEMT or Sumitomo Metal Mining recently disappeared or exited the business. The big winners in 2014 were Monocrystal, Aurora, Namiki, Rigidtech and Crystalwise, which all managed to increase volumes and revenue. Global revenue from sapphire cores, bricks and wafers reached US$1.1 billion. Adding finished components produced by Biel, Lens Technology, Crystal Optech and others, revenue reached US$1.8 billion, including the notable performance of Saifei, which supplied the Kyocera Brigadier’s sapphire display cover.

Under strong price pressure, the sapphire industry successfully reduced its costs – but prices are falling even faster. An 18 percent average selling price decrease in 2015 wiped out potential gains from a 16 percent volume increase in LED wafer shipments. “We expect prices to keep decreasing, resulting in an LED wafer market remaining essentially flat in revenue despite a 5.2 percent CAGR growth in volume expected through to 2020,” said Eric Virey, Senior, Technology & Market Analyst at Yole. Optical wafers may also struggle if Yole’s scenario of Apple phasing out its current sapphire fingerprint reader technology for an “In Display” fingerprint sensor materializes in 2018.

Within the photolithography equipment market reaching $150M in 2014, advanced packaging applications experienced the strongest growth. Yole Développement (Yole)estimates that more than 40 systems have been installed in 2014, with a compound annual growth rate (CAGR) representing 10 percent between 2014 and 2020. In the meanwhile, MEMS photolithography equipment looks set for 7 percent CAGR and LEDs 3 percent.

Yole released last month its technology & market analysis dedicated to the manufacturing process, photolithography. Under this analysis entitled “Photolithography Equipment & Materials for Advanced Packaging, MEMS and LED Applications”the “More than Moore” market research and strategy consulting company proposes a comprehensive overview of the equipment and materials market dedicated to the photolithography step. Yole’s analysts performed a special focus on the advanced packaging area. They highlighted the following topics: current and emerging lithography technologies, technical specifications, challenges and technology trends, market forecast between 2014 and 2020, market shares and some case studies.

yole packaging july

“The advanced packaging market is very interesting and is growing dynamically as it includes many different players along the supply chain,” said Claire Troadec, Technology & Market Analyst at Yole. It encompasses outsourced assembly at test firms (OSATs), integrated manufacturers (IDMs), MEMS foundries and mid-stage foundries.
In comparison, even if the MEMS & Sensors industry is growing at a fast pace, components are also experiencing die size reduction due to strong cost pressure in the consumer market. Consequently wafer shipments are not following the same trend as unit shipments. Lastly, LED equipment growth is back to a normal rhythm, after big investments made in recent years.

Advanced packaging has very complex technical specifications. Warpage handling as well as heterogeneous materials represent big challenges to photolithography. Due to aggressive resolution targets in advanced packaging, performance must be improved. The current minimum resolution required is below 5µm for some advanced packaging platforms, like 3D integrated circuits, 2.5D interposers, and wafer level chip scale packaging (WLCSP). A lot of effort is being made to reduce overlay issues due to shifting dies and obtain vertical sidewalls for flip-chip and WLCSP. Although steppers are already well established in the packaging field, new disruptive lithography technologies are also emerging and could contribute to market growth from 2015-2016.

“Huge business opportunities in the advanced packaging market are therefore driving photolithography equipment demand,” highlighted Amandine Pizzagalli, Technology & Market Analyst at Yole. “Given the high growth rate of this market, there is no doubt that already established photolithography players and new entrants will be attracted,” she added.

yole packaging july fig 2

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

At its most basic level, your smart phone’s battery is powering billions of transistors using electrons to flip on and off billions of times per second. But if microchips could use photons instead of electrons to process and transmit data, computers could operate even faster.

But first engineers must build a light source that can be turned on and off that rapidly. While lasers can fit this requirement, they are too energy-hungry and unwieldy to integrate into computer chips.

Duke University researchers are now one step closer to such a light source. In a new study, a team from the Pratt School of Engineering pushed semiconductor quantum dots to emit light at more than 90 billion gigahertz. This so-called plasmonic device could one day be used in optical computing chips or for optical communication between traditional electronic microchips.

The study was published online on July 27 in Nature Communications.

“This is something that the scientific community has wanted to do for a long time,” said Maiken Mikkelsen, an assistant professor of electrical and computer engineering and physics at Duke. “We can now start to think about making fast-switching devices based on this research, so there’s a lot of excitement about this demonstration.”

The new speed record was set using plasmonics. When a laser shines on the surface of a silver cube just 75 nanometers wide, the free electrons on its surface begin to oscillate together in a wave. These oscillations create their own light, which reacts again with the free electrons. Energy trapped on the surface of the nanocube in this fashion is called a plasmon.

