Category Archives: Lithography

Worldwide semiconductor revenue is forecast to total $451 billion in 2018, an increase of 7.5 percent from $419 billion in 2017, according to Gartner, Inc. This represents a near doubling of Gartner’s previous estimate of 4 percent growth for 2018.

“Favorable market conditions for memory sectors that gained momentum in the second half of 2016 prevailed through 2017 and look set to continue in 2018, providing a significant boost to semiconductor revenue,” said Ben Lee, principal research analyst at Gartner. “Gartner has increased the outlook for 2018 by $23.6 billion compared with the previous forecast, of which the memory market accounts for $19.5 billion. Price increases for both DRAM and NAND flash memory are raising the outlook for the overall semiconductor market.”

However, these price increases will put pressure on margins for system vendors of key semiconductor demand drivers, including smartphones, PCs and servers. Gartner predicts that component shortages, a rising bill of materials (BOM) and the resulting prospect of having to raise average selling prices (ASPs) will create a volatile market through 2018.

Despite the upward revision for 2018, the quarterly growth profile for 2018 is expected to fall back to a more normal pattern with a mid-single-digit sequential decline in the first quarter of the year, followed by a recovery and buildup in both the second and third quarters of 2018, and a slight decline in the fourth quarter.

On January 3, a security vulnerability that spans all microprocessor vendors was revealed, impacting nearly all types of personal and data center computing devices. While this is an obscure security vulnerability that is difficult to achieve, the potential of a high-impact security issue cannot be ignored and must be mitigated.

“The current mitigation solution is via firmware and software updates, and has a potential processor performance impact. This may result in an increased demand for high-performance data center processors in the short term, but Gartner expects that in the longer term, microprocessor architectures will be redesigned, reducing the performance impact of the software mitigations and limiting the long-term forecast impact,” said Alan Priestley, research director at Gartner.

Taking the memory sectors out of the equation, the semiconductor market is forecast to grow 4.6 percent in 2018 (compared with 9.4 percent in 2017) with field-programmable gate array (FPGA), optoelectronics, application-specific integrated circuits (ASICs) and nonoptical sensors leading the semiconductor device categories.

The other significant device category driving the 2018 forecast higher is application-specific standard products (ASSPs). The predicted growth in ASSPs was influenced by an improved outlook for graphics cards used in gaming PCs and high-performance computing applications, a broad increase in automotive content and a stronger wired communications forecast.

The mixed fortunes of semiconductor vendors in recent years serves as a reminder of the fickleness of the memory market,” said Mr. Lee. “After growing by 22.2 percent in 2017, worldwide semiconductor revenue will revert back to single-figure growth in 2018 before a correction in the memory market results in revenue declining slightly in 2019.”

SEMI today announced that SEMI Europe’s Industry Strategy Symposium (ISS Europe), coming on the heels of the highly successful ISS 2018 in the U.S., will highlight STEM education and a talent pipeline, critical issues to electronics manufacturing executives sharpening their competitive edge in the global supply chain. Day two of the flagship business event – March 4-6 in Dublin, Ireland – will feature two experts focusing on how companies can “Gain, Train and Retain World-Class Talent.”

Ann-Charlotte Johannesson, CEO, CEI-Europe AB, will examine strategies to attract, retain and develop highly skilled workers in the semiconductor industry as an essential component of Europe´s global competitiveness in her presentation “Smart Training for Smarter Engineers – The Way of Ensuring the Competitive Advantage for the Global European Industry.”

Cheryl Miller, Founder/Executive Director, Digital Leadership Institute, will present an overview of education and digital skills, innovation, entrepreneurship and the workplace of the future. The Digital Leadership Institute, a Brussels-based, international NGO, is a recognised world leader in promoting greater participation of girls and women in strategic, innovative ESTEAM (Entrepreneurship & Arts powered by STEM).

“A skilled workforce is not only a keystone to the success of the global supply chain but a source of competitive advantage, making STEM education and a strong talent pipeline critical focus areas for the industry,” said Laith Altimime, president, SEMI Europe. “SEMI member companies feel the pinch, with thousands of open positions that are critical to sustaining the pace of innovation and growth. To address the talent shortfall, SEMI Europe this year launched a workforce development and diversity initiative.”