The plasmon creates an intense electromagnetic field between the silver nanocube and a thin sheet of gold placed a mere 20 atoms away. This field interacts with quantum dots — spheres of semiconducting material just six nanometers wide — that are sandwiched in between the nanocube and the gold. The quantum dots, in turn, produce a directional, efficient emission of photons that can be turned on and off at more than 90 gigahertz.

“There is great interest in replacing lasers with LEDs for short-distance optical communication, but these ideas have always been limited by the slow emission rate of fluorescent materials, lack of efficiency and inability to direct the photons,” said Gleb Akselrod, a postdoctoral research in Mikkelsen’s laboratory. “Now we have made an important step towards solving these problems.”

“The eventual goal is to integrate our technology into a device that can be excited either optically or electrically,” said Thang Hoang, also a postdoctoral researcher in Mikkelsen’s laboratory. “That’s something that I think everyone, including funding agencies, is pushing pretty hard for.”

The group is now working to use the plasmonic structure to create a single photon source — a necessity for extremely secure quantum communications — by sandwiching a single quantum dot in the gap between the silver nanocube and gold foil. They are also trying to precisely place and orient the quantum dots to create the fastest fluorescence rates possible.

Aside from its potential technological impacts, the research demonstrates that well-known materials need not be limited by their intrinsic properties.

“By tailoring the environment around a material, like we’ve done here with semiconductors, we can create new designer materials with almost any optical properties we desire,” said Mikkelsen. “And that’s an emerging area that’s fascinating to think about.”

Scientists studying thin layers of phosphorus have found surprising properties that could open the door to ultrathin and ultralight solar cells and LEDs.

The team used sticky tape to create single-atom thick layers, termed phosphorene, in the same simple way as the Nobel-prize winning discovery of graphene.

Unlike graphene, phosphorene is a semiconductor, like silicon, which is the basis of current electronics technology.

“Because phosphorene is so thin and light, it creates possibilities for making lots of interesting devices, such as LEDs or solar cells,” said lead researcher Dr Yuerui (Larry) Lu, from The Australian National University (ANU).

“It shows very promising light emission properties.”

The team created phosphorene by repeatedly using sticky tape to peel thinner and thinner layers of crystals from the black crystalline form of phosphorus.

As well as creating much thinner and lighter semiconductors than silicon, phosphorene has light emission properties that vary widely with the thickness of the layers, which enables much more flexibility for manufacturing.

“This property has never been reported before in any other material,” said Dr Lu, from ANU College of Engineering and Computer Science, whose study is published in the Nature serial journal Light: Science and Applications.

“By changing the number of layers we can tightly control the band gap, which determines the material’s properties, such as the colour of LED it would make.

“You can see quite clearly under the microscope the different colours of the sample, which tells you how many layers are there,” said Dr Lu.

Dr Lu’s team found the optical gap for monolayer phosphorene was 1.75 electron volts, corresponding to red light of a wavelength of 700 nanometers. As more layers were added, the optical gap decreased. For instance, for five layers, the optical gap value was 0.8 electron volts, a infrared wavelength of 1550 nanometres. For very thick layers, the value was around 0.3 electron volts, a mid-infrared wavelength of around 3.5 microns.

The behaviour of phosphorene in thin layers is superior to silicon, said Dr Lu.

“Phosphorene’s surface states are minimised, unlike silicon, whose surface states are serious and prevent it being used in such a thin state.”

Global semiconductor capital equipment manufacturer OEM Group announced today it has received first-in-fab and repeat tool orders for its Cintillio wet chemical processing system from several leading Ultra Bright LED manufacturers working in the automotive lighting market.  With these orders, OEM Group has now successfully expanded its production proven and patented ECO-Process wafer surface preparation solutions from the established markets of Power Device, CMOS IC, and MEMS manufacturing into UBLED fabrication, a new market for Cintillio.  The tools will be used for ozone processing of some of the most sensitive layers exposed during LED manufacturing, including exposed silver, which to date has presented LED makers with difficult challenges where surface preparation is involved.

Along with novel ozone processes optimized for exposed Ag, OEM Group’s ECO-Processes provide LED customers with significant reductions in chemical waste disposal and DI water consumption.

LEDs are eco-friendly light sources that provide high power efficiency in automotive applications, contributing to improved fuel efficiency by reducing electrical power consumption. As a result, the EU has officially recognized LED headlamps as being an energy-efficient technology, resulting in the notable adoption of UBLED headlamps by European automobile manufacturers.

The market research firm LEDInside expects continued significant growth in the automotive LED segment, particularly in Daytime Running Lights, High/Low headlamp beams, and fog light applications, with a compound annual growth rate of 48% forecast from 2014 to 2018.