Other ISS Europe 2018 highlights include the panel discussion “Critical Strategies to Grow Europe in the Global Supply Chain,” the opening networking reception, a gala dinner, and the 2017 European Award ceremony.

Qualcomm Incorporated (NASDAQ: QCOM) today announced that the European Commission and the Korea Fair Trade Commission (KFTC) authorized the acquisition by Qualcomm River Holdings B.V., an indirect wholly owned subsidiary of Qualcomm, of NXP Semiconductors N.V. (NASDAQ: NXPI).  The acquisition has now received 8 of the 9 approvals around the world, with China remaining.

Qualcomm cooperated with the Commission and the KFTC to obtain authorization, and committed to exclude certain near-field communication (NFC) patents from the proposed transaction and ensure that NXP licenses those patents to third parties.  Qualcomm also committed not to assert the NFC patents it will acquire from NXP and maintain interoperability between Qualcomm’s baseband chipsets and NXP’s NFC chips and rivals baseband chipsets and NFC chips.  Qualcomm also will continue to offer a license to MIFARE on terms commensurate with those offered by NXP today.

“We are pleased that both the European Commission and the Korean Fair Trade Commission have granted authorization of the NXP acquisition, and we are optimistic that China will expeditiously grant its clearance” said Steve Mollenkopf, Chief Executive Officer, Qualcomm Incorporated. “Acquiring NXP is complementary to Qualcomm’s global portfolio, providing tremendous scale in automotive, IoT, security and networking and will greatly accelerate our ability to execute and create value in new and adjacent opportunities.”

Northwestern University researchers have developed a first-of-its-kind technique for creating entirely new classes of optical materials and devices that could lead to light bending and cloaking devices — news to make the ears of Star Trek’s Spock perk up.

Using DNA as a key tool, the interdisciplinary team took gold nanoparticles of different sizes and shapes and arranged them in two and three dimensions to form optically active superlattices. Structures with specific configurations could be programmed through choice of particle type and both DNA-pattern and sequence to exhibit almost any color across the visible spectrum, the scientists report.

“Architecture is everything when designing new materials, and we now have a new way to precisely control particle architectures over large areas,” said Chad A. Mirkin, the George B. Rathmann Professor of Chemistry in the Weinberg College of Arts and Sciences at Northwestern. “Chemists and physicists will be able to build an almost infinite number of new structures with all sorts of interesting properties. These structures cannot be made by any known technique.”

The technique combines an old fabrication method — top-down lithography, the same method used to make computer chips — with a new one — programmable self-assembly driven by DNA. The Northwestern team is the first to combine the two to achieve individual particle control in three dimensions.

The study was published online by the journal Science today (Jan. 18). Mirkin and Vinayak P. Dravid and Koray Aydin, both professors in Northwestern’s McCormick School of Engineering, are co-corresponding authors.

Scientists will be able to use the powerful and flexible technique to build metamaterials — materials not found in nature — for a range of applications including sensors for medical and environmental uses.

The researchers used a combination of numerical simulations and optical spectroscopy techniques to identify particular nanoparticle superlattices that absorb specific wavelengths of visible light. The DNA-modified nanoparticles — gold in this case — are positioned on a pre-patterned template made of complementary DNA. Stacks of structures can be made by introducing a second and then a third DNA-modified particle with DNA that is complementary to the subsequent layers.

In addition to being unusual architectures, these materials are stimuli-responsive: the DNA strands that hold them together change in length when exposed to new environments, such as solutions of ethanol that vary in concentration. The change in DNA length, the researchers found, resulted in a change of color from black to red to green, providing extreme tunability of optical properties.

“Tuning the optical properties of metamaterials is a significant challenge, and our study achieves one of the highest tunability ranges achieved to date in optical metamaterials,” said Aydin, assistant professor of electrical engineering and computer science at McCormick.

“Our novel metamaterial platform — enabled by precise and extreme control of gold nanoparticle shape, size and spacing — holds significant promise for next-generation optical metamaterials and metasurfaces,” Aydin said.

The study describes a new way to organize nanoparticles in two and three dimensions. The researchers used lithography methods to drill tiny holes — only one nanoparticle wide — in a polymer resist, creating “landing pads” for nanoparticle components modified with strands of DNA. The landing pads are essential, Mirkin said, since they keep the structures that are grown vertical.

The nanoscopic landing pads are modified with one sequence of DNA, and the gold nanoparticles are modified with complementary DNA. By alternating nanoparticles with complementary DNA, the researchers built nanoparticle stacks with tremendous positional control and over a large area. The particles can be different sizes and shapes (spheres, cubes and disks, for example).

“This approach can be used to build periodic lattices from optically active particles, such as gold, silver and any other material that can be modified with DNA, with extraordinary nanoscale precision,” said Mirkin, director of Northwestern’s International Institute for Nanotechnology.

Mirkin also is a professor of medicine at Northwestern University Feinberg School of Medicine and professor of chemical and biological engineering, biomedical engineering and materials science and engineering in the McCormick School.

The success of the reported DNA programmable assembly required expertise with hybrid (soft-hard) materials and exquisite nanopatterning and lithographic capabilities to achieve the requisite spatial resolution, definition and fidelity across large substrate areas. The project team turned to Dravid, a longtime collaborator of Mirkin’s who specializes in nanopatterning, advanced microscopy and characterization of soft, hard and hybrid nanostructures.

Dravid contributed his expertise and assisted in designing the nanopatterning and lithography strategy and the associated characterization of the new exotic structures. He is the Abraham Harris Professor of Materials Science and Engineering in McCormick and the founding director of the NUANCE center, which houses the advanced patterning, lithography and characterization used in the DNA-programmed structures.

Silicon photonics is still a small market today, with sales at die level estimated to be US$30 million in 2016. However, it has big promise, with a 2025 market value of US$560 million at chip level and almost US$4 billion at transceiver level.

illus_si_photonics_applications_range_yole_jan2018

According to Yole Développement (Yole), silicon photonics technology will grow from a few percent of total optical transceiver market value in 2016 to 35% of the market in 2025, mostly for intra-data center communication. The market research & strategy consulting company explains: the strongest demand is for 400G. In parallel, 200G could be only an intermediate step between 100G and 400G. “The next evolution is to develop a 400G optical port over a single fiber across 500m at less than $1 per gigabit and with power <5mW/Gb”, explains Dr. Eric Mounier, Senior Technology & Market Analyst at Yole. One terabit per second rates should follow. Although the wafer area this accounts for will be a minute part of the worldwide SOI market, it will represent significant value because of the SOI wafer high price.

Yole releases this month, the technology & market report titled “Silicon Photonics”. Dr Eric Mounier from Yole and Jean-Louis Malinge, former CEO of Kotura, now at ARCH Venture Partners combined their expertise to perform a comprehensive analysis of the silicon photonics industry. Both experts propose today the status of the market: it is a comprehensive overview of the Silicon photonics industry including technology roadmap, market trends and related figures, competitive landscape and more. The 2018 report gives a detailed description of the supply chain, with player status. It also provides updated market share numbers for the players. In this new study, Yole’s analysts reveal the current status and future challenges for data centers. They also explain why silicon photonics is the answer to future DC needs and other possible applications…

Silicon photonics technology has clearly reached its tipping point, with transceivers shipping in volume, announces the consulting company. Market evolution, competitive landscape, technology innovation, business opportunities: discover today what has been changed within the latest two years.

“We believe we are only at the very beginning as there is massive ongoing development worldwide for further integration”, asserts Dr. Mounier. And he adds: “The recent involvement of large integrated circuit foundries, such as TSMC’s relationship with Luxtera, and GlobalFoundries with Ayar Labs, are very encouraging signs showing the big promise for silicon photonics.”