And McKinsey & Company notes in a recent report that LED adoption can be accelerated by applying best practices in manufacturing, including increased automation levels and “lean” manufacturing methods, as OEM Group now offers for the LED market with Cintillio.  The repeat and first-in-fab orders from major UBLED manufacturers in Asia and Europe reflect the confidence OEM Group’s customers have in these surface preparation processes and reinforces the value proposition benefits they bring.

“It is a testament to the development work on ozone processing over sensitive layers, such as Ag, carried out by our process development group based in Coopersburg, PA, that we are seeing traction and growth in the UBLED market. This work has enabled us to provide process solutions not only for UBLED FEOL applications, but also throughout the entire UBLED process flow,” said Paul Inman, Business Development, Chemical Process Technology, OEM Group.

“The ability to reduce DI water consumption by up to 85%, and the virtual elimination of chemistry and related disposal costs, are factors leading to a marked increase in interest in the ECO-Processes, especially in areas suffering severe water shortages” added Graham Pye, CPT Product Manager at OEM Group.

“Growing photolithography equipment markets in advanced packaging, MEMS and LEDs are attracting new players; but they have to navigate complex roadmaps,” announced Yole Développement (Yole). Under its new report, Yole’s analysts announce a projection system market for advanced packaging, MEMS and LEDs reaching more than US$150M in 2014. To perform this report, they interviewed leaders and outsiders of this market such as SUSS MicroTec, ASML, EV Group, Rudolph Technologies, USHIO. They analyzed their market positioning and their technical solutions.

Within a highly competitive and innovative environment, Yole’s analysis shows, at first glance, some similarities between “More Moore” and “More than Moore”. However the analysis is more complex.

“Photolithography Equipment & Materials for Advanced Packaging, MEMS and LED Applications” analysis provides a comprehensive overview of all the key lithography technologies used in advanced packaging, MEMS and LED applications and benchmarks them in terms of feature requirements. Yole’s analysts provide examples of lithography process steps for these applications. In parallel, Yole’s report describes associated technological breakthroughs and manufacturing process. More insights are included on specific lithography equipment tools for advanced packaging, MEMS and LED devices.

illus_lithography_market_yole_june2015

The semiconductor industry is very often identified by its “More Moore” players, driven by technology downscaling and cost reduction. There is one clear leader supplying photolithography tools to the “More Moore” industry: ASML, based in The Netherlands. The company proposes lithography equipment with $10M unit price and incredible optics, mechanics and precision stage in order to reach sub 20nm precision (Latest announcement from ASML, April 2015). ASML is followed by two Japanese outsiders, Nikon and Canon.

“Providing this market with photolithography equipment is highly complex and there are gigantic barriers to market entry,” asserted Claire Troadec, Technology & Market Analyst, Semiconductor Manufacturing at Yole. Enormous R&D investments are required as the key features to print shrink ever further. Also, the tolerances specified are very aggressive and thus equipment complexity keeps on increasing.

In the “More than Moore” industry the Holy Grail isn’t downscaling any more – it is adding functionality: according to Yole’s analysis, there are two clear leaders today: SUSS MicroTec (Latest order: lithography tools from TDK, Feb. 2015) in the MEMS and sensors industry, and Ultratech in the advanced packaging industry. Both players are closely followed by the following outsiders, EV Group, Rudolph Technologies and USHIO.

“But the similarities between both worlds, are only superficial,” commented Amandine Pizzagalli, Technology & Market Analyst, Advanced Packaging & Semiconductor Manufacturing at Yole. “Indeed market entry barrier is much lower in the “More than Moore” market. Equipment in the Advanced Packaging, MEMS and LEDs industries is less complex but customer adoption needs are higher, which leads to a much broader photolithography landscape,” she added.

The photolithography market structure for these three industries is very different compared to the “More Moore”, or mainstream semiconductor, industry. New entrants can penetrate these markets with a good knowledge of the technological building blocks. But the key to success is to adapt the equipment to the specific customer’s needs. That means that these markets are complex to develop and that they take a long time to penetrate.

To develop their knowledge and expand their range of products, some players entered through acquisition. Rudolph Technologies acquired Azores Corp. in 2012 to enter the advanced packaging photolithography equipment arena. Also in 2012, SUSS MicroTec acquired Tamarack Scientific Co. Inc. to enlarge its semiconductor back end photolithography equipment market.

Others like Orbotech, which acquired a leading MEMS and advanced packaging company, SPTS, is today only present in substrate and PCB direct imaging.

in this report, competition trends are carefully analyzed and presented as a competitive landscape and competitive analysis of the major equipment and materials suppliers involved in Advanced Packaging, MEMS and LED applications. Finally, a section is also dedicated to disruptive technologies such as LDI, laser ablation and nanoimprint lithography, which could reshape the lithography landscape in the future. Yole describes possible reshaping scenarios are described, including acquisitions, mergers, and joint ventures, along with their anticipated impact on the global photolithography market.