The “Zero-Change” processes currently in development, manufacturing optical components without making any changes to a CMOS process, are targeting future inter-chip optical interconnects that could represent huge market volumes. Silicon photonics is at the maturity level of the electronics industry in the 1980s and there are still challenges to overcome. For all these challenges, technical breakthroughs will be necessary and are detailed in Yole’s silicon photonics roadmap:

•  Laser source integration: lasers are still in competition with VCSELs for low distance and developments of Si-based lasers are no longer progressing. Quantum dot lasers could be a solution in long term as they are less temperature sensitive.
•  Modulators: smaller size modulators are required and silicon photonics offers modulator integration advantage.
•  Assembly and testing: more advancements in lower cost packaging and wafer level testing are needed.
•  Design and software: specific software are required for photonics with pre-defined models.
•  Supply chain maturation similar to the semiconductor supply chain.
•  New manufacturing solutions: for example, a new trend is to have a zero-change approach on CMOS lines.
•  Higher distance transmission.

The historic flood of merger and acquisition agreements that swept through the semiconductor industry in 2015 and 2016 slowed significantly in 2017, but the total value of M&A deals reached in the year was still more than twice the annual average in the first half of this decade, according to IC Insights’ new 2018 McClean Report, which becomes available this month.  Subscribers to The McClean Report can attend one of the upcoming half-day seminars (January 23 in Scottsdale, AZ; January 25 in Sunnyvale, CA; and January 30 in Boston, MA) that discuss the highlights of the report free of charge.

In 2017, about two dozen acquisition agreements were reached for semiconductor companies, business units, product lines, and related assets with a combined value of $27.7 billion compared to the record-high $107.3 billion set in 2015 and the $99.8 billion total in 2016 (Figure 1).  Prior to the explosion of semiconductor acquisitions that erupted several years ago, M&A agreements in the chip industry had a total annual average value of about $12.6 billion between 2010 and 2015.

Figure 1

Figure 1

Two large acquisition agreements accounted for 87% of the M&A total in 2017, and without them, the year would have been subpar in terms of the typical annual value of announced transactions.  The falloff in the value of semiconductor acquisition agreements in 2017 suggests that the feverish pace of M&A deals is finally cooling off.  M&A mania erupted in 2015 when semiconductor acquisitions accelerated because a growing number of companies began buying other chip businesses to offset slow growth rates in major end-use applications (such as smartphones, PCs, and tablets) and to expand their reach into huge new market opportunities, like the Internet of Things (IoT), wearable systems, and highly “intelligent” embedded electronics, including the growing amount of automated driver-assist capabilities in new cars and fully autonomous vehicles in the not-so-distant future.

With the number of acquisition targets shrinking and the task of merging operations together growing, industry consolidation through M&A transactions decelerated in 2017.  Regulatory reviews of planned mergers by government agencies in Europe, the U.S., and China have also slowed the pace of large semiconductor acquisitions.

One of the big differences between semiconductor M&A in 2017 and the two prior years was that far fewer megadeals were announced.  In 2017, only two acquisition agreements exceeded $1 billion in value (the $18 billion deal for Toshiba’s memory business and Marvell’s planned $6 billion purchase of Cavium).  Ten semiconductor acquisition agreements in 2015 exceeded $1 billion and seven in 2016 were valued over $1 billion.  The two large acquisition agreements in 2017 pushed the average value of semiconductor M&A pacts to $1.3 billion.  Without those megadeals, the average would have been just $185 million last year. The average value of 22 semiconductor acquisition agreements struck in 2015 was $4.9 billion.  In 2016, the average for 29 M&A agreements was $3.4 billion, based on data compiled by IC Insights.

SkyWater Technology Foundry, the industry’s most advanced U.S.-based and U.S.-owned trusted foundry, announced today that it has appointed Steve Wold as Chief Financial Officer. Steve has more than 25 years of leadership experience, holding a variety of senior corporate finance roles. He brings a rich background to the company in capital markets, including equity, corporate financing and recapitalizations, and risk management. Steve succeeds Bart Zibrowski, who will move on to the role of Vice-Chairman for the company.

“As we complete our foundry transformation in 2018, I am delighted to welcome Steve Wold to SkyWater as our new CFO,” said Thomas Sonderman, President, SkyWater Technology Foundry. “With his background in high-performance growth organizations, Steve is ideally suited to help us deliver on our long-term vision. I’d also like to thank Bart Zibrowski for the tremendous job he did in putting a strong foundation in place for our finance organization over the last year as we created the company.” 

Steve comes to SkyWater Technology Foundry after most recently serving as a key member of the leadership team of Arctic Cat Inc. (formerly ACAT – NASDAQ), where he was instrumental in completing the sale of the company to Textron Inc. in 2017. Prior to that, he was at Orbital ATK (OA – NYSE) for 18 years, where he was focused on transforming processes, change management, and driving operational efficiencies, as the company grew from approximately $1 billion to over $5 billion in revenue. Steve began his career as a CPA with Deloitte Audit and Assurance for over 7 years, where he focused on providing services to both publicly traded and privately held manufacturing entities. He holds a Bachelor of Accountancy from the University of North Dakota, and is a member of the American Institute of Certified Public Accountants and the Minnesota Society of CPAs. 

SkyWater is a U.S.-based technology foundry, specializing in the development and manufacturing of a wide variety of differentiated semiconductor manufacturing solutions.

By Dan Tracy and Ji-Won Cho, SEMI

2017 proved to be record-setting year for the semiconductor industry. According to World Semiconductor Trade Statistics (WSTS), worldwide semiconductor market will have grown 20 percent, exceeding $400 billion for the first time. Among all major product segments, memory is the strongest, with sales are on track to grow 60 percent year-over-year, contributing to 30 percent of worldwide semiconductor sales in 2017. The consensus is that the growth momentum in memory will continue in 2018, driven by stable market demand and a favorable pricing environment.

Korean memory makers are the biggest beneficiaries of this memory super cycle. According to the Korea International Trade Association (KITA), the memory export value from Korea grew 86 percent through November 2017 compared to a year earlier, indicating that Korean memory makers are gaining more market share. On the supply side of the market, both Samsung and SK Hynix saw record high capital expenditures in 2017, contributing to the revenue surge from Korean suppliers. The spending spree is expected to continue in 2018. Together, Samsung and SK Hynix are forecast to invest over $20 billion in fab tools worldwide in 2018. (Track fab projects in detail with the SEMI World Fab Forecast or SEMI FabView databases).

WFF-Dec2017-chart

Samsung’s anchor project in 2018 is the ramp of its new Fab P1 phase 2 line in Pyeongtaek. Samsung plans to add new 3D NAND as well as DRAM capacity at this fab, fortifying its leading position in memory market. Beyond 2018, Samsung’s Xian phase 2 plan is also underway for future expansion.

SK Hynix, on the other hand, will ramp up M14 fab in 2018, adding new capacity for both 3D NAND and DRAM. In the meantime, SK Hynix is building a new fab, M15, in Cheongju, Korea, for 3D NAND and Fab C3 in Wuxi, China, for DRAM.

Both of these leading memory makers plan to ride this memory cycle and intend to vault ahead of the competition. Future demand for 3D NAND will continue to be the strongest, driving new fab projects in Korea now and later in China. Nevertheless, DRAM supply will also see new capacity coming online this year, followed by rare new fab projects. Memory not only accounts for a major portion of worldwide semiconductor sales but will also propel the investment momentum in the coming years.

SEMICON Korea 2018

The strong memory growth sets the stage for SEMICON Korea, January 31 through February 2 in Seoul. The largest microelectronics event in Korea, with over 40,000 attendees expected, SEMICON Korea will focus on enabling participants to “Connect, Collaborate, and Innovate.”

Key SEMICON Korea highlights include:

  • The 1,919 booths are sold out as major equipment, materials, and subsystem/parts companies exhibit their new products and technology solutions at the show.
  • Industry giants including Samsung, Micron, Intel, Toshiba, Sony, SK Hynix and LAM Research will connect with Korean equipment, materials and subsystems/parts manufacturers through the Supplier Search Program.
  • Participation by engineers is expected to be strong this year, after more than 10,000 engineers from​ Samsung Electronics, SK Hynix and DB Hitek attended SEMICON Korea 2017.

Major SEMICON Korea programs, including the following, will provide key insights into the Korea electronics manufacturing ecosystem:

  • Smart Automotive Forum
  • Smart Manufacturing Forum
  • Test Forum
  • SEMI Technology Symposium
  • Market Seminar

For a complete schedule of programs, visit www.semiconkorea.org/en/agenda-glance.

Littelfuse, Inc. (NASDAQ:LFUS) today announced the completion of its acquisition of IXYS Corporation (NASDAQ:IXYS). IXYS is a global pioneer in the power semiconductor market with a focus on medium- to high-voltage power semiconductors across the industrial, communications, consumer and medical device markets.

“Today marks a significant step forward in our company strategy to accelerate growth within the power control and industrial OEM markets,” said Dave Heinzmann, President and Chief Executive Officer of Littelfuse. “The combination of our companies brings together a broad power semiconductor portfolio, complementary technology expertise and a strong talent pool.”

The transaction is expected to be immediately accretive to adjusted EPS. Littelfuse expects to achieve more than $30 million of annualized cost savings within the first two years after closing. The combination is also expected to create significant revenue synergy opportunities longer term, given the companies’ complementary offerings and combined customer base.

In conjunction with the close of the transaction, IXYS founder Dr. Nathan Zommer has been appointed to the Littelfuse Board of Directors, increasing the size of the board to nine members.

With today’s transaction close, each former IXYS stockholder is entitled to receive, per IXYS share held immediately prior to the closing, either $23.00 in cash or 0.1265 of a share of Littelfuse common stock. In total, 50% of IXYS stock was converted into the cash consideration and 50% into the stock consideration.

Sales of analog ICs are expected to show the strongest growth rate among major integrated circuit market categories during the next five years, according to IC Insights’ new 2018 McClean Report, which becomes available this month.  The McClean Report forecasts that revenues for analog products—including both general purpose and application-specific devices—will increase by a compound annual growth rate (CAGR) of 6.6% to $74.8 billion in 2022 from $54.5 billion in 2017.

The 2018 McClean Report separates the total IC market into four major product categories: analog, logic, memory, and microcomponents.  Figure 1 shows the forecasted 2017-2022 CAGRs of these product categories compared to the projected total IC market annual growth rate of 5.1% during the five-year period.

Figure 1

Figure 1

Analog ICs, the fastest growing major product category in the forecast, are a necessity within both very advanced systems and low-budget applications.  Components like power management analog devices help regulate power usage to keep devices running cooler and ultimately to help extend battery life in cellphones and other mobile/battery operated systems. The power management market is forecast to grow 8% in 2018 after increasing 12% in 2017.

In 2018, the automotive—application-specific analog market is forecast to increase 15% to be the fastest growing analog IC category, and the third-fastest growing of 33 IC product categories classified by WSTS. The growth of autonomous and electric vehicles and more electronic systems on board all new cars are expected to keep demand robust for automotive analog devices.

Communications and consumer applications continue to represent the biggest end-use applications for signal conversion analog ICs.  Signal conversion components (data converters, mixed-signal devices, etc.) are forecast to continue on fast-track growth with double-digit sales gains expected in three of the next five years.

After an extraordinary 58% sales spike in 2017, the memory market is forecast to return to more “normal” growth through the forecast.  The memory market is forecast to increase by a CAGR of 5.2% through 2022. New capacity for flash memory and, to a lesser extent for DRAM, should bring some relief from fast-rising ASPs and result in better supply-demand balance for these devices to support newer applications such as enterprise solid-state drives (SSDs), augmented and virtual reality, graphics, artificial intelligence, and other complex, real-time workload functions.

Meanwhile, growth in the microcomponent market (forecast CAGR of 3.9%) has cooled significantly due to weak shipments of standard PCs (desktops and notebooks).  Tablet sales have also slowed and weighed down total microcomponent sales. With the exception of the 32-bit MCU market, annual sales gains in most microcomponent segments are forecast to remain in the low- to mid single digit range through 2022.

IC Insights forecasts the total IC market will increase by a CAGR of 5.1% from 2017-2022.  Following the 22% increase in 2017, the total IC market is forecast to grow 8% in 2018 to $393.9 billion and then continue on an upward trend to reach $466.8 billion in 2022, the final year of the forecast